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Artificial neural networks have shown great proficiency in transforming low-resolution microscopic images into
high-resolution images. However, training data remains a challenge, as large-scale open-source databases of mi-
croscopic images are rare, particularly 3D data. Moreover, the long training times and the need for expensive
computational resources have become a burden to the research community. We introduced a deep-learning-based
self-supervised volumetric imaging approach, which we termed “Self-Vision.” The self-supervised approach re-
quires no training data, apart from the input image itself. The lightweight network takes just minutes to train and
has demonstrated resolution-enhancing power on par with or better than that of a number of recent microscopy-
based models. Moreover, the high throughput power of the network enables large image inference with less post-
processing, facilitating a large field-of-view (2.45 mm × 2.45 mm) using a home-built two-photon microscopy
system. Self-Vision can recover images from fourfold undersampled inputs in the lateral and axial dimensions,
dramatically reducing the acquisition time. Self-Vision facilitates the use of a deep neural network for 3D micros-
copy imaging, easing the demanding process of image acquisition and network training for current resolution-
enhancing networks. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.469231

1. INTRODUCTION

Two-photon excitation fluorescence microscopy (TPM) [1] is
a powerful tool for 3D imaging of cellular and subcellular
structures and functions deep in turbid tissues. Owing to its
nonlinear excitation properties, TPM provides compelling per-
formance of near-diffraction-limited spatial resolution in deep
and scattered samples. However, conventional TPM captures
volumetric images by serially scanning the focal point in
a 3D space [2], which requires compromises among the imag-
ing resolution, speed, and area [3]. A higher-resolution image
requires a higher number of sequentially acquired pixels to
ensure proper sampling, thus increasing the imaging time.
Considerable effort has been devoted to speeding up the acquis-
ition efficiency of imaging systems, such as multifocal scanning
[4], temporal focusing [5], and multiplane imaging [6].
However, these methods modify the light path and require so-
phisticated hardware design. Developing a new method to ef-
fectively enhance undersampled point-scanning TPM images is
of great practical interest for biological studies.

Deep learning [7], a method based on artificial neural net-
works (ANNs), has drawn wide-spread attention among the
microscopy research community and has been used for

segmentation and recognition in microscopy image analysis.
In recent years, various new applications have emerged, includ-
ing modality transformation [8], image denoising at a low pho-
ton budget [9], reducing light exposure for TPM [10],
accelerating single-molecule localization [11], speeding up
multicolor spectroscopic single-molecule localization micros-
copy [12], 3D virtual refocusing [13], and instantaneous fluo-
rescence lifetime calculation [14,15]. Among numerous others
[16–19], super-resolution imaging via a deep neural network
[20], which transforms spatially undersampled images into
super-sampled ones, is one of the hottest topics. It tackles this
problem by training the network to learn the mapping between
low-resolution images and their high-resolution counterparts
[21]. When low-resolution images are presented, the network
is expected to output or infer a high-resolution image with high
fidelity. Using deep-learning-based image-enhancing tech-
niques, high-resolution images can now be recovered from
low-resolution images with reduced scan times and no hard-
ware modifications.

The majority of deep neural networks used in microscopic im-
aging rely on training with hundreds of thousands of high-quality
images [3,8,20,22]. For the image-resolution-enhancement task,
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high-resolution images are paired with corresponding low-
resolution images for supervised network training. However,
large-scale 3D online microscopic image databases are limited.
Moreover, training with data generated from different systemsmay
cause performance changes owing to data drift. Consequently,
most research is based on self-collected image pairs. Low-
resolution images can be acquired experimentally, followed by
careful image registration [20], or by simply applying a degrada-
tion model to digitally downsample high-resolution images
[3,23,24]. The long acquisition process inevitably incurs high
costs. Recent research has shown the estimated cost of acquiring
240 h of high-resolution electron microscopic imaging data to be
over $8000 [24]. The cost doubles if low-resolution images are
measured experimentally. Acquiring 3D data worsens the situa-
tion, as the sample preparation is different, and imaging time
significantly increases, not to mention the potential risks of photo-
bleaching. In addition to the cost of data acquisition, the computa-
tional cost is non-negligible. The large neural networks routinely
used in current deep learning microscopy not only require a large
volume of data to fit but also require high-performance computing
resources, such as high-end graphical processing units (GPUs) or
cloud-based computing platforms, to train, which is an additional
burden for many optical and biomedical laboratories.

