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In recent years, parity-time (PT) symmetry in optoelectronic systems has been widely studied, due to its potential
applications in lasers, sensors, topological networks, and other fields. In this paper, a time-division multiplexed
pulsed optoelectronic oscillator (OEO) is proposed to study the dynamics of a PT symmetry system. Two micro-
wave pulses are used to realize the PT symmetry in a single spatial resonator based on the temporal degrees of
freedom. The gain and loss of the microwave pulses and the coupling coefficient between them can then be con-
trolled. We first demonstrate the phase diagram from PT broken to PT symmetry in the OEO system. We theo-
retically prove that the perturbation of a coupling-induced phase shift larger than �2π� × 10−2 causes the
disappearance of the PT symmetry. In this experiment, the perturbation is less than �2π� × 0.5 × 10−2; thus, the
phase transition of PT symmetry is observed. In addition, multipairs of PT-symmetry pulses indicate that pulsed
OEO could be used to implement complex non-Hermitian Hamilton systems. Therefore, it is confirmed that
pulsed OEO is an excellent platform to explore the dynamics of PT symmetry and other non-Hermitian
Hamiltonian systems. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.461637

1. INTRODUCTION

Since Bender and Boettcher [1] first proved in 1998 that a
Hamiltonian commuted with a parity-time (PT) operator
has real spectra, PT symmetry has been an active subject of
research in physics [2–7]. This novel conclusion appeared to
be counterintuitive, which means that the eigenvalues of
non-Hermitian Hamiltonians are real. Another crucial charac-
teristic is the spontaneous symmetry breaking during the phase
transition from real to complex in this kind of system [1]. The
eigenvalues become complex above the threshold, but the PT
symmetry remains intact. Moreover, PT-symmetry systems
have many attributes of conservative systems, although they
are dissipative. Physically, a PT-symmetry system is unique
due to these characteristics. The PT symmetry makes the loss
useful, which is very irradiative in physics. In particular, El-
Ganainy et al. [8] demonstrated that such complex PT-
symmetric systems can be realized within the paraxial refraction
approximation by involving the symmetric index and the anti-
symmetric gain/loss ratios; that is, n�r� � n��−r�. They built a

PT-symmetry model based on the coupled mode theory, and
proposed the concept of PT-symmetry waveguide optics. The
model greatly reduces the difficulty to achieve PT symmetry.
PT symmetry was soon confirmed in experiments [9,10]
and then quickly expanded to other areas of study. It has, for
example, been implemented in many systems: waveguides
[9–12], lasers [13–17], microcavities [18,19], atomic systems
[20,21], diffusive systems [22], and circuit systems [23–25].
The PT symmetry opens new possibilities in photonics to gen-
erate, manipulate, and transmit light.

A classical PT-symmetric system consists of two spatially
distributed cavities with gain and loss modes. More precisely,
two cavities with the same Q factor are required for a system.
Some studies have recently focused on implementing a PT-
symmetric system with only one spatial cavity. These studies
mainly introduce the concept of synthetic dimensions, which
substitute spatial dimensions with the system parameters. By
introducing synthetic dimensions, there is no need for two
cavities with the same Q value. The experiments performed
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using the system’s parameter dependency as the synthetic
dimension comprise the wavelength [26], clockwise (CW)
and counterclockwise (CCW) optical modes [16,27,28], and
polarization [29]. The PT-symmetry coupling in these struc-
tures is limited to two subsystems. Hence, a simple question
must be answered: is there a scheme to implement PT-sym-
metry lattice, non-Hermitian trimer [30] with a single spatial
resonator?

In recent years, crucial experiments have been conducted in
the field of optoelectronic oscillators (OEOs) [31–34]. OEOs
are dissipative nonlinear systems with a closed feedback loop
that converts the light energy from the pump laser to the micro-
wave [35–37]. Some studies have demonstrated that PT
symmetry can improve the side-mode suppression ratio, reduce
the signal phase noise, and overcome the mode-selection
challenge [32,34,38–40]. Simultaneously, OEOs are consid-
ered a viable platform to study PT symmetry due to their rich
nonlinear and flexible structure [41].

