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Single-pixel imaging (SPI) can capture 2D images of the target with only a nonpixelated detector, showing prom-
ising application potential in nonvisible spectral imaging, low-photon imaging, lidar, and other extreme imaging
fields. However, the imaging mechanism of traditional SPI makes it difficult to achieve high imaging speed, which
is a primary barrier for its widespread application. To address this issue, in this work, we propose and demonstrate
a novel high-speed 2D and 3D imaging scheme based on traditional SPI, termed time-resolved single-pixel im-
aging (TRSPI). Previous SPI works mainly utilize correlation between a stable target and iterative illumination
masks to reconstruct a single image. In TRSPI, by further exploiting correlation information between a dynamic
scene and every static mask, we can reconstruct a series of time-varying images of the dynamic scene, given the
dynamic scene is repetitive or reproducible. Experimentally, we conducted 2D and 3D imaging on a rotating
chopper with a speed of 4800 revolutions per minute (rpm), and imaging speeds up to 2,000,000 fps. It is believed
that this technology not only opens up a novel application direction for SPI, but also will provide a powerful
solution for high-speed imaging. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.461064

1. INTRODUCTION

We live in a dynamic world, where all matter is in a vibrant
state. Some dynamic events occur in a microsecond, nanosec-
ond, or even faster time scale, in which the human eye or
common digital cameras cannot observe and record the instan-
taneous picture of these scenes. Being able to observe and
analyze these dynamic processes is undoubtedly critical for sci-
entific discoveries and technical innovations. To do this, some
professional high-speed focal plane array (FPA) cameras have
been developed that can capture images at a speed of up to
millions of frames per second (fps) [1]. Nevertheless, this im-
aging speed is already close to the physical limit of the FPA
detector, making it difficult to continue to be improved signifi-
cantly. To further overcome hardware speed barriers, some
computational high-speed imaging schemes have been pre-
sented, which can surpass the imaging speed extremum of
FPA cameras in the form of camera array [2,3], compressive
sensing [4,5], and spectral encoding [6,7]. Despite all these
achievements, we should realize that the apparatus complexity
and financial expensiveness have largely prohibited the appli-
cation of high-speed imaging. To develop a proper technology
with both technique and financial affordability, even for a spe-
cific application, is therefore highly desirable.

In this work, we propose and demonstrate a high-speed
imaging scheme based on single-pixel imaging (SPI), called

time-resolved single-pixel imaging (TRSPI). SPI is a correlation
imaging method that retrieves images based on structured illu-
mination and nonpixelated detection. The prototype of SPI can
be traced back to Hadamard transform optics in the 1970s [8].
In the last two decades, there has been a surge of investigation
on SPI, largely inspired by the development of ghost imaging
[9,10], compressive sensing [11,12], and for its potential appli-
cation at special wavelengths [13–15]. However, there is one
inescapable fact: SPI usually requires a large number of struc-
tured illuminations during the capture of a single image. As a
result, SPI can only be implemented for static targets or rela-
tively low frame rate photography. In order to enable SPI to
work at a video frame rate or even faster, various methods based
on algorithms or hardware have been proposed, such as deep-
learning-based SPI [16], Fourier SPI [17], cross-frame correla-
tion [18], and high-speed lighting arrays [19,20]. However, all
these works are implemented and limited with pattern and sig-
nal one-to-one acquisition mode, so that the imaging speed of
SPI is still determined by the refresh rate of the spatial light
modulation (SLM).

In traditional SPI, correlation between a stable target and
iterative illumination masks is mainly utilized, rendering it a
time-consuming approach. In our proposed TRSPI, by further
exploiting correlation information between a dynamic scene
and every static mask, we are able to design a high-speed
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imaging technology, given the dynamic scene is repetitive or
reproducible. In TRSPI, the imaging frame rate is no longer
limited by the refresh rate of SLM, but only depends on
the working bandwidth and sampling rate of a single-pixel de-
tection module. In previous works, a similar idea has been pro-
posed by implementing ultrashort pulse laser for illumination
and as a highly precise synchronization timer. Combining with
the high response speed of a single-pixel detector, one can per-
form fluorescence lifetime imaging [21,22] and non-line-of-
sight imaging [23]. In our work, we develop TRSPI in a more
general scenario, with no request on the ultrashort pulse laser.
We demonstrate that TRSPI can be conducted with ambient
light illumination and apply it for 2D and 3D imaging of high-
speed rotating targets, thereby achieving significant improve-
ment in image quality and pixel scale. In addition, compared
to multipixel FPA cameras, a single-pixel detector has lower
cost, higher sensitivity, and higher bandwidth, so our TRSPI
scheme will be a better choice for high-speed imaging of repeti-
tive or reproducible varying scenes.

