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We experimentally demonstrate a method for detection of entanglement via construction of entanglement wit-
nesses from a limited fixed set of local measurements (M). Such a method does not require a priori knowledge
about the form of the entanglement witnesses. It is suitable for a scenario where a full state tomography is not
available, but the only resource is a limited set of M. We demonstrate the method on pure two-qubit entangled
states and mixed two-qubit entangled states, which emerge from photonic implementation of controllable quan-
tum noisy channels. The states we select are motivated by realistic experimental conditions, and we confirm it
works well for both cases. Furthermore, possible generalizations to higher-dimensional bipartite systems have
been considered, which can potentially detect both decomposable and indecomposable entanglement witnesses.
Our experimental results show perfect validity of the method, which indicates that even a limited set of
local measurements can be used for quick entanglement detection and further provide a practical test bed
for experiments with entanglement witnesses. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.462212

1. INTRODUCTION

Quantum entanglement, which lies at the heart of the founda-
tions of quantum mechanics, is a crucial resource for quantum
information science [1,2]. For a given state, how to determine
whether it is entangled or not is a fundamental question in
quantum entanglement theory. In the past two decades since
the definition of entanglement was clarified in Ref. [3], tons
of research have been reported related to this subject, such
as the well-known positive partial transpose criterion [4], the
computable cross norm criterion (or matrix realignment cri-
terion) [5,6], the permutation separability criterion [7,8],
and entanglement witnesses [9–17]. Entanglement witnesses
accomplish this task without requiring full state tomography.
Thus, several types of entanglement witnesses have been de-
fined and studied theoretically [18–32] and have been demon-
strated in various physical systems [33–39].

Unlike the other criteria in which it is assumed that the
state density matrix is preknown, entanglement witnesses are
Hermitian operators and designed directly for detection of en-
tanglement for states. Rather, an operator W that acts on a bi-
partite system is an entanglement witness if and only if
Tr�ρsW � ≥ 0 for all separable states ρs and Tr�ρeW � < 0
for, at least, one entangled state ρe . Entanglement witnesses
completely characterize separable states and allow to detect

entanglement experimentally [40]. Moreover, a witness W is
optimal if for any R ≥ 0 an operator W − R is no longer a wit-
ness [41]. Optimal entanglement witnesses are the best entan-
glement detectors, that is,W is optimal if and only if there is no
other witness that detects more quantum entangled states than
W does. A witness, which is not optimal, may be optimized via
a suitable optimization procedure [41]. It is, therefore, clear
that knowing all optimal entanglement witnesses one is able
to detect all entangled states. In a recent work, Riccardi et al.
[42] proposed a method to construct entanglement witnesses
from a limited fixed set of local measurements, which per-
formed on two-qubit systems. This method fits within a sce-
nario that a full state tomography is not available, whereas only
a smaller resource as a measurements setM is available. Such a
method completely characterizes the class of entanglement wit-
nesses of the form W � PΓ where the superscript Γ denotes a
partial transposition, that can be derived from M. Designing a
witness for an arbitrary entangled state, especially for mixed
states is not easy since the problem of separability of mixed
states appears to be extremely complex; whereas due to the
decoherence phenomenon, in laboratories we unavoidably deal
with mixed states rather than pure ones.

In this paper, we experimentally demonstrated the method
in Ref. [42] for detecting entanglement of both pure and mixed
two-qubit states. The mixed states we select are motivated by
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realistic experimental conditions, which emerge from four
typical single-qubit entanglement breaking channels, i.e., Pauli
channels, dephasing channels, depolarizing channels, and am-
plitude damping channels. The features of requiring low mea-
surement resources and no a priori knowledge about the
witness forms show the widespread application and experimen-
tal feasibility of the method, thus, providing a practical test bed
for quick entanglement detection. Furthermore, we experimen-
tally explore the possible extensions to higher-dimensional bi-
partite systems, which can be used to detect decomposable and
indecomposable entanglement witnesses.