In this study, we developed a lightweight model to enhance
the resolution of 3D microscopic images. The model requires
zero training data apart from the input volumetric image itself;
therefore, it is fully self-supervised [25–27], i.e., Self-Vision.
We demonstrated that Self-Vision could recover images, while
the input was fourfold undersampled in both the lateral and
axial dimensions, which in theory results in an over 60-fold
(4 × 4 × 4) reduction in the actual acquisition time, although
there is some degradation of image quality. We also compared
Self-Vision with multiple recent networks specifically devel-
oped for enhancing microscopic images and found that our

proposed framework achieved fewer errors and greater struc-
tural similarity using only the input image for training.
Furthermore, we applied the framework to a home-built large
field-of-view (FOV) imaging system. Using only a small por-
tion of the image cropped from the entire FOV for training, the
network reconstructed a high-resolution image with more than
a significant reduction in the volumetric acquisition time.

2. RESULTS

A. Concept of Self-Supervised Resolution-Enhanced
Volumetric Image
Figure 1 shows the concept of Self-Vision-based resolution-
enhancement for volumetric images. The image pairs for train-
ing are generated by first cropping small patches from the input
image (training data generation in Fig. 1) and then downsam-
pling the patches along with their augmentations to synthesize
low-resolution inputs (network training in Fig. 1). After the
training stage, the input image is sent to the network for
a high-resolution output. To avoid confusion with super-
resolution techniques using optical methods, we use the term
“resolution-enhancing” instead for deep-learning-based meth-
ods throughout the work. Some combinations (e.g., super-
resolution network/model) are kept, which are consistent with
the common expressions in the literature.

In the context of volumetric image enhancement, the
patches can be extracted from a single input image scale of the
order of N 3, serving as the data source for the self-supervised
learning process (Fig. 1, left). This data-saving training strategy
does not rely on a massive training data set, i.e., it removes
the burden of collecting a large-scale training set, as both
the number and size of training data are reduced. Once the
model is trained, it can be deployed for inference purposes
(see Supplementary Fig. S1 in Ref. [28]) for a comparison be-

Fig. 1. Overview of proposed framework. The input image is first cropped and augmented into patches. The downsampled version of the patches
is then used as the input for training, where the original patches serve as the target output. At the test phase, the input image is fed to the trained
network to produce high-resolution output.
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tween the two data-training strategies. Meanwhile, the light-
weight, minimalistic model allows a large input image, thereby
favoring images captured using a large FOV system and alle-
viating the stitching process in postprocessing. Finally, network
training can be completed within minutes, thus considerably
reducing the total cost.

B. Self-Vision Improves Resolution of Undersampled
Volumetric Images
Using a microscope, the process of sampling a volumetric im-
age, V Original�x, y, z�, can be formulated using the classical
image degradation model:

V L:R: � �V Original � PSF�↓n, (1)

where V L:R: represents the acquired low-resolution image, PSF
is the system point spread function, and ↓n is the downsam-
pling factor, which is usually determined by an image-capturing
device, such as a charge-coupled device (CCD) camera or
photomultiplier tube.

Our goal was to train a neural network, F , to transform
the input V L:R: to its high-resolution, de-pixelated version,
V H:R: � F�V L:R:� such that V H:R: was as close as possible
to the ground-truth V Original.