2. METHODS

A. SPI
Normal camera technology uses FPA to capture spatial infor-
mation pixel by pixel simultaneously, whereas in SPI, as detec-
tors are nonpixelated, the role of spatial sampling is shifted to
the illumination end. A series of 2D structured illuminations
are iteratively projected over the target area. If we vectorize
every illumination structure into a row vector, then the spatial
sampling process of SPI can be expressed as

Y � AX , (1)
where A � �amp� is an M × P matrix that denotes the sampling
basis, and each row represents a vectorized 2D illumination
structure. X � �xp� represents the object, and Y � �ym� is
the single-pixel signal. Therefore X and Y are column vectors
with a dimension of P and M , respectively. While P corre-
sponds to the pixel number of scene defined by the illumina-
tion,M is the total number of measurements. Then Eq. (1) can
be written in detail as

ym �
XP
p�1

amp · xp: (2)

Specifically, A is usually a binary matrix composed of 0
and 1, which can be implemented experimentally by using
SLM like a digital micromirror device (DMD). In some situa-
tions, if differential measurement is implemented, then A could
be a matrix containing −1 and 1. In this case, each row vector of
A corresponds to a pair of illumination patterns that are oppo-
site to each other. An advantage of differential measurement is
to suppress the low-frequency component of noise [24].

Once single-pixel signals are acquired, an image can be ob-
tained computationally by exploiting the correlation between
these signals and their corresponding illumination basis A,
which is essential to solve an inverse problem. Mostly, two types
of reconstruction approaches are used: iterative correlation al-
gorithms and compressive sensing algorithms. For iterative cor-
relation algorithms, a widely used illumination basis is the
Hadamard basis for its maximum sampling efficiency. The iter-
ative reconstruction process can be expressed as

X̂ � AY : (3)

Here X̂ is the estimation of X , and A stands for a Hadamard
matrix. Equation (3) is the inverse process of Eq. (1), given the
fact that the inverse of a Hadamard matrix equals itself.

Alternatively, compressive sensing can solve the inverse of
Eq. (1) from sub-Nyquist acquisition �M ≪ P� by exploiting
the sparsity of natural images, which has been well studied in
SPI. The reconstruction function can be represented as

X̂ � arg min
X

1

2
kY − AX k22 � λΨ�X �, (4)

where Ψ�X � is regularization term that represents the sparse-
ness constraint of X . λ is the penalty parameter to balance
the residuals and sparsity in the optimization process.

B. TRSPI
According to the imaging principle of normal SPI above, the
imaging speed of SPI is generally slow, which makes it impos-
sible to image scenes that vary rapidly in the time domain.
Here, we propose a novel SPI scheme, namely, TRSPI, which
is extremely suitable for high-speed varying periodic or repro-
ducible dynamic scenes. The schematic diagram of TRSPI is
shown in Fig. 1. The target is at a high speed, but repetitive
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Fig. 1. Schematic diagram of TRSPI. (a) Transient events at differ-
ent instants are indicated as t i . (b) Different illumination patterns Pj;
(c) coded transient event in one period under a certain illumination
pattern; (d) under each illumination pattern, a single-pixel detection
histogram is measured. By applying different illumination patterns
over repetitive events, a series of pattern-encoded histograms are ob-
tained. (e) By extracting signals at the same t i from different histo-
grams, a reconstruction at that instant can be achieved.