Here, we report what we believe, to the best of our knowl-
edge, is a novel scheme to achieve PT symmetry within one
resonator. A time-division multiplexed (TDM) pulsed OEO,
which proves a test platform for generalized PT symmetry
in the optoelectronic system, is designed. Each microwave pulse
can be considered as an independent oscillator with temporal
degrees of freedom. The gain/loss of pulses and the mutual in-
jection coefficient between them are all controlled to achieve
PT symmetry. A pulsed OEO paves the way for a new class
of PT symmetry implementations with multiple subsystems.
In existing OEO systems [31–34], the coupling is a “combine-
and-split” implementation. Compared to these studies, the
phase of the cross-coupling term in the proposed scheme is per-
formed by mutual injection of the oscillation, and it is arbitrar-
ily and independently varied. In OEO, the phase transition of
eigenfrequencies of a PT-symmetry OEO is first demonstrated.
The frequency-splitting values of PT-symmetric pulses are
measured and a comparison of even gain microwave pulse is
conducted. The experimental results follow the theoretical pre-
diction. Through the link delay control, the arbitrary coupling-
induced phase shift can be set and the error can be kept within
�2π� × 0.5 × 10−2. In addition, multiple PT symmetry coupled
microwave pulses are obtained in a single cavity. We believe
that the microwave pulses in a pulsed OEO can be
referred to as the carrier for more complex non-Hermitian
Hamilton systems.

2. PRINCIPLE OF A PT-SYMMETRY PULSED
OEO IN A SINGLE RESONATOR

The schematic diagram of a PT-symmetric pulsed OEO based
on TDM is shown in Fig. 1(a). In contrast to a traditional
OEO, a pulsed OEO uses an optical pulse train with a period
of cavity delay T c as the laser source, rather than continuous
light. Each optical pulse causes a microwave pulse to oscillate in
turn. Tc is also the period of the microwave pulse. Two micro-
wave pulses with a T pulse time interval are used as the subsys-
tems of PT symmetry. The gain and loss of microwave pulses
are balanced, and the pulses are coupled at the coupling part.

Since group velocity dispersion is ignored in the setup, the
microwave pulses are completely represented by a single

complex amplitude. The PT-symmetric microwave pulses
are denoted by u and v. The interaction of PT-symmetric
microwave pulses satisfies the dynamic equations [42]

d

dt

�
u
v

�
�
�

iω0 � γu κ exp�iθv�
κ exp�iθu� iω0 � γv

��
u
v

�
, (1)

where t is the slow time scale, ω0 is the angular frequency of
microwave pulses without coupling, γu and γv are the gain (loss)
ratios of the microwave pulses, κ is the mutual injection coef-
ficient between the microwave pulses, and θu and θv are the
phase shift introduced by the injection of the coupling part.

Based on Eq. (1), the eigenfrequencies of supermodes of the
system are given by

ω� � ω0 − i
γu � γv

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− exp�i�θu � θv�	κ2 −

�
γu − γv

2

�
2

s
:

(2)

When the PT-symmetry condition is satisfied (i.e., γu �
−γv � γ and θu � θv � π∕2), the eigenfrequencies are simpli-
fied as

ω� � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
: (3)

Figure 1(b) presents the coupling coefficient κ versus the
frequency spectrum for the PT-symmetric microwave pulses.
Because the microwave pulses involved in coupling have a
period of T c, the frequency spectrum of the coupled pulses
is discrete and the frequency spacing is fS � 1∕T c . The carrier
frequency of microwave pulses is the real part of the eigenfre-
quencies of the two supermodes. Thus, the focus is on the re-
gion around ω0. The real part of the eigenfrequencies in Eq. (3)
from PT broken to PT symmetric is highlighted by the black
dashed line in Fig. 1(b). PT symmetry breaking occurs if κ < γ.

Fig. 1. Principle of TDM pulsed OEO to realize PT symmetry.
(a) Scheme diagram of the PT-symmetry pulsed OEO. (b) Frequency
splitting of the PT-symmetric supermodes, where fS is the longitudinal
mode spacing and κEP is the exception point.
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ω� are a pair of complex conjugate numbers. The supermodes
degenerate, and the oscillation corresponding to ω� increases
(or decreases) exponentially. κEP � γ is the threshold, referred
to as the exception point (EP), where the system undergoes a
phase transition. If κ > γ, the system is PT symmetric and has
real eigenfrequencies. The difference between eigenfrequencies
and ω0 is �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
.