2. THEORETICAL SCENARIOS

A two-qubit entanglement witness can be decomposed as

W �
X
i, j

T ijσi ⊗ σj, (1)

with σi ∈ fσ0, σ1, σ2, σ3g, where σ0 represents a two-
dimensional identity matrix and σ1, σ2, and σ3 are Pauli ma-
trices. Given a limited set of measurements M � fσ1 ⊗ σ1,
σ2 ⊗ σ2, σ3 ⊗ σ3g, witnesses of the below form can be
constructed:

W � ασ0 ⊗ σ0

�
X

i�1,2,3

�aiσ0 ⊗ σi � biσi ⊗ σ0� �
X

i�1,2,3

ciσi ⊗ σi, (2)

where α, ai, bi, ci are real parameters. We focus only on char-
acterization of witnesses within the family of Eq. (2) that are of
the form

W � PΓ: (3)

Therefore, P consists of only terms from the limited sourceM.
It is proven in Ref. [42] that, there are six families of rank-1

projectors jψihψ j within the class of Eq. (2),

jφ1i � ajΦ�i � bjΦ−i; jφ2i � ajΨ�i � bjΨ−i;
jφ3i � ajΦ�i � bjΨ�i; jφ4i � ajΦ−i � bjΨ−i;
jφ5i � ajΦ�i � ibjΨ−i; jφ6i � ajΦ−i � ibjΨ�i, (4)

where jΦ�i � �j00i � j11i�∕ ffiffiffi
2

p
and jΨ�i � �j01i�

j10i�∕ ffiffiffi
2

p
are the Bell states; a, b ∈ R and satisfy a2 � b2 � 1.

In return, six families of entanglement witness that are of the
form as Eq. (3) can be derived:

W k � jϕkihϕkjΓ, (5)

where k � 1, 2, � � � ; 6. As an example, W 1 � jφ1ihφ1j de-
composed as the form of Eq. (2) is given by

W 1 �
1

4
�σ0 ⊗ σ0 � σ3 ⊗ σ3 � �a2 − b2�σ1 ⊗ σ1

� �a2 − b2�σ2 ⊗ σ2 � 2ab�σ3 ⊗ σ0 � σ0 ⊗ σ3�	, (6)

which consists of only terms of measurement M.
Then, for a given two-qubit state ρ, to identify whether it is

entangled or not, we perform all the local measurements of M
after which Tr�W kρ� is evaluated for each k. To find a value of
Tr�W kρ� below zero, we minimize the value Tr�W kρ� over a
and b for each k. If a negative value is obtained, then, the state is
identified as entangled, and at the same time, a corresponding

optimal witness for this state is defined. Such a postprocess im-
plies that the method requires no a priori knowledge about the
form of the entanglement witnesses.

3. EXPERIMENTAL DEMONSTRATION

In the experiment, we test the performance of the procedure
with pure entangled two-qubit states of the form of Eq. (7)
and multiple families of mixed entangled two-qubit states,
which are generated by sending one party of the maximally en-
tangled state jΦ�i through four types of single-qubit entangle-
ment breaking channels, i.e., Pauli channels, dephasing
channels, depolarizing channels, and amplitude damping chan-
nels, acting on one of the qubits. The experimental setup is
illustrated in Fig. 1(a).

In our experiment, polarizations of the photon pairs are gen-
erated in a pure entangled state,

jϕi � αjHH i �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
jV V i, (7)

by setting the angle of the half-wave plate (HWP) in front of
the β-barium borate (BBO) to 0.5 arcsin α with a fidelity
higher than 97%. Here jH i � j0i and jV i � j1i represent
the horizontal and vertical polarizations of photons, respec-
tively. The fidelity is defined [43] as F�ρth, ρexp� �
�Tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρth
p

ρexp
ffiffiffiffiffiffi
ρth

pp �2, which can be evaluated from the
reconstruction of the states via a full state tomography [44].