To demonstrate the efficacy of our Self-Vision network, we
first used simulated beads (see Supplementary Fig. S2 in
Ref. [28] and Methods) with anisotropic profiles. The reference
image, V Original, was artificially generated, and the input, V L:R:,
was obtained via downsampling. Using the proposed frame-
work, both the lateral and axial profiles of the output agreed
with the reference image (see Supplementary Figs. S2 and
S3 in Ref. [28]). These results demonstrated that Self-Vision
recovered the bead profile when the input was fourfold under-

sampled in the lateral and axial dimensions, indicative of a re-
duction in the actual acquisition time.

We then verified whether Self-Vision could improve the res-
olution of undersampled volumetric images acquired from real
biological samples and infer details that were undistinguishable
in the degraded inputs using a commercially available micro-
scope (Nikon A1R-MP). The networks were trained and tested
using 3D images of green fluorescent protein (GFP) labelled
Thy-1 brain slices from mice (see Section 4). The brain slices
were placed on glass slides for two-photon microscopy using
a 25×, 1.1 NA water immersion objective (N25X-APO-MP,
Nikon). The excitation wavelength was set to 920 nm, and
the neurons could be clearly visualized. To test the network
performance, a high-resolution reference image was captured
from a 520 μm × 520 μm × 152 μm (X × Y × Z ) volume with
a lateral spacing of 0.51 μm and an axial spacing of 1 μm. This
resulted in an output image size of 1024 × 1024 × 152 voxels.

Figure 2 shows Self-Vision TPM imaging of neurons from
the mouse brain tissue. The neuron bodies from the test spec-
imens are magnified and shown, along with the intensity pro-
files drawn from a line across the image (marked by a white
dash). In the lateral and axial dimensions, the network outputs
have a similar profile to the original image (the contrast be-
tween the cells and the background also being enhanced).
For example, the troughs between the two peaks, i.e., the blue
line profile plots in Fig. 2, which show little contrast on the
input profile, become distinguishable in the output profile.
An unexpected feature of the network is that the output images
appear less noisy than the original images, as the spatially
undersampled inputs filter out any high-frequency noise
(caused by system instability or background noise) and content
present in the original images.

Fig. 2. Zoomed-in images of neurons and their line profiles across the white dashed line. (a) Lateral images. (b) Axial images.
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C. Comparison with Representative Deep-Learning-
Based Super-Resolution Models
We chose three representative deep-learning-based super-
resolution models with different designs for microscopic images
for comparison (see Methods section Supplementary Note 2 in
[28] for data preparation and network training), including a
recent attention-based network (DFCAN) [29], which uses
Fourier domain information and outperforms a number of
classical super-resolution networks; a network designed for
point-scanning microscopy (PSSR) [24], which trains on com-
putationally degraded low-resolution images; further, it should
be noted that our framework shares the same method of gen-
erating undersampled images; and a super-resolution model
with a dual-stage processing architecture (DSP-Net) [23],
which also supports 3D input like our method. These models
require much more data than our network for training
(see Supplementary Fig. S1 in [28], data-hungry training).
Consequently, in addition to the test images, four extra regions
of similar volume (size) were collected from the specimen
using the same device to train the three representative models
used for microscopic image resolution enhancement. The
low-resolution input for training could be either experimentally
acquired from the same regions or synthetically generated
by downsampling. Experimentally, we found that it was
difficult to register low-resolution–high-resolution image pairs
at subpixel-level precision, which is generally required for
super-resolution image training. In addition, sample instabil-
ity and laser power fluctuations complicate postprocessing.

Consequently, low-resolution images were synthetically gener-
ated by downsampling the reference images. In total, over 500
additional high-resolution images were acquired to train the
models for comparison (see Section 4). By contrast, our frame-
work used no additional training data, the only input being the
volume to be inferred. Even so, our model exhibited excellent
performance. Practically, our framework has a great advantage
in that there is no need to image hundreds of high-quality im-
ages for training data, as the low-resolution input image can be
directly fed to the network to obtain a high-resolution output.
It should be noted that training with a larger data set may im-
prove the performance of other networks, but this just proves
that our training strategy is effective, especially when the sam-
ple is rare or the training data are limited.