3. EXPERIMENTS AND RESULTS

The detailed setup of the time-delay feedback PT-symmetric
OEO is shown in Fig. 2(a). The multiwavelength laser is used
to perform the coupling of the microwave pulses. The continu-
ous light of three wavelengths is combined at the wavelength
division multiplexer (WDM1), and modulated into the optical
pulse train using the Mach–Zehnder modulator (MZM1). The
normalized power transmission β is controlled by the modula-
tion signal, which is generated by an arbitrary waveform gen-
erator (AWG). MZM1 is set to the minimum transmission
point to suppress the unexpected pulses. The typical suppres-
sion ratio is at least −30 dB. The optical pulse train is injected
into a 92 m fiber by the MZM2 and coupled at the coupling
part, which consists of WDM2, WDM3, a delay fiber, and
optical delay lines (ODLs). The optical pulses are converted
into microwave pulses at a photodetector (PD). The microwave
pulses are amplified by an electrical amplifier (EA) to compen-
sate for the link loss. They pass through the bandpass filter
(BPF) with a center frequency of 10 GHz and a bandwidth
of 4 GHz to limit the spectrum range. The output is divided
into two parts using a 3 dB power splitter. A total of 50% is sent
to the oscilloscope, and the rest is injected into the modulation
port of MZM2 as a feedback signal.

The coupling of microwave pulses is achieved by three chan-
nels at the coupling part. CH2 is used to balance the gain and
loss of the microwave pulses. CH1 and CH3 are used to achieve
mutual injection between the pulses. CH2 corresponds to the
direct-pass path. The gain ratio of the pulse u is controlled by
the power of CH2, P2, and the normalized power transmission
βu, as shown in Fig. 2(b). Similarly, the gain ratio of the pulse v
is controlled by P2 and βv. The balance of gain and loss
γu � −γv � γ indicates that the net gain of the pulse u is equal
to the net loss of the pulse v (i.e., P2βu − I 0 � I 0 − P2βv),
where I 0 is the threshold optical power of the OEO oscillation
without the PT-symmetric coupling. More details are provided
in Appendix B.

The cross-coupling path is achieved by CH1 and CH3. The
mutual injection coefficients are proportional to the optical
power of CH1 and CH3, and P1 and P3. The mutual injection
coefficients of two microwave pulses are equalized by setting
P1βu � P3βv. More details are available in Appendix B. The
path of CH1 is behind that of CH2 by T pulse, and the injection
from pulse u to pulse v is performed, as shown in Fig. 2(c). The
path of CH3 is earlier than that of CH2 by T pulse, and the
injection from pulse v to pulse u is performed. The phase shift
between the cross-coupling path and the direct-pass path is
achieved by fine-tuning the ODLs at CH1 and CH3.

The delay of ODL and the phase of the microwave coupling
term have a relationship: θu,v � T u,vω0, where T u,v is the delay
induced by the ODL at the cross-coupling path. The delay of
three channels satisfies the relationshipsT 1 −T 2 � T pulse �T u
and T 3 − T 2 � −T pulse � T v. In the setup, the carrier of the
microwave pulses is approximately 10 GHz, and thus a 25 ps
time delay ofT u,v is equivalent to a π∕2 phase shift of the pulses.

Fig. 2. Detailed experimental setup of the pulsed OEO. (a) Proposed PT symmetry in time-multiplexed delay systems within a single oscillator.
MZM, Mach–Zehnder modulator; WDM, wavelength-division multiplexer; SMF, single-mode fiber; EA, electronic amplifier; BPF, bandpass filter;
PD, photonic detector. (b) Microwave pulses (black line) in the cavity and optical pulses generated by the light source. (c) Coupled pulses after the
coupling part and the microwave pulses received by the PD (black lines).
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The temporally combined optical pulses reach the PD, and
are then down-converted to microwave signals by the PD de-
tection. The carrier wavelength of the microwave pulses is
much smaller than the pulse width of them. The pulses are
approximated as the sine wave signal. Since only the first-order
harmonics are preserved, MZM and PD do not introduce addi-
tional phase shifts [42]; the coupling phase is naturally intro-
duced just by the delay of the ODL. The signals after PD
detection are considered as the superposition of two sine waves
with a phase shift. The PD detection produces four microwave
pulses, as shown in Fig. 2(c). Only the pulses u and v involved
in the PT symmetry are aligned with the optical pulses, and are
modulated into the optical domain. The remaining pulses have
no corresponding optical pulses, and therefore are all sup-
pressed. Three pairs of PT-symmetric microwave pulses are
realized in the same cavity. When the OEO reaches the steady
state, the time domain waveform of each pair of microwave
pulses is obtained by processing the oscilloscope data at the
computer. Finally, the spectrum of each pair of microwave
pulses is obtained by Fourier transform.