2158 Vol. 10, No. 9 / September 2022 / Photonics Research Research Article



motion can be measured many times. During each period, il-
lumination with a certain structure is employed, under which a
single-pixel detector samples fast to obtain time-resolved detec-
tions. Digitization with a certain sampling rate determines how
many moments (the number of ti ) are resolved. In the next
period, the same measurement process is repeated under a dif-
ferent illumination mask. The concise mathematical expression
of TRSPI’s imaging acquisition process can still be shown in
Eq. (1). Note that X is no longer a column vector that only
represents the spatial information of a scene, but a P × T
2D matrix carrying spatial and temporal information of a dy-
namic scene. Y will also be an M × T 2D matrix representing
M detection signal sequences of length T . Thus, the acquisi-
tion process of TRSPI can be expressed in detail as

ymt �
XP
p�1

amp · xpt : (5)

As the motion of an object is periodic, the object at the same
moment in different periods should be in the exactly same po-
sition. This means, if we extract the detection signal at the same
moment from different periods, a reconstruction of the object
at this position can be conducted. In this way, the image at time
t i contained in the entire period T can be reconstructed accord-
ingly, whether using an iterative correlation algorithm or a com-
pressive sensing algorithm. Their reconstruction process can be
expressed as

X̂ �t i� � AY �t i�, (6)

and

X̂ �t i� � arg min
X �t i�

1

2
kY �ti� − AX �t i�k22 � λΨ�X �t i��: (7)

C. TRSPI for 3D Imaging Based on Fourier Transform
Profilometry
3D imaging has a wide range of applications in precision manu-
facturing, automatic navigation, digital archiving of cultural

heritage, surgical guidance, etc. However, current 3D imaging
technology also suffers from huge challenges in capturing high-
speed varying dynamic scenes. To solve this, we develop TRSPI
for time-resolved spatial 3D imaging by combining existing
static 3D imaging techniques. One of the commonly used
3D imaging techniques is Fourier transform profilometry
(FTP) [25]. As shown in Fig. 2(a), the hardware configuration
of classic FTP consists of fringe projection and image recording.
The projection branch, consisting of an LED light source, con-
denser lens, grating, and camera lens 2, projects a standard
fringe pattern onto the surface of the object. The standard
fringe pattern will be modulated by the shape of object, which
will be recorded as a deformed fringe image via the imaging
branch consisting of the camera lens 1 and a CMOS chip.
Then, 3D topography of the object is recovered using a
reconstruction algorithm from the deformed fringe image.
According to the Helmholtz reciprocity, as shown in Fig. 2(b),
FTP technology has been verified to be able to run in the SPI
system [26,27]. Logically, we also introduce the FTP technique
on the proposed TRSPI to achieve time-resolved 3D imaging.

The 3D reconstruction principle of FTP in an SPI system is
consistent with the classic FTP. In the 3D SPI system based on
FTP, a 2D line grating is added to the image plane of a collect-
ing lens. The grating generates a standard fringe pattern, de-
scribed as

I 0�x, y� � a0 � b0 cos�φ0�x, y��: (8)

Here a0 is the background intensity and b0 the modulation
intensity, which are both constant for the whole pattern.
φ0�x, y� is the initial phase distribution corresponding to the
reference plane, whose height is set to zero. When an object
is measured, the standard fringe pattern will be modulated
by the surface of the object. The background and modulation
intensities will no longer be constant due to the surface texture
and nonuniform reflectivity of the object. More importantly,
the phase distribution will be changed according to the shape
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Fig. 2. Classic and reciprocal SPI configurations of FTP. (a) Classic configuration of the conventional FTP; (b) according to the Helmholtz
reciprocity, a grating is added into SPI configuration for 3D imaging based on FTP theory. (c) The principle of height calculation with the phase
difference between the surface of the object and the reference plane.
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of the object. Therefore, the deformed fringe pattern can be
described as

Id �x, y� � a�x, y� � b�x, y� cos�φ�x, y��: (9)

This deformed fringe pattern is recorded by a CMOS cam-
era in conventional FTP or by the SPI system based on FTP.
The recorded image can be used to retrieve the phase distribu-
tion φ�x, y� and then to reconstruct the shape of the object.
According to Euler’s formula, Eq. (9) can be rewritten as

I d �x, y� � a�x, y� � b�x, y�
2

�eiφ�x,y� � e−iφ�x,y��: (10)

In order to obtain the frequency spectrum of the fundamen-
tal component eiφ�x,y�, a Fourier transform is performed first on
the deformed fringe image, and then a proper bandpass filter is
used to select the positive first-order component of the Fourier
spectrum. Complex spatial distribution of the fundamental
component can be solved by the inverse Fourier transform,
which can be described as follows:

I f �x, y� �
b�x, y�

2
eiφ�x,y�: (11)