Figure 3(a) shows the low-resolution input, network out-
puts, and original high-resolution reference from a lateral slice
of the test sample. It should be noted that DFCAN and PSSR
are 2D super-resolution networks; therefore, the volumetric
images were fed to the network slice by slice. Our framework
and DSP-Net support 3D images. The input slice shown in
Fig. 3(a) is 256 × 256 pixels, and the edges of the neuron cells
appear rough and blocky. All inferred images show improved
smoothness across the entire image. To visualize the difference
between the inferred images and the original image, absolute
error maps (jOutput −Originalj) are shown beneath the model
outputs. It is clear that our network outputs the smallest error,
the cell body of the neurones being inferred well. A close in-
spection of our error map reveals that many errors originate

Fig. 3. Evaluation of four super-resolution models. Lateral and axial images of low-resolution input, original reference, and network outputs of
neuron cells. Our proposed model shows low error. (a) Representative lateral images inferred from low-resolution input. The absolute error images
with respect to the original are shown below. (b) Representative axial images inferred from low-resolution input.
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from filament-like fine details in the axon or background. It is
difficult to recover such details because the input is highly
undersampled (4× in all dimensions).

Figure 3(b) shows the inferred results from the axial slice of
the test sample. Because both our network and DSP-Net allow
volumetric inputs and utilize 3D information, the axial output
error is much smaller than that of the 2D networks DFCAN
and PSSR. Another error source of a 2D network is the
improper normalization of deeper slices. As a deeper slice re-
ceives fewer photons, the image brightness tends to decrease.
Inferring the output in a slice-by-slice manner using a 2D net-
work can overamplify the overall brightness in the deeper layers
and cause noticeable errors. Consequently, we statistically mea-
sured the performance of the networks using the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM). The box
plots shown in Fig. 4 were calculated using 32 sets of samples.
Our network outperforms the others in both metrics, thereby
confirming the effectiveness of the proposed framework.

D. Large-Image Inferencing Using Self-Vision
Having seen the potential of using a self-supervised Self-Vision
network to enhance spatially undersampled images (see Fig. 2),
we next exploited an important feature of our lightweight
framework, i.e., inferring large input images.

In many well-known super-resolution models for micro-
scopic images, a common problem is that the input image size
is limited; for example, for a typical input size �256 × 256 px)
with 4× resolution-enhancement, the output size is limited to
1024 × 1024 px because large neural networks consume a sub-
stantial amount of GPU memory. This limitation complicates
postprocessing and compromises the quality of the output im-
age, as large images must be cropped into smaller patches for
inference, which can cause boundary artefacts.

Benefitting from the lightweight design, our framework
supports 4× resolution-enhancement using a 2D input size
of 1024 × 1024 px (output size of 4096 × 4096 px ) and
a 3D input size of 256 × 256 × 21 px (output size of
1024 × 1024 × 84 px, see Supplementary Fig. S4 in Ref. [28])
with a single-pass inference, surpassing both the 2D and 3D
models previously compared. We first demonstrated the appli-
cation of large-image inference to enhance high-resolution

images using Self-Vision. Figure 5 shows a high-resolution im-
age (1024 × 1024 px); the inset shows two sets of network-
enhanced results obtained using our network.

On the left-hand side of the inset image, a low-resolution
image generated from downsampling is enhanced. This is a
typical application of most deep-learning-based networks
(see Visualization 1). However, most published models fail
to enhance high-resolution images that contain many pixels
owing to the aforementioned size constraint. On the right-hand
side of the Fig. 5 inset, we show an enlarged region of a high-
resolution image (1024 × 1024 px) and its network-enhanced
result. The output can be inferred in a single forward pass with-
out stitching (see Visualization 2).

Fig. 4. PSNR and SSIM evaluation between the four models.