The experiments are set up according to Fig. 2 to study
the phase transition of PT symmetry, and 1551.72 nm,
1550.92 nm, and 1550.12 nm single-frequency light is used
as the optical carrier of CH1–CH3. The spacing between
the three wavelengths is 0.8 nm (∼100 GHz), which exceeds
the detection bandwidth of the PD. As a result, the beat of the
two-color signals and the power fluctuation induced by the co-
herence of the optical signal are suppressed. A 508-ns Gaussian
pulse train is used as the modulation signal of the MZM1. The
coupled microwave pulses have a 21-ns time interval. The de-
lays of the three wavelengths differ by 21 ns, to ensure that the
optical pulses of different wavelengths are aligned. The ODLs
are tuned to introduce a π∕2 phase shift between the cross-cou-
pling path and the direct-pass path. Three pairs of optical pulses
are generated by the modulation signal, as shown in Fig. 2(a),
and they excite three pairs of PT-symmetric microwave pulses
in the cavity.

CH1 and CH3 are first turned off, and CH2 is turned on.
The amplitudes of the modulation pulses are set to be equal to
the half-wave voltage of MZM1. The transmittance of MZM1
is the largest (i.e., βu � βv � 1). P2 is increased to make the
microwave pulses oscillate. The threshold of the optical power
is measured to be I0 � 14.18 dBm. Afterward, CH1 and CH3
are turned on. P2 � 14.75 dBm, βu � 1 and βv � 0.75 are
kept unchanged. In this scenario, the net gain (loss) of the mi-
crowave pulses u and v is balanced, and the PT symmetry is
achieved in the system. By increasing P1 and P3, the coupling
strength κ∕κEP between the microwave pulses increases.

Figure 3 shows the spectra of three pairs of microwave pulses
at the PT-broken state and PT-symmetry state. The spectral
line interval is 1.97 MHz, corresponding to the cavity length
of 105.0 m. The power of the pulse spectrum is only affected by
the saturation power of the oscillation, independent of the net
gain ratios of supermodes. The gain/loss ratios of the super-
mode affect the frequency component of the microwave pulses
at the steady state [25]. Therefore, the power of the three
groups of PT-symmetric microwave pulses is almost the same
when the system is at the PT-symmetry breaking state and

PT-symmetry state, respectively. In theory, at the PT-symmetry
state, two supermodes simultaneously arise in Fig. 3(b).
However, mode competition exists in the stable oscillation
OEO in practice. Consequently, only one eigenfrequency is
usually seen in the spectrum of each pair of pulses, as shown
in Fig. 3(b).

Figure 4(a) presents the experimental and theoretical results
of the frequency detuning of PT-symmetric microwave pulses.
When κ < κEP, the frequency lines have no detuning. When
κ > κEP, the frequency detuning resembles a hyperbola, which
is coherent with the theory. The eigenfrequency changes from
degenerate to split with κ∕κEP increasing. This indicates that
the PT-symmetric microwave pulses evolve from the PT bro-
ken state to PT-symmetry state.