Here we ignore the spectrum aliasing and assume that the
positive first-order component can be extracted exactly with a
suitable bandpass filter. Then the phase distribution can be re-
trieved by the following calculation:

φ�x, y� � arctan

�
Im�I f fx, yg�
Re�I f fx, yg�

�
: (12)

Here Im and Re denote the imaginary and real parts of a
complex value, respectively. As shown in Fig. 2(c), φ�x, y� is

modulated by the shape of the object; by formulating the
modulation with the proper system model, the height of
the object can be calculated by the phase difference between
the deformed fringe image and the standard fringe pattern. The
calculation process is as follows:

h�x, y� � S�φ�x, y� − φ0�x, y�� � S�Δφ�x, y��: (13)

Here S denotes the function of the system model. It should
be noted that the value range of the arc tangent function leads
to wrapped phase distribution between −π and π; thus, the spa-
tial phase unwrapping algorithm is required before calculating
the phase difference.

3. EXPERIMENTS AND ANALYSIS

A. Experimental Setup
To demonstrate the feasibility of the proposed TRSPI scheme,
2D and 3D imaging experiments were built, respectively, as
shown in Fig. 3. The complete 2D imaging experiment con-
figuration is illustrated in Fig. 3(a), which can be divided into
two modules, including active structural illumination and sig-
nal detection. In the active structural illumination module, a
collimated LED source together with a reflecting mirror is used
to uniformly illuminate the DMD (ViALUX, V-7001), and
then the camera lens is employed to project patterns loaded
on the DMD onto the target area. The signal detection module
of 2D imaging consists of a single-pixel detector and a data ac-
quisition (DAQ) module, which is used to detect reflected light
from objects. Moreover, DMD can release a trigger signal to the
DAQ whenever the pattern is refreshed, which is used to ac-
curately ensure the synchronization between structured

(a)

DMD

(a)

Camera Lens

Grating

Lens 1

BS

Lens 2

Detector 2
Detector 1(b)

LED Camera Lens

Computer

Mirror

DAQ

DMD

Detector

Target

Fig. 3. Experimental setup of TRSPI for 2D and 3D imaging. (a) Complete TRSPI experimental configuration for 2D imaging; (b) detection
module of TRSPI for 3D imaging.
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illumination and signal detection. The experimental configura-
tion of 3D imaging is not different from 2D imaging, except for
the signal detection module. The experimental configuration
of the signal detection module for 3D imaging is shown in
Fig. 3(b). A camera lens is used to collect the reflected light
from the target, and then a beam splitter (BS) bisects the beam
passing through the camera lens. One of them keeps the same
propagation direction and passes through the grating and lens 1
to be detected by detector 1; the other one changes the original
propagation direction and passes through lens 2 to be detected
by detector 2. The grating is binarized and placed at a position
slightly offset from the image plane of the camera lens to
achieve sinusoidal modulation. During the imaging process, de-
tector 1 and detector 2 record data synchronously, and these
two sets of data are used to reconstruct a striped image and
a uniform image, respectively. These two images are then used
together to recover a high-quality 3D shape of the target.

B. Digital Calibration
In the detection process, a set of patterns is continuously pro-
jected to encode the dynamic scene, with the additional re-
quirement that the exposure time of each pattern is equal to
the period of the dynamic scene. For most situations, we do
not know how long the period of these dynamic scenes is.
Therefore, before imaging, we need to measure the period
of the dynamic scene. It can be achieved using constructed
TRSPI configurations above. First, we use the active structural
illumination module of the TRSPI system to project a regular
stationary pattern, as shown in Fig. 4(a), onto the target area.
Then, a single-pixel detector continuously detects for a certain
period to record, which is much longer than the period of the
dynamic scene. The recorded signal has obvious periodic fluc-
tuation, as shown in Fig. 4(b), from which we can obtain the

exact duration of one period of the dynamic scene. The refresh
rate of DMD is then set based on this time.