Fig. 5. Large image inference using a high-resolution input. High-
resolution image (1024 × 1024 px) can still benefit from the network
(details shown on the right-hand side of the inset). The downsampled
low-resolution version of the same input with its network enhanced
image is shown on the left-hand side of the inset for comparison.
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Figure 6 shows the results from a volumetric input
(256 × 256 × 38 px). An interesting feature of the network is
its nonlinearity, the different cells having different output
intensities. This is because the 3D network considers neighbor-
ing axial slices, and the output intensity changes accordingly,
depending on the adjacent axial slices (see Visualization 3
and Visualization 4).

E. Large Field-of-View TPM Imaging Based on Self-
Vision
To demonstrate how Self-Vision enhances undersampled im-
ages (which we believe is the most useful case of the network),
we developed a home-built large-FOV system (see Section 4 for
the system configuration). Generally, a large-FOV system suf-
fers from a slow imaging process. This can be detrimental to the
sample because of phototoxicity or photobleaching. Moreover,
slow acquisition decreases the temporal resolution, making
transient phenomena difficult to observe. Consequently, we
applied our framework to images acquired using a large-
FOV system. The image size was 1024 × 1024 px with a lateral
step size of Δx or Δy � 2.4 μm, corresponding to a volume
of 2.45mm × 2.45 mm. Point scanning of such a volume at
the Nyquist rate would require a long imaging period.
Therefore, the step size was intentionally set to be larger than
the Nyquist criteria, so that the imaging time could be reduced,
and we could verify whether the image resolution could be im-
proved by Self-Vision at a sub-Nyquist sampling rate.

Figure 7 shows the power of Self-Vision in large-image in-
ference. Using only a small training FOV (bounded by the
yellow border in Fig. 7), the network can infer the full FOV
(bounded by the blue border in Fig. 7) in a single forward pass.
No cropping of the input or stitching of the outputs is required;
thus, data processing for images captured from a large-FOV
system can be greatly simplified.

3. DISCUSSION

Despite the tremendous success of the deep-learning-based
method used in the microscope imaging community, the high
cost of computational resources and the demand for large-scale
training data remain practical challenges. Our deep learning-
based approach improves the resolution of spatially under-
sampled microscopic images with zero training data (apart from
the input image itself ), which can be useful in a data-limited
scenario, such as investigating pathological sections from rare
diseases. In such cases, gathering hundreds of training data
points from similar specimens is a luxury that medical practi-
tioners cannot afford. By exploiting the internal information
present in a single low-resolution image, we can achieve per-
formance on par with that of multiple state-of-the-art models
trained using hundreds of additional paired data. Another ad-
vantage of the Self-Vision framework is that it facilitates large-
FOV imaging. Despite being trained with only a small portion
of the image from the entire view, Self-Vision can infer a high-
resolution image for the entire FOV. This can substantially
reduce the acquisition time for large-FOV systems, as high-
resolution images that would otherwise require a long time
to sample can be inferred from a spatially undersampled
version. Moreover, the lightweight model allows large images
to be inferred with less image cropping/stitching, easing the
processing of high-dimensional images.

Nevertheless, it is important to keep in mind that
deep-learning-based super-resolution is naturally ill-posed.
Consequently, the output represents only a statistical estima-
tion of the training data. In practice, the following points must
be considered. First, hallucinations or artefacts become over-
whelming when the upsampling factor goes beyond 4×, as
when the input image is contaminated by system noise, the
network may amplify the noise as well. Meanwhile, small

Fig. 6. Volumetric image inference using a high-resolution input. Top left: input lateral slice; top right: corresponding output slice; bottom left:
input axial slice; bottom right: corresponding output slice.
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details, such as dendrites as thin as 1–2 px on the high-
resolution image, are bound to be lost when downsampled.
In this case, it can be impossible to recover these features faith-
fully. In addition, the self-supervised training scheme may re-
sult in performance changes when the test sample originates
from a different domain. For better performance, training a
new network is recommended if there is a significant shift
in the input data type. With our small-sized model, we believe
that transferring the trained model to new sample types can be
easily realised.