Figures 4(b)–4(d) show the spectrum details of PT-symmet-
ric microwave pulses marked in Fig. 4(b). The span is set to
160 kHz. In Fig. 4(b), P1 � 4.97 dBm and P3 � 6.22 dBm,
and κ∕κEP � 0.86 is obtained. For more details, see
Appendix B. The pulses are PT broken. The spectra of three
pairs of pulses overlap. Afterward, P1 and P3 are increased by
1.80 dBm and κ∕κEP � 1.30 is obtained. After the threshold
value is exceeded, the condition of PT breaking is no longer
satisfied. Multiple supermodes emerge in Fig. 4(c). The differ-
ence between the eigenfrequencies is 72.1 kHz. The splitting of
the eigenfrequencies is 143.7 kHz by further increasing
κ∕κEP � 1.87, as shown in Fig. 4(d). At the data points for
1 < κ∕κEP < 1.15, only a single oscillation peak with fre-
quency detuning is observed. The phenomenon in OEO is
the same as that in the laser system. Only one oscillation mode
between two degenerate supermodes is observed because of the
mode competition [43,44]. We do not determine that the off-
set frequency is only introduced by the coupling terms; thus,
these data points are not shown in Fig. 4(a). It is caused by the
limitation of the regulation accuracy of the ODL, which is
explained in Section 4.

Microwave pulses with even gain are also built for compari-
son. The coupled pulses have the same gain ratios. P2 �
14.75 dBm, P1 � P3, and βu � βv � 1 are set. The power
of the optical pulse is larger than I 0 (i.e., γu � γv � γ > 0).

Fig. 3. Spectrum of pulse OEOs with a span of 20 MHz: (a) PT-
broken state; (b) PT-symmetry state.
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According to Eq. (2), the real parts of eigenfrequencies are
always different. The difference values are related to the
coupling coefficient: δω � ω� − ω− � 2κ. In this condition,
even if the coupling strength is very weak, two supermodes are
always split.

Figure 5(a) presents the experimental and theoretical values
of frequency detuning of the microwave pulses with even gain.
The measurements of frequency detuning are approximated on
two straight lines. Compared to Fig. 4(a), the curves of the fre-
quency detuning of these microwave pulses have no intersec-
tion. When κ∕κEP increases, the frequency split between the
two supermodes becomes larger, and the eigenfrequencies have
no phase transition. Figures 5(b)–5(d) show the details of the
spectrum marked in Fig. 5(a). The power of the cross-coupling
path is 5.0 dBm, 6.6 dBm, and 8.0 dBm. The coupling
strength is 0.86, 1.24, and 1.72, respectively. The correspond-
ing frequency splitting values are 76.1 kHz, 106.1 kHz, and
152.8 kHz. When the coupling strength increases, the carrier
wave of microwave pulses gradually moves away.

4. DISCUSSION

Through theoretical analysis [45], it is deduced that a π∕2
phase shift between the direct-pass path and cross-coupling

path determines the emergence of the real eigenfrequencies
and the EP. At the condition of PT symmetry, the perturbation
of the phase shift δθ is introduced into the Hamiltonian of the
system. Equation (1) is then rewritten as 

iω0 � γ κ exp�i�π2 � δθ�	
κ exp�i�π2 � δθ�	 iω0 − γ

!
: (4)

The eigenfrequencies of the supermodes are expressed as

ω� � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e2iδθ − γ2

q
: (5)

Because ω��δθ� � ω�
��−δθ�, the sign of δθ does not affect

the detuning of eigenfrequencies. Therefore, the situation of
δθ > 0 is only analyzed. When δθ � 0, the system has no per-
turbation and is PT symmetric. When δθ ∈ �0, π∕2�, two
supermodes have complex eigenfrequencies. The curve of κ ver-
sus Re�ω�� and Im�ω�� is provided by numerical calculation.
According to the experimental parameters, κEP � γ � 0.14
and δθ � �2π� · f10−1, 10−2, 10−3, 0g are set. The simulation
curves of eigenfrequencies under different perturbations are
shown in Fig. 6.