Ideally, the exposure time of each pattern and the period of
the dynamic scene are exactly the same, and under the synchro-
nization of triggers released by the DMD, the signals of differ-
ent periods recorded by DAQ are synchronized in time.
However, the highest accuracy of DMD exposure time is at
the microsecond level, which may result in submicrosecond de-
viations between the exposure time of each pattern and the
period of dynamic scene. More than that, these deviations
are accumulated during the imaging process, causing the re-
corded signals of different periods to be misaligned in time,
which will seriously affect the reconstruction quality. To solve
this problem, we propose a digital calibration scheme. Take one
of the possible scenarios as an example, when the exposure time
of DMD is slightly longer than the period of dynamic scene;
the recorded signal sequence under each pattern is shown in
Fig. 4(c). It can be seen that the tail of each signal contains
the signal of the next encoding pattern. We clipped the heads
and tails of these signals, as shown by the red dashed line in
Fig. 4(c). In this way, the processed signals are aligned in time;
then they are grouped according to different moments. Finally,
the instantaneous images of the scene at the corresponding mo-
ments are, respectively, reconstructed. Of course, the proposed
digital alignment method is applicable whether the exposure
time of the DMD is slightly longer or slightly shorter than
the scene period.

C. 2D TRSPI Experiment
Using the above experimental configuration and calibration
scheme, we first completed the time-resolved 2D SPI experi-
ment. The imaging target is a rapidly rotating chopper at a
speed of 4800 revolutions per minute (rpm), meaning it has
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an angular velocity of 160π rad∕s and a maximum linear veloc-
ity of about 25 m/s. To make rotation details of the chopper
more noticeable, distinct numbers and letters are painted on
the chopper plate. In the experiment, to maximize the sampling
and reconstruction efficiency, we choose compressive sensing as
our reconstruction algorithm. Specifically, TVAL3 was em-
ployed as our reconstruction algorithm [28]. TVAL3 utilizes
the property of image sparsity in the gradient transform domain
to conduct compressive calculation. Total variation is adopted
as the regularization term for sparse constraint. 21,000 random
binary patterns with 1 and −1 distribution are used as our en-
coding matrix. In actual operation, it is implemented in a dif-
ferential means by 42,000 patterns with 0 and 1 distribution.
The exposure time of each pattern is set to be the same as the
rotation period of the chopper, i.e., 12,500 ms, resulting in a
total image acquisition time of 8.75 min. Each pattern in a
resolution of 256 × 256 pixels is generated using a middle
area of DMD in 768 × 768 pixels, i.e., each pattern pixel is
formed by merging 3 × 3 adjacent DMD pixels. Here, we
define the full sampling ratio as 65,536 (256 × 256) spatial en-
coding and detections. Correspondingly, 21,000 spatial encod-
ing and detections stand for a 32% sampling ratio. In the signal
detection module, the single-pixel detector (PDA100A2) has
a working bandwidth of 90 kHz at a gain of 40 dB, and the
DAQ (NI-6366) digitizes signals at a sampling rate of 2 MS/s.
As a result, our TRSPI is capable of imaging at 2,000,000 fps in
non-real time. In one rotation period of the chopper, 25,000
instantaneous images can be reconstructed. Figure 5 shows part
of the imaging results—12 selected instantaneous images with
an interval of 1 ms. As can be seen from the imaging results,
our scheme has excellent imaging capability both in the space
domain and in the time domain.

D. 3D TRSPI Experiment
In the second experiment, we completed the time-resolved 3D
imaging and evaluated the accuracy of the imaging results. The
imaging target is a high-speed rotating 3D fan at a speed of
4800 rpm. This fan is 3D printed by us so that we can accu-
rately digitize its 3D shape for reconstructed image analysis.

In our 3D imaging experiment, the inverse Hadamard trans-
form is used as the reconstruction algorithm instead of the com-
pressed sensing algorithm, because with the addition of a 2D
line grating in the imaging light path, the scene is no longer
sparse in some transform domains and it is difficult to use
compressive sampling. Since two single-pixel detectors are used
in the signal detection module, two images of the scene can
be reconstructed simultaneously, one with deformed fringes,
as shown in Fig. 6(a), and the other is uniform, as shown
in Fig. 6(b). Both images have a spatial resolution of
128 × 128 pixels, and the total imaging time for differential
measurement is nearly 7 min. Generally, the Fourier spectrum
of the deformed fringe image commonly has a zeroth-order
component of large magnitude and wide range, which leads
to spectrum aliasing when filtering the positive first-order com-
ponent. Hence, the uniform image is used to normalize the
background of the deformed fringe image [29]. As shown in
Fig. 6(c), the zeroth-order component in the Fourier spectrum
is dramatically suppressed after the background normalization;
thus we can better select the positive first-order component
with a Hann window, as shown in Fig. 6(d). Then the wrapped
phase can be retrieved from the inverse Fourier transform of the
selected positive first-order component, as shown in Fig. 6(e).
The 2D Goldstein branch cut phase unwrapping algorithm is
employed for phase unwrapping [30]. Finally, the shape of the
dynamic object can be reconstructed with a calibrated system
model, as shown in Fig. 6(f ).