The mixed two-qubit entangled states emerge from four
typical types of quantum noisy channels, i.e., Pauli channels,
dephasing channels, depolarizing channels, and amplitude
damping channels, acting on one of the qubits. These noisy
channels are selected to show the validity of the method when
applying it in a realistic experimental environment. The initial
state is prepared in �jHH i � jV V i�∕ ffiffiffi

2
p

. Quantum noisy
channels are completely positive trace-preserving maps N act-
ing on a quantum state in a d -dimensional Hilbert space Hd ,
which can be mathematically described as

ρ ↦
X
i
M iρM

†
i , (8)

where Mi are the Kraus operators, satisfying
P

i M
†
i ρMi � I .

Taking a single-qubit Pauli channel as an example (see
Appendix A for details on realizations of other noisy
channels), the Kraus operators are given by M 1 � ffiffiffiffiffi

p0
p

σ0,
M 2 � ffiffiffiffiffi

p1
p

σ1, M 3 � ffiffiffiffiffip3p
σ2, and M 4 � ffiffiffiffiffip3p

σ3 withP
i pi � 1. The transformation of a single-qubit state under

the Pauli channel is

ρ ↦ p0ρ� p1σ1ρσ1 � p2σ2ρσ2 � p3σ3ρσ3: (9)

The experimental realization of the single-qubit Pauli channel
is illustrated in Fig. 1(a), consisting of a sequence of LCs on the
path of the second photon, one having its fast axis horizontal
and the other oriented at 45° with respect to the horizontal
[45,46]. Depending on the applied voltage V , it is possible
to change the retardation between ordinary and extraordinary
polarized radiations. That is, by applying either V I or V H to an
LC in Fig. 1(b), it can be made to act as either a full wave or an
HWP, respectively. Thus, by varying independently the volt-
ages applied to LCs for different time intervals, we then apply
the four Pauli operators to the second photon with different
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values of the weight p. More precisely, the optical axes of LC1

and LC2 are fixed to 45° and 0° corresponding to the horizontal
direction, respectively. Then, LC1 and LC2 act as an HWP at
45° (σ1) and an HWP at 0° (σ3), respectively, when voltage V H
is applied, whereas both LC1 and LC2 act as an identity oper-
ation (σ0) when voltage V I is applied. When both of the LCs
are applied with V H , the unit realizes a σ2 operation. The
weighted parameter pi (i ∈ f0,1,2,3g) can be varied by chang-
ing the time-interval t i, which corresponds to each σi of the
voltage. By fixing the relative value of the probability param-
eters to fp0, p1, p2, p3g � f1 − p∕6, p∕12, p∕18, p∕36g, the
number of parameters is reduced from 4 to 1. By setting
the time intervals along with the relation t0∶t1∶t2∶t3 �
�1 − p∕6�∶p∕12∶p∕18∶p∕36, the Pauli channels with different
values of parameter p are implemented. Here,

P
i t i � T , and

T is the collection time.
To verify the validity of the method for experimental wit-

nessing for entangled states with limited local measurements,
we compare the witness values and the logarithmic negativity
of the states [47,48]. The logarithmic negativity EN �ρ� �
log2∥ρΓB∥1 is a notion of entanglement measure. Here,
∥ � � � ∥1 denotes the trace norm, and ΓB denotes the partial
transpose. It varies between 0 and 1, indicating the separated
and maximally entangled states, respectively, and can be evalu-
ated with the states reconstructed via a full state tomography.

In the following, we show explicitly the performance of the
witnesses on a family of pure states jϕi [Eq. (7)] and mixed
states [Eq. (8)], which emerge from several single-qubit quan-
tum noisy channels.

In Fig. 2, we show the experimental results of the witness
and negativity for both pure and mixed states. For pure states,
the experimental results of EN is 0 only when α � 0, 1, which

indicates the states are separated. As expected, for α � 0 and 1,
the experimental results of the entanglement witnesses are
0.0109� 0.0018 and 0.0093� 0.0017, respectively. For
the rest states, Tr�W ρ� are always less than 0, which proves
the method is effective in detecting entangled two-qubit pure
states.