Figure 6(a) presents the real part of the eigenfrequencies
Re�ω��, which is the detuning value of carrier frequency of
microwave pulses. Figure 6(b) shows the imaginary part of

Fig. 4. Experiment of PT-symmetry pulsed OEOs. (a) Experimentally and theoretically obtained frequency detuning of the pulses, function of
the coupling strength κ∕κEP. (b)–(d) Spectrum of three groups of PT-symmetric microwave pulses with the coupled strength marked in (a) with a
span of 160 MHz and a frequency resolution of 1 kHz.
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eigenfrequencies Im�ω��, which represents the net gain (loss)
ratio of the pulses. When κ < κEP, if no perturbation occurs,
Re�ω�� is degenerate and two supermodes amplify and decay,
respectively. Only one supermode is observed at the stable os-
cillation. If the phase shift deviates by π∕2, the eigenfrequencies
split. The amplifying and decaying supermodes still hold. Only
one supermode is also observed. However, the frequencies are
offset from ω0. When κ > κEP, if no perturbation occurs, two
supermodes have the same net gain and different Re�ω��. Two
supermodes are observed at the stable oscillation. If the phase
shift deviates by π∕2, the gains of the two supermodes are still
greater than 0 and less than 0, respectively. Thus, only a
supermode is observed in this case. Because of the phase shift
perturbation, the coupled system oscillates with only one super-
mode and the EP disappears.

In general, the π∕2 phase shift of the cross-coupling path
plays a crucial role in maintaining a perfect PT symmetry.
ODLs are used to tune the coupling-induced phase shift. In
addition, the accuracy of ODLs is 0.1 mm, which is equivalent
to �2π� × 0.5 × 10−2. The phase perturbation is small enough to
observe the phenomenon of PT symmetry in the presented
setup. However, it can be seen from Fig. 6(a) that the measure-
ment near EP requires a smaller phase perturbation that is dif-
ficult to achieve with ODL. In an ideal PT-symmetry system,
the cross-coupling is purely imaginary. In practice, the real part

of the cross-coupling can lead to EP degeneracy [45]. The net
gain of one of the supermodes is under the threshold, as shown
in Fig. 6(b). Mode competition of the oscillators results in only
one supermode being observed. However, the singularity of EP
can be restored if the amplification and absorption of the two
subsystems are properly designed [45–47]. Thus, improving
the performance by compensating for gain and loss in the pro-
posed scheme is a good question that should be further studied.

5. CONCLUSION

This paper illustrated a TDM-pulsed OEO to perform PT
symmetry. The gain and loss of microwave pulses in a single
resonator are independently controlled at the direct-pass path,
and pulses are coupled by mutual injection at the cross-cou-
pling path. The phase transition curve of PT symmetry is first
shown in the OEO system. Compared to the existing OEO,
the spectrum details of the frequency splitting are provided.
The frequency detuning in the PT-symmetric microwave
pulses and the microwave pulses with even gain is also
compared. The experimental results are coherent with the
theory. Finally, the importance of the π∕2 phase shift in the
PT-symmetry constraint by Eq. (5) is demonstrated. The phase
perturbation can be kept within �2π� × 0.5 × 10−2, which en-
sures the bifurcation observed in the experiment. We believe

Fig. 5. Experiment of even gain pulsed OEOs. (a) Experimentally and theoretically obtained frequency detuning of the pulses, function of the
coupling strength κ∕κEP. (b)–(d) Spectrum of three groups of even gain microwave pulses with the coupled strength marked in (a) with a span of
160 MHz and a frequency resolution of 1 kHz.
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that pulsed OEO has a certain potential in the interdisciplinary
studies of optoelectronics and physics. Pulsed OEO will be a
research platform used for cluster synchronization, chimera
state [48], exotic state [49], and other network dynamics.

APPENDIX A: PT SYMMETRY IN THE COUPLED
PULSED OEO

In the proposed PT-symmetry OEO, the cross-coupling of the
two subsystems is implemented by mutual injection. The cou-
pling process is referred to as an active microwave coupler, as
shown in Fig. 7. By tuning the ODL at the cross path in Fig. 7,
the values of the coupling-induced phase shift θu and θv are
arbitrarily and independently adjusted. The signals in the
two subsystems are denoted by u�t� and v�t�. The coupling
equation is given by�

uout
vout

�
�
�

tu K exp�iθv�
K exp�iθu� tv

��
uin
vin

�
, (A1)

where tu and tv are the net gain of the direct-pass path, K is the
injection coefficient of the cross-coupling path, θu and θv are

the phase shift introduced by the ODL. Assuming the equiv-
alent loss of the cavity is α, the transfer function of the open
loop of the setup is given by