It is worth noting that the size of the input image can affect
the network performance because the only source of train-
ing data is the input image itself. For instance, if the input
image is too small, even with data augmentation, the patches
generated may still be limited, and the model is likely to be
overfitted. However, if the input image is too large, our small-
sized model may struggle to further improve the input, owing
to the limited model parameters. To determine the appropriate
input size, we trained the model using images of different input
sizes and examined its performance. Seven volumes of different
voxel numbers were cropped from the center of the test image
[Fig. 8(a)].

The smallest input was 64 × 64 × 8 px, and the largest
input size was 256 × 256 × 38 px (see Section 4 for de-
tails). Compared with images inferred from a small training
FOV [Figs. 8(e) and 8(f )], the outputs from a large train-
ing FOV [Figs. 8(g) and 8(h)] show lower background

noise. Statistical analysis of the SSIM and PSNR (see
Supplementary Note 3 in Ref. [28]) shown in Fig. 8(b) reveals
that, when the input voxel number is greater than 1 × 105, the
performance of the proposed model starts to level off. This size
corresponds to an input image size of 100 × 100 × 10 px,
which can easily be satisfied for ordinary 3D imaging.
Generally, the number of training patches extracted from a
volumetric sample is proportional to the cube of its input di-
mensions. By contrast, for the 2D samples, the cubic relation-
ship reduces to a quadratic relationship. Consequently, a model
with more parameters would favor the volumetric input size
because more patches could be extracted for training.

Future work should focus on the following aspects. Our cur-
rent design improves spatial resolution; however, the time di-
mension remains unexplored. The proposed framework could
increase the frame rate of sparsely sampled 3D video data by
adding additional dimensions to the network. Another effort
could be to integrate a sophisticated downsampling method
into the data augmentation process. As only the naïve down-
sampling method is used to synthesize low-resolution images,
the system noise and point spread function are ignored. Adding
an accurate estimation of these factors to the downsampling
process could further improve the network performance.
Moreover, designing a network that could be trained without
a modern GPU would be of great practical interest because
the majority of microscopes are not equipped with high
computing power.

Fig. 7. Large image inference of Self-Vision (image brightness adjusted for visualization). Despite being trained on a small FOV (indicated by
yellow border), Self-Vision can infer the entire FOV for the system, saving both training and acquisition time.
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Taken together, the lightweight design, data-saving training
strategy, and high-throughput capability of the Self-Vision
framework represent an important step for computational
super-resolution imaging. Our ability to bridge the gap
between neural network training and microscopic image ac-
quisition is key to democratizing deep-learning-based super-
resolution imaging. We expect the framework to continue to
develop, not only in the modalities used in this work but also
in various imaging modalities for different tasks, as the barriers
to applying deep learning in microscopy are continually
lowered.

4. METHODS

A. Simulation of Bead Images
All the reference bead images were generated using MATLAB.
First, a 3D matrix of size 512 × 512 × 60 filled with zeroes was
defined. To generate beads in the matrix, 500 random points in
the matrix were set to one. This step simulated the point
sources in space. A 3D anisotropic point spread function
was then created via the built-in function “fspecial3.” The
TYPE, HSIZE, and SIGMA arguments were set to “Gaussian,”
[19 19 19], and [2 2 4], respectively. Finally, the 3D matrix was
convolved with the point spread function using the “convn”
function to create original images. The low-resolution input

images for network training were generated using the Python
built-in function “rescale” from the skimage package, with
SCALE set to 0.25 and the other parameters kept to their de-
fault values. The function works by first convolving the input
image with a 3D Gaussian filter to avoid aliasing and then
downsampling the convolved image. The process corresponds
to the acquisition of a low-resolution image using a microscope,
which downsampled the original images four times in all di-
mensions, resulting in images of size 128 × 128 × 15. A line
across the center of the bead was extracted to calculate its full
width at half maximum (FWHM). MATLAB’s “fit” function
with FITTYPE “gauss1” was then used to fit the line profile.
The FWHM was calculated to be 2.355 × σ, where the σ
represents the standard deviation of the fitted line.