For the mixed states, which emerge from the Pauli channel,
negativities are always larger than 0 (from 0.4812� 0.0049 to
0.3136� 0.0105) for 0 ≤ p ≤ 1. As expected, the experimen-
tal results of the entanglement witnesses are less than 0 (from
−0.4818� 0.0065 to −0.3194� 0.0059). Entanglement is
detected for 0 ≤ p ≤ 1. For the dephasing channel, the exper-
imental results of the negativities decrease from 0.4505�
0.0060 to 0.0015� 0.0058 (the theoretical prediction is 0
for p � 0.5) and, then, increase to 0.4583� 0.0070. The ex-
perimental results of the entanglement witness increase from
−0.4691� 0.0064 to 0.0152� 0.0055 for 0 ≤ p ≤ 0.5 and
decrease to −0.4748� 0.0064 for 0.5 < p ≤ 1. For the depo-
larizing channel with 0 ≤ p < 0.5, the experimental results of
the negativity and the entanglement witness decrease from
0.4666� 0.0019 to 0 and increase from −0.4958� 0.0066
to 0.0182� 0.0052, respectively. For p ≥ 0.5, the negativity
is theoretically predicted to be 0, and the experimental results
of the witness are larger than 0. This indicates the entanglement
is detected for 0 ≤ p < 0.5, and no entanglement is detected
for p ≥ 0.5. For the amplitude damping channel, the experi-
mental results of the negativity are always larger than 0 for
0 ≤ p ≤ 1. The experimental results of the entanglement wit-
ness are always less than 0. Entanglement is detected for
0 ≤ p ≤ 1. Thus, the method of the construction and optimi-
zation of entanglement witnesses is valid for the family of the
mixed states emerging from the noisy channels.

Fig. 1. Experimental setup. (a) Optical structure for the experiments. The entangled photon pairs are produced via the type-I spontaneous
parametric down-conversion (SPDC) process by pumping two adjacent nonlinear crystals of BBO with a 405-nm laser diode. Two α-BBO crystals
are inserted after the BBOs to compensate the walk-off effect. Mixed states emerge from the single-qubit noisy channel, such as the amplitude
damping channel, the Pauli channel, the dephasing channel, and the depolarizing channel, acting on one of the qubits. Local measurements in M
are carried out via a sequence of quarter-wave plate (QWP)-HWP-PBS and single-photon detection. Coincidence measurements are then performed
via avalanche photodiodes (APDs). Total coincidence counts are about 120,000 over a collection time of 12 s within a 3-ns time window.
(b) Schematic of the Pauli channel realized with two liquid crystals (LCs). Voltage sequences applied on the spatial path of photons. t i indicates
the time interval of voltage to realize the gate σi . T is the collection time. V H is the corresponding applied voltage when an LC acts as an HWP, and
V I is for an identity operator.

Research Article Vol. 10, No. 9 / September 2022 / Photonics Research 2049



4. EXTENSIONS OF ENTANGLEMENT WITNESS
TO HIGHER-DIMENSIONAL BIPARTITE
SYSTEMS

Finally, we show the demonstration of extensions of entangle-
ment witness to photonic higher-dimensional bipartite states
[49–51], which are constructed with the limited local measure-
ments. A straightforward generalization consists of the
following:

W ijk � jφiijkhφijΓjk, (10)

where

jφ1ijk � ajϕ�ijk � bjϕ−ijk,
jφ2ijk � ajψ�ijk � bjψ−ijk,
jφ3ijk � ajϕ�ijk � bjψ�ijk,
jφ4ijk � ajϕ−ijk � bjψ−ijk,
jφ5ijk � ajϕ�ijk � ibjψ−ijk,
jφ6ijk � ajϕ−ijk � ibjψ�ijk,

and jϕ�ijk � �jjji � jkki�∕ ffiffiffi
2

p
and jψ�ijk � �jjki � jkji�∕ffiffiffi

2
p

are four Bell states, a, b ∈ R, and satisfy a2 � b2 � 1.
Note that for d � 3, W ijk reduces to a fixed matrix with no
parameter to optimize.