To make a simple demonstration of 3D reconstruction, we
just assume that the system model describing the phase-to-
height conversion can be approximated with a polynomial ex-
pression. We empirically select the third-order polynomial as
the model function. The calibration of the system model is es-
sentially a least-squares estimation of the polynomial coeffi-
cients. A white plate perpendicular to the optical axis of the
illumination camera lens serves as the height gauge. The plate
at the initial position is defined as the reference plane, and then
it is moved to nine positions (corresponding to nine different
heights), along with the optical axis, and the height shift is
4 mm between two adjacent positions. Therefore, nine groups

#1 #2000 #4000 #6000 #8000 #10000

#12000 #14000 #16000 #18000 #20000 #22000

Fig. 5. Selected 12 instantaneous frames from 2D TRSPI results (see Visualization 1 for more details).
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of phase differences and their corresponding heights are ob-
tained, which can be used to fit the model function pixel by
pixel. We compare the deviation between the measured point
cloud and the computer-aided design (CAD) model of the fan
to evaluate the accuracy of 3D imaging. First, the point cloud is
aligned to the CAD model with rigid transformation, and then
the cloud-to-mesh (C2M) distances according to each 3D point
in the point cloud are calculated, as shown in Fig. 6(g). The
root mean square error (RMSE) of the C2M signed distances
is 0.279 mm. Considering the height range of system calibra-
tion is 4 × 9 � 36 mm, we can claim that our system has a
relative uncertainty of �1.5% (0.279 × 1.96∕36) for 3D mea-
surement at the 95% confidence level.

4. DISCUSSION AND CONCLUSION

In summary, we propose and demonstrate a high-speed 2D and
3D imaging approach using single-pixel detections, which
achieves imaging speeds up to 2,000,000 fps. As we well know,
imaging speed, or time resolution, has always been a drawback
of SPI. In the conventional SPI mode, dynamic masks are al-
ways used to continuously encode a stable object, which results
in the SPI frame rate being limited by the refresh rate and the
number of masks. As a result, even with the use of state-of-the-
art SLM to refresh dynamic masks and advanced algorithms to
reduce the number of masks, the imaging speed of SPI is usu-
ally only a few tens of frames per second. However, in our pro-
posed TRSPI, encoding is done by exploiting the relative
motion between the dynamic scenes and each static mask,
so that the encoding speed is determined by the motion speed
of the dynamic scenes. In this way, the frame rate of TRSPI is

no longer limited by the SLM refresh rate, but only depends on
the working bandwidth and sampling rate of the single-pixel
detection module. Single-pixel detectors tend to have a very
high working bandwidth; thus TRSPI will offer a qualitative
improvement in imaging speed compared to conventional
SPI. In addition, compared with other existing high-speed cam-
eras based on array detectors, single-pixel detectors are always
easier and less expensive to manufacture with high speed and
sensitivity. With not only these advantages, the simplicity
of a single-pixel detector also makes it easy to be combined
with other technologies, such as spectrometry and interferom-
etry. With the combination of these technologies, TRSPI is ex-
pected to achieve high-speed hyperspectral imaging and phase
imaging.

Many transient phenomena are not observed, not because
they are unimportant, but because a high-speed camera is nor-
mally too expensive. Although the requirement for repetitive
measurement restricts the application of TRSPI to some extent,
it is undoubtedly that there are many high-speed repetitive
scenes, and photographing these scenes has important research
and application value. Examples include inspecting high-speed
rotating or oscillating components in various instruments, ana-
lyzing the 3D deformation of rigid components caused by high-
speed motion, studying some reproducible chemical reaction
processes, analyzing the composition of materials based on la-
ser-induced plasma, and even understanding ultrafast laser and
related photonics technology. In a word, we believe our TRSPI
approach will have great applications in various areas.
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