B. Mouse Brain Slices Preparation
A six-week-old mouse (The Jackson Laboratory, stock number
007788) labelled with the Thy1-GFP-M transgene, which is
intensely expressed in mossy fibers in the cerebellum, was first
anaesthetized by intraperitoneal injection with a mixture of 2%
α-chloralose and 10% urethane (8 mL/kg). Before fixation, the
mouse was perfused transcranially using phosphate-buffered
saline (PBS) and 4% (w/v) paraformaldehyde (PFA). The
mouse was then sacrificed, its brain being carefully excised from
its skull for overnight fixation with 4% PFA. Finally, 2 mm

Fig. 8. Network performance improves as the training FOV increases. At the top left corner, the boxes with small, medium, and large sizes
indicate different input training volumes (not drawn to scale). The plot at the top right shows that network performance improves as the voxel
number increases. The bottom images [(c)–(j) lateral, (k)–(p) axial] illustrate the change of the output when the training FOV increases from a small
volume to a large volume.
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thick slices were obtained from the brain using a custom-made
sectioning mold. The CX3-GFP labelled mouse brain slices
used in the large-image inference experiments were prepared in
the same manner. The sectioned samples were then placed on a
glass slide and covered with a coverslip for microscopic imaging.

C. Microscope Setup and Imaging Parameters
Two microscopes were used for the imaging experiments. One
was a commercially available two-photon microscope (Nikon
A1R), and the other was a home-built large FOV two-photon
microscope. The light source of the system in the Nikon A1R is
a Ti:sapphire laser (MaiTai eHP DeepSee, Spectra Physics),
which can generate an excitation wavelength of 920 nm for
two-photon imaging. The laser power was set to 2.8 with a gain
of 110. A 25×, 1.1 NA water-immersion objective (N25X-
APO-MP, Nikon) was chosen to acquire the volumetric
imaging data. The original image size used for the model com-
parison shown in Fig. 7 is 1024 × 1024 × 152, corresponding to
a volume of 520 μm × 520 μm × 152 μm, as the voxel size was
set to 0.51 μm × 0.51 μm × 1 μm. To generate low-resolution
images, the original images were first convolved using the system
point spread function (PSF), which could be calculated from the
numerical aperture (NA) of the objective and the excitation
wavelength, and then digitally downsampled. A faster imple-
mentation uses the “cubic” resize function. Both implementa-
tions produced similar results in the experimental settings.

To acquire additional training data for the other networks,
four extra volumes of similar sizes were imaged. The lateral im-
age size was still 1024 × 1024, the axial size varying between
152 and 162, depending on the sample thickness. Some slices
near the top or bottom imaging volume were discarded because
no useful signal could be acquired at those positions. This re-
sulted in 543 slices of 2D images used to train the comparison
networks (see Supplementary Note 2 in Ref. [28]). Note that
one of the comparison networks, i.e., DSP-Net, supports 3D
resolution enhancement; therefore, volumetric data from the
same data source were used for training. The acquisition time
for a single volume was approximately 20 min.

For the home-built large-FOV two-photon microscopy, the
detailed implementation of the large-FOV TPM used can be
found in Ref. [30]. In short, we applied an adaptive-optics
method to extend the FOV, resulting in an increased FOV
diameter of 3.46 mm using a commercial objective with a
nominal FOV diameter of 1.8 mm.