Another possible construction is of the so-called diagonal-
type entanglement witness [52],

W � D − dP�
d , (11)

where D �Pd
i,j�1 d ijjiihij ⊗ jjihjj is a d × d diagonal matrix,

and Pd is a d -dimensional projector corresponding to a max-
imally correlated state jφi �P

i xijiii, satisfying dP�
d � FΓ.

Here, F is a so-called flip (or swap) operator defined as follows
Fψ ⊗ ϕ � ϕ ⊗ ψ and hψ ⊗ ϕjFjψ ⊗ ϕi � jhψ jϕij2 [52].

We consider d � 3 and

D�abc	 �
X3
i�1

jiihij ⊗ ��a� 1�jiihij � bji � 1ihi � 1j

� cji � 2ihi � 2j	, (12)
where we add mod2 and a, b, c ≥ 0. Then, W �abc	 �
D�abc	 − 3P�

3 is an entanglement witness [53] iff: a < 2,
a� b� c ≥ 2, and if a < 1, then, additionally, bc > �1 − a�2.
It is worth mentioning that the class W �abc	 contains indecom-
posable entanglement witnesses iff b ≠ c, which can be used to
detect bound entangled states.

In our experiment, a family of three-dimensional bipartite
states is used to demonstrate the above entanglement witnesses,

jϕi � c0j00i � c1j11i � c2j12i � c3j21i � c4j22i, (13)

where c0 � cos 2θ1, c1 � sin 2θ1 cos 2θ2 cos 2θ3, c2 �
− sin 2θ1 cos 2θ2 sin 2θ3, c3 � − sin 2θ1 sin 2θ2 cos 2θ3,

Fig. 2. Experimental results for two-qubit systems. (a) Entanglement witness value as a function of state parameter α for the pure states and of
parameter p of the quantum noisy channels for the mixed states. (b) Negativities versus state parameter α or noisy parameter p. The solid curves
indicate the theoretical predictions, and the symbols are for the experimental results. Error bar indicates the statistical uncertainty which is obtained
via the Monte Carlo simulation method.

Fig. 3. Experimental results for higher-dimensional bipartite systems. (a) Values of the entanglement witness Tr�W ijkρ�. (b) Tr�W �abc	ρ� as
functions of the parameter θ1 of the states in Eq. (13). The solid curve indicates the theoretical predictions, and symbols are for the experimental
results. (c) Logarithmic negativities of the states EN �ρ� versus the state parameter θ1. Error bar indicates the statistical uncertainty which is obtained
via the Monte Carlo simulation.
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and c4 � sin 2θ1 sin 2θ2 sin 2θ3. We fix θ2, θ3 � π∕8 and
vary θ1 from 0 to π∕8 corresponding to the logarithmic neg-
ativity of the states varying from 0 to 1. Then, a similar opti-
mization procedure is performed on the measurement results of
M over the class of entanglement witnesses.

The experimental results of Tr�W ijkρ� and Tr�W �abc	ρ� are
shown in Figs. 3(a) and 3(b), respectively. The negativities of
the states in Fig. 3(c) increase from 0.1116� 0.0147 to
0.9477� 0.0095 with θ1; the values of Tr�W ijkρ� and
Tr�W �abc	ρ� decrease from 0.0001� 0.0052 to −0.2262�
0.0041 and from 0.0190� 0.0134 to −0.9005� 0.0166,
respectively. This indicates the validity of the proposed exten-
sions of the entanglement witnesses to higher-dimensional
bipartite systems.

5. CONCLUSION

We have reported an experimental demonstration of a method
for construction of entanglement witnesses from a limited fixed
set of local measurements (M). The method required a classical
optimization on the statistics of the results after performing the
measurements within M and can be executed without know-
ing a priori information about the specific forms of the wit-
nesses. Such a method is suitable for a scenario where only
a limited local measurement resource (but not a full state
tomography) is available. We tested the performance of the
method on pure and mixed two-qubit entangled states, which
were motivated by realistic experimental conditions, and we
confirmed the method worked well for both cases, indicating
that even a limited set of local measurements can be used for
quick entanglement detection. Possible generalizations to
higher-dimensional bipartite systems have been considered
in our paper, whereas a similar analysis for the multipartite case
still remains open to further study. The experimental accessibil-
ity of our method made it suitable for further development of
other entanglement witnesses on higher-dimensional systems.