�
u�t � T �
v�t � T �

�
�
�

αtu αK exp�iθv�
αK exp�iθu� αtv

��
u�t�
v�t�

�
,

(A2)

where T is the delay of the round trip. Near the steady state,
u�t� and v�t� vary on a slow time scale. The following approxi-
mation can be used:

d

dt

�
u
v

�
� 1

T

�
u�t � T � − u�t�
v�t � T � − v�t�

�
: (A3)

Using the quasi-linear approximation, only the cavity modes
that are centered at the carrier angular frequency ω0 propagate
through the cavity. The coupling equation is rewritten as

d

dt

�
u
v

�
�
�
iω0 ��αtu − 1�∕T αK exp�iθv�∕T
αK exp�iθu�∕T iω0 ��αtv − 1�∕T

��
u
v

�
:

(A4)

The net gain (loss) γu,v is defined as �αtu,v − 1�∕T , and the
cross-coupling coefficient κ is defined as αK ∕T . Equation (A4)
is coherent with Eq. (1).

A “combine-and-split” structure is used to achieve the cou-
pling in the existing OEO systems. The signals are combined at
the PD and distributed at the MZM indistinctively [26,32]. No
phase shift is introduced during the coupling process. Thus, we
believe that PT symmetry cannot be achieved just by this kind
of coupling. Perhaps the delay change of one of the paths in-
troduces a phase shift to satisfy the phase constraint of PT sym-
metry. However, this may lead to the mismatch of the two paths
and thus affects the natural frequency of the OEO.

Our scheme is different. The signals are distinguishable and
the coupling is the mutual injection after the PD. The phase
shift between the direct-pass signal and the injection signal is
introduced; thus, exp�iθu,v� is added into Eq. (A1). The phase
shift is adjusted by the ODL at the cross-coupling paths.
Therefore, the phase transition is observed in the experiments
under the condition of PT symmetry, which agrees with our
theoretical predictions.

Fig. 6. Numerical simulation of the disappearance of PT symmetry
with phase perturbation. (a) Real parts of the eigenvalues for PT sym-
metry with different δθ. (b) Imaginary parts of the eigenvalues for PT
symmetry with δθ.

Fig. 7. Coupling in the proposed pulsed OEO.
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APPENDIX B: RELATIONSHIP BETWEEN THE
EXPERIMENTAL PARAMETERS AND THE
THEORY PARAMETERS

The relationship between the input and output of the OEO has
been studied in the previous study [42]. The gain of the oscil-
lation is related to the power of the light source. Assuming the
input and the output of the open-loop OEO are, respectively,
V in�t� and V out�t�, the power of the light source is P0, and the
equivalent loss is α, the relationship is given by

jV out�t�j � αP0jV in�t�j: (B1)

The evolution of microwave pulses also follows Eq. (B1).
The power of the light source in the pulsed OEO is determined
by P2 and by the normalized power transmission of the
MZM1. The gain ratio of the pulse u and v is given by

ju�t � T c�j � αP2βuju�t�j,
jv�t � T c�j � αP2βvjv�t�j: (B2)

Based on Eq. (1), the net gain (loss) ratio at the direct-pass
path is

ju�t � T c�j � ju�t�j � T cγuju�t�j � ju�t�j�1� γuT c�,
jv�t � T c�j � jv�t�j � T cγvjv�t�j � jv�t�j�1� γvT c�: (B3)

By substituting Eq. (B2) into Eq. (B3), according to the
constraint γu � −γv, we obtain

αP2βu − 1 � 1 − αP2βv:

Assuming the threshold power is I 0, ju�t � T c�j �
αI 0ju�t�j is obtained. Because the gain ratio is 1, I 0 � α−1.
The parameters satisfy the constraint equation

P2βu − I 0 � I 0 − P2βv: (B4)

Similarly, the coupling item of Eq. (1) is from the injection
of the optical pulse at cross-coupling paths if the coupling co-
efficient is related to the optical power of CH1 and CH3. If
κu � κv � κ, then

P1βu � P3βv: (B5)

When the coupling microwave pulses are under the condi-
tion of PT symmetry, κ is equal to γ at the EP. The following
equation is obtained to adjust the coupling strength:

κ

κEP
� αP1βu

αP2βu − 1
� P1βu

P2βu − I 0
: (B6)
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