D. Self-Supervised Volumetric Image Super-
Resolution Network
The design of our Self-Vision network follows two principles.
First, the network needs to be trained using only a single volu-
metric input instance. Second, the model supports large-image
inference. To fulfil these requirements, a small neural network
was devised. Figure 9 shows the network architecture of the
proposed design. The network is composed of four modules,
i.e., extraction, shrinking, grouped convolution, and expan-
sion. It begins with feature extraction for the input with 3D
convolution using a filter size of 5 and a parametric rectified
linear unit (PReLU) activation layer. Formally, PReLU can
be expressed as follows:

PReLU�yi� � yi, if yi ≥ 0, (2)

PReLU�yi� � ai ≤ yi, if yi < 0, (3)

where yi is the layer output and ai is a learnable parameter.
The output of the extraction module can be expressed as

follows:

yexpansion � PReLU�Conv3d1,16,5�x��, (4)

where x represents the input image, and Conv3d1,16,5 is the
3D convolution kernel with an input channel of 1, an output
channel of 16, and a size of 5 × 5 × 5.

Consequently, the shrinking module reduces the number of
filters from 16 to 6 using filters of size 3. The output of the
shrinking module can be expressed as follows:

yshrinking � PReLU�Conv3d16,6,3�yexpansion��: (5)

Subsequently, multiple layers of grouped convolution, fol-
lowed by PReLU activation, can be used to further extract
high-level features. This can be expressed as follows:

ygrouped convolution � Conv3d�4�6,6,3,2�yshrinking�, (6)

where Conv3d�4�6,6,3,2 represents four layers of 3D convolution
operations, with each layer using six input channels, six output
channels, a kernel size of 3, and grouped by two.

The expansion module then upsamples the output from the
previous layer to the desired resolution. In this step, subpixel
convolution is used as the upsampling operation in conjunction
with 3D convolution to create a high-resolution image. Finally,
multiple images are fused using backprojection techniques to

Fig. 9. Architecture of Self-Vision. Some grouped convolution layers were omitted in the figure for simplicity.

Research Article Vol. 11, No. 1 / January 2023 / Photonics Research 9



create a monochromatic network output. Consequently, the
output of the neural network can be expressed as follows:

youtput � Conv3d16,1,5fUP�Conv3d6,16,3�ygrouped convolution��g,
(7)

where UP is the subpixel convolution layer responsible for
upsampling.

Several designs are critical for the network to work well, and
the shrinking and grouped convolution modules substantially
reduce the total number of network parameters, making
single-input data training feasible. The super-resolution net-
work employs a post-super-resolution upsampling framework,
where the computation-intensive feature extraction process
takes place in the low-dimensional space, greatly lowering the
space and computational complexity. The subpixel convolution
used for upsampling and the backprojection technique further
reduces the output error.

Learning the end-to-end mapping network, F , for super-
resolution requires estimation of the network parameters, θ.
This is done by optimizing the loss function (also known as
the objective function) between the inferred outputs, F �x, θ�,
and the target images, Y . The mean squared error (MSE) can
be used as the loss function, as it measures the pixel-wise differ-
ence between the network output and the target. The MSE can
be expressed as follows:

MSE�θ� � 1

n

Xn

i�1

�F �x, θ� − Y �2, (8)

where Y is the target volumetric output, F �x, θ� represents the
network predictions, and n is the number of training samples.
The network parameters can be optimized using the standard
gradient descent with backpropagation. Although only the
MSE is formally optimized, alternative evaluation metrics, such
as SSIM and PSNR, can be simultaneously improved through
training.

E. Self-Vision Implementation
The network was written in Python using the PyTorch software
(the source code is publicly available at https://github.com/
frankheyz/s-vision). The three networks were also trained for
comparison using their open-source code, which can be found
in the references. Table 1 summarizes the key parameters re-
lated to network training. All networks were trained on a PC
of the following specifications: Intel Xeon E5-2678 W CPU,
256 GB RAM, and a single NVIDIA TITAN X GPU. Our
network used a minimum amount of training data (see
Supplementary Note 1 in Ref. [28] for data augmentation
and training) and achieved excellent quantitative performance.
The training time of a single volumetric input was just 6 min,

which is substantially shorter than that of the other methods.
2D and 3D images could be inferred by our network, demon-
strating a clear advantage over 2D super-resolution networks.
Moreover, the 3D inference speed was fast because the small-
sized network could infer large input images quickly with fewer
stitches.
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