APPENDIX A: EXPERIMENTALLY REALIZING
NOISY CHANNELS

The Kraus operators for a single-qubit dephasing channel are
given by M 1 �

ffiffiffiffiffiffiffiffiffiffi
1 − p

p
σ0 and M 2 � ffiffiffi

p
p

σ3. The transforma-
tion of a single-qubit state under the dephasing channel is

ρ → �1 − p�ρ� pσ3ρσ3: (A1)
The Kraus operators for a single-qubit depolarizing channel are

given by M 1 �
ffiffiffiffiffiffiffiffiffiffi
1 − p

p
σ0, M 2 �

ffiffi
p
3

q
σ1, M 3 �

ffiffi
p
3

q
σ2, and

M 4 �
ffiffi
p
3

q
σ3. Then, under the depolarizing channel, a single-

qubit state evolves to

ρ → �1 − p�ρ� p
3
�σ1ρσ1 � σ2ρσ2 � σ3ρσ3�: (A2)

The dephasing channel and the depolarizing channel are ac-
tually two special cases of the Pauli channel. Their experimental
realizations are similar to the Pauli channel in Fig. 1(a) of the
main text.

For a single-qubit amplitude damping channel, the Kraus
operators are given by M 1 � j0ih0j � ffiffiffiffiffiffiffiffiffiffi

1 − p
p j1ih1j and

M 2 � ffiffiffi
p

p j0ih1j. The amplitude damping channel is experi-
mentally realized by a dual interferometer setup [54–59] as

shown in Fig. 1(a) of the main text. It is implemented by a
Mach–Zehnder interferometer consisting of two beam dis-
placers (BDs) and two HWPs at 45° and θp, respectively, fol-
lowed by an HWP at 45°, a beam splitter (BS), and two
mirrors. Photons with different polarizations are separated right
after the interferometer and recombined at the BS. The optical
path differently reduces the spatial coherence of the photons
with different polarizations. By varying the setting angle of
the HWP θp � arcsin

ffiffiffi
p

p ∕2, we are able to vary the parameter
p of the amplitude damping channel.

APPENDIX B: IMPERFECTIONS IN OUR
EXPERIMENT

The systematic shift between experimental results and theoreti-
cal predictions is caused by imperfection of state preparation,
whereas the error bars are estimated through the statistical un-
certainty of the photon numbers. Ideally, we prepare pure two-
qubit entangled states and mixed two-qubit entangled states.
Mixed entangled states emerge from four types of quantum
noisy channels, i.e., Pauli channels, dephasing channels, depo-
larizing channels, and amplitude damping channels. However,
in our experiment, the state preparation is not perfect, and the
fidelity of the initial pure entangled state is about 97%, which is
obtained by the state tomography.

In Fig. 4, we show the results of concurrence and negativity
of the states emerging from a Pauli channel as an example to
explain the systematic shift between experimental results and
theoretical predictions. The blue line indicates the theoretical
predictions obtained by the assumption of the perfect pure ini-
tial state,

jΦ�i � 1ffiffiffi
2

p �j00i � j11i�, (B1)

and the red line indicates the theoretical predictions obtained
by the assumption of the mixed initial states. Without loss of
generality, we assume the mixed initial states are Werner states,

ρw � 4F − 1

3
jΦ�ihΦ�j � 1 − F

3
14, (B2)

where F � hΦ�jρjΦ�i � 97% and 14 is a four-dimensional
identity matrix. The symbols are for the experimental results.
We can see that there is a shift between the lines, and the ex-
perimental results agree better with the theoretical predictions
obtained by the assumption of the mixed initial states. Thus,

Fig. 4. Concurrence and negativity of the states versus the noisy
parameter p of the Pauli channel. The blue line indicates the theoreti-
cal predictions obtained by the assumption of the perfect pure initial-
state jΦ�i, and the red line indicates the theoretical predictions
obtained by the assumption of the mixed initial-state ρw. Symbols
are for the experimental results. Error bar indicates the statistical un-
certainty, which is obtained via the Monte Carlo simulation method.
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imperfection of the state preparation causes the systematic shift
between the experimental results and their theoretical predic-
tions as shown in Fig. 5 (the difference from Fig. 2 of the main
text is that, here, we add the results of concurrence for entan-
glement measure).

APPENDIX C: HIGHER-DIMENSIONAL
BIPARTITE SYSTEMS

Below, we discuss the possible generalizations to higher-
dimensional bipartite systems. Similarly, the goal is to detect
entanglement of bipartite qudit systems when only a limited
fixed set of local measurements can be performed.

Any Hermitian operator in a d -dimensional system can be
represented as

A �
Xd 2−1

j�0

cjGj, (C1)

where fGjg is a set of local orthogonal observables (LOOs) in a
d -dimensional system, which satisfies Tr�GαGβ� � δαβ,
�α, β � 0, 1, � � � , d 2�. A convenient choice of such LOOs is
generalized Gell–Mann matrices,8>>>>>>>><
>>>>>>>>:

GD
l �

ffiffiffiffiffiffiffiffiffiffi
1

l�l�1�
q  Xl

j�1

jjihjj − l jl � 1ihl � 1j
!
,

1 ≤ l ≤ d − 1;

GS
jk � �jjihkj � jkihjj�∕ ffiffiffi

2
p

; 1 ≤ j < k ≤ d ;

GA
jk � �jjihkj − jkihjj�∕i ffiffiffi

2
p

; 1 ≤ j < k ≤ d :

(C2)

Then, any Hermitian operator in a d × d system can be
represented as

A � 1

d 2

�
I ⊗ I�

Xd 2−1

α, β�1

�aαGα ⊗ I� bαI ⊗ Gα�

�
Xd 2−1

α, β�1

CαβGα ⊗ Gβ

�
, (C3)

where aα and bα are real generalized Bloch vectors and Cαβ is
the correlation matrix. The canonical example of such a witness
is provided by a flip operator F �Pd 2−1

a�0 Gα ⊗ Gα. As is well
known, F witnesses entanglement within the whole class of
d × d Werner states.

Similar to the scenario of qubit systems of Eq. (3) of the
main text, here, we consider the class (we denote this class
by C) of entanglement witnesses of the form Eq. (C3) with
the correlation matrix that satisfies the below structure,X
α, β

CαβGα ⊗ Gβ �
Xd−1
k, l�1

DklGD
k ⊗ GD

l

�
X
i<j

�SijGS
ij ⊗ GS

ij � AijGA
ij ⊗ GA

ij�:

(C4)

Thus, the analog (we denote it by Md ) of the set of measure-
ments M can be obtained accordingly. For the case of d � 3,
the set is given by
M3 � fGD

1 ⊗ GD
1 ,G

D
2 ⊗ GD

2 ,G
D
1 ⊗ GD

2 ,G
D
2 ⊗ GD

1 ;

GS
1 ⊗ GS

1,G
S
2 ⊗ GS

2,G
S
3 ⊗ GS

3;

GA
1 ⊗ GA

1 ,G
A
2 ⊗ GA

2 ,G
A
3 ⊗ GA

3 g: (C5)

As a straightforward generalization of the projections in
Eq. (4) of the main text, it is proven in Ref. [42] that there
are six families of rank-1 projectors jψihψ j within the class
of Eq. (C4),

Fig. 5. (a) Entanglement witness value as a function of the state parameter α for the pure states and of parameter p of the quantum noisy channels
for the mixed states. (b) Negativities and (c) concurrence versus state parameter α or noisy parameter p. The solid curves indicate the theoretical
predictions, and the symbols are for the experimental results. Error bar indicates the statistical uncertainty, which is obtained via the Monte Carlo
simulation method.

2052 Vol. 10, No. 9 / September 2022 / Photonics Research Research Article



jφ1ijk � ajΦ�ijk � bjΦ−ijk;
jφ2ijk � ajΨ�ijk � bjΨ−ijk;
jφ3ijk � ajΦ�ijk � bjΨ�ijk;
jφ4ijk � ajΦ−ijk � bjΨ−ijk;
jφ5ijk � ajΦ�ijk � ibjΨ−ijk;
jφ6ijk � ajΦ−ijk � ibjΨ�ijk, (C6)

where jΦ�ijk � �jjji � jkki�∕ ffiffiffi
2

p
and jΨ�ijk � �jjki�

jkji�∕ ffiffiffi
2

p
are four Bell states; a, b ∈ R and satisfy a2 � b2 � 1.

One has, therefore, the analog of Eq. (5) of the main text for
higher-dimensional bipartite systems,

W ijk � jφiijkhφijΓjk, (C7)

with i � 1, 2, � � � ; 6.
Another possible construction is of the so-called diagonal-

type entanglement witness [52],

W � D − dP�
d , (C8)

where D �Pd
i,j�1 d ijjiihij ⊗ jjihjj is a d × d diagonal matrix

and Pd is a d -dimensional projector corresponding to a max-
imally correlated state jφi �P

i xijiii, satisfying dP�
d � FΓ.

We consider d � 3 and

D�abc	 �
X3
i�1

jiihij ⊗ ��a� 1�jiihij � bji � 1ihi � 1j

� cji � 2ihi � 2j	, (C9)

where a, b, c ≥ 0. An entanglement witness [53] W �abc	 �
D − dP�

d is defined, iff a < 2, a� b� c ≥ 2, and if a < 1,
then, additionally bc > �1 − a�2, which can be used to detect
bound entangled states.

The procedure for detection of the entanglement for a given
bipartite qudit system is similar to that of a two-qubit system
introduced earlier in this paper. For experimental demonstra-
tion, we consider the situation of d � 3, that is, entangled two-
qutrit states, which are prepared by employing the spatial and
polarization modes of the photons. Specifically, the bases

j0i, j1i, j2i are encoded by the horizontal polarization of the
photon in the lower mode and the vertical polarization and
the horizontal polarization in the upper mode, respectively.
The corresponding state preparation setup is shown in
Fig. 6, consisting of a set of SPDC entangled photon sources,
two BDs, and two HWPs. Then, the states are initialized to

jϕiθ � c1j00i � c2j11i � c3j12i � c4j21i � c5j22i,
(C10)

where c1 � cos 2θ1, c2 � sin 2θ1 cos 2θ2 cos 2θ3, c3 �
− sin 2θ1 cos 2θ2 sin 2θ3, c4 � − sin 2θ1 sin 2θ2 cos 2θ3,
and c5 � sin 2θ1 sin 2θ2 sin 2θ3. θ1, θ2, θ3 are the angles
of the corresponding HWPs in Fig. 6. In our experiment,
θ2 and θ3 are fixed to π∕8, and θ1 varies from 0 to π∕8, whereas
the logarithmic negativity of the state changes from 0 to 1. The
local measurements within M3 and the tomographic measure-
ments are executed by two measurement modules, which con-
sist of a sequence of HWPs and QWPs, a BD, and a PBS as
illustrated in Fig. 6. Then, a similar optimization procedure is
performed on the measurement results of M3 over the classes
of entanglement witnesses proposed above for d � 3, that is,
the decomposable entanglement witness W ijk and the
diagonal-type oneW �abc	. The results indicate the validity of the
proposed extensions of the entanglement witnesses to higher-
dimensional bipartite systems.
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Fig. 6. Experimental setup for two-qutrit systems. The two-qutrit states are generated in the state preparation module, consisting of a set of SPDC
entangled photon sources, two BDs, and two HWPs by employing the spatial and polarization modes of the photons. The local measurements and
the state tomographic measurements are executed by the measurement modules, consisting of a sequence of HWPs, QWPs, a BD, and a PBS.
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