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One of the pressing issues for optical neural networks (ONNs) is the performance degradation introduced by
parameter uncertainties in practical optical components. Hereby, we propose a novel two-step ex situ training
scheme to configure phase shifts in a Mach–Zehnder-interferometer-based feedforward ONN, where a stochastic
gradient descent algorithm followed by a genetic algorithm considering four types of practical imprecisions is
employed. By doing so, the learning process features fast convergence and high computational efficiency, and the
trained ONN is robust to varying degrees and types of imprecisions. We investigate the effectiveness of our scheme
by using practical machine learning tasks including Iris and MNIST classifications, showing more than 23%
accuracy improvement after training and accuracy (90.8% in an imprecise ONN with three hidden layers
and 224 tunable thermal-optic phase shifters) comparable to the ideal one (92.0%). © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.449570

1. INTRODUCTION

Implementation of neuromorphic photonics on a silicon pho-
tonic integrated chip is gradually becoming a promising tech-
nology for deep learning accelerators, which utilizes photonic
processors to function as artificial intelligence (AI) cores [1–4].
The realization and advancement of integrated programmable
photonic processors [5–13] provide a feasible strategy for the
construction of optical neural networks (ONNs) [14,15].
Compared to electronics, neuromorphic photonics has advan-
tages of well-known high-bandwidth, and ultralow energy con-
sumption due to negligible energy for light propagation with
encoded information [16]. With the rapid advancement of
the complementary metal–oxide–semiconductor (CMOS)-
compatible silicon-on-insulator (SOI) platform [17–19], inte-
grated silicon waveguides [20] and optical modulators such as
Mach–Zehnder interferometers (MZIs) [21–26] and micro-
ring resonators (MRRs) [27–29] can be easily formed as pro-
grammable processors for the construction of integrated ONNs
[21,22,30,31] and other similar deep learning networks such as
convolutional neural networks (CNNs) [6,32,33] and recur-
rent neural networks (RNNs) [2,34].

However, there remain challenges in the precise control of
device performance and achieving excellent uniformity for vari-
ous components in neuromorphic photonic chips. For exam-
ple, there is a 15% reduction of vowel classification accuracy
with the nanophotonic processor [22] and limited accuracy

(about 88%) in handwriting image recognition using the pho-
tonic CNN chip [33]. The major problem is non-ideal
photonic components, which leads to uncertain performance
of the required functionality. In previous research, a few opti-
mization procedures have been reported aiming at restoring the
fidelity of the unitary matrix by using numerical initialization
of parameters in MZIs [35,36]. However, these strategies
mainly focused on the fidelity of the implemented unitary ma-
trix instead of the desired functionality of the ONN. Hence,
the effects of imprecise components could be underestimated.
Also, these optimizations require precise characterization of
each device separately and are actualized after fabrication, lead-
ing to extra computational power consumption and suffering
from scalability problems in mass production.

Other methods adopted physical architecture modification
to mitigate the effects of imprecisions. A double MZI configu-
ration was proposed to compensate for fabricated MZIs with
imperfect splitting ratios without calibration [37]. Shokraneh
et al. [38] reported a diamond mesh of MZIs, which forms a
symmetrical architecture to resist imprecisions in the ONN,
and Fang et al. [39] demonstrated an FFTGrid architecture that
has lower sensitivity to imprecisions. However, these methods
require additional cascaded MZIs or waveguide crossings
to interconnect MZIs, increasing the size of optical program-
mable processors and structure complexity. In situ gradient
training [40] and self-configuration of rectangle MZIs [41–43]
are promising in principle, but they suffer from complex
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experimental measurements and the limitation of specific
network structures.

To address the above-mentioned issues, in this paper, we
propose a two-step ex situ training scheme in an MZI-based
ONN. The first stochastic gradient descent algorithm training
step aims to obtain optimal phase shift settings in perfect MZIs
for the benefit of fast convergence, while the goal of the follow-
ing genetic algorithm (GA) training step is to find the optimal
configurations considering parameter imprecisions in MZIs.
In doing so, updated phase shifts can be realized with the ability
to maintain classification accuracy in imprecise ONNs, and
hyper-parameters in the GA step can be modified according
to varying degrees and types of imprecisions. The conventional
ex situ gradient training method is done on an idealized
ONN. After training, the optimal weights are applied to the
physical device. Without error corrections, the performance
of the ONN would be severely degraded. Our two-step ex situ
training based on a gradient algorithm and GA can improve the
overall performance of the ONN with practical errors. This
ex situ training method requires only characterizations of MZI
samples, and one-time robust training of the ONN can be used
on a batch of chips, similar to the use of deep learning. The
model is trained by servers, and then these parameters can
be used in local hardware. In a mass production scenario, while
it is not possible to test and train each of the chips, our ex situ
method with GA training provides a cost-effective way.

We perform the training scheme in a feedforward photonic
neural network implemented by the mesh of MZIs with

tunable thermo-optic phase shifters and demonstrate its effec-
tiveness in practical learning tasks, including Iris [44] and
MNIST [45] classifications. With the advantages of robustness,
parallelization, and black-box optimization in multi-objective
GA, our proposed scheme provides an efficient and generalized
training method for imprecision-resistant optical neuromor-
phic computing platforms.

2. ONN ARCHITECTURE AND TRAINING
SCHEME

A. Constructions of ONN
The typical ONN is a feedforward sequential processing flow
comprising an input layer with artificial neurons, a series of
hidden layers, activation layers, and an output layer, as shown
in Fig. 1(a). The continuous wave laser source and optical am-
plifier generate an optical signal and split it into different wave-
guide channels. The input image is encoded into the optical
signal in the form of A exp�jθ� using optical attenuators
and modulators, where A and θ are the amplitude and phase
of the signal, respectively. Then, signals go through the optical
interference unit (OIU) and optical nonlinear unit (ONU).
After propagating in the network, optical output signals are
converted to electrical signals by using photodetectors for
the subsequent information storage and processing. Here we
use an ex situ (software-based) training method to update neu-
rons. The elements to be trained in the ONN chip are phase
shifts in each MZI controlled by voltage settings.

0

9

Target 
10 th Class 

Input Layer Hidden Layer Output Layer Activation 

W f NL

Optical Interference Unit (OIU)

f NL

Optical Nonlinear 
Unit (ONU)

Photodetection

Optical Input 
Encoding

(a)

(b)

Fig. 1. (a) Illustration of artificial neural network (ANN) architecture for image recognition implemented by photonic units, including optical
input encoding parts, optical interference units, optical nonlinear units, and photodetectors. (b) Demonstration of a programmable Mach–Zehnder
interferometer consisting of directional couplers and thermo-optical phase shifters.
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The paramount part in the ONN to function as the syn-
aptic weight W is the OIU, which can realize the multiply–
accumulate operation (MAC) of input optical signals depicted
in Fig. 1(a). It constructs a programmable MAC block from N
input modes to N output modes. The operation block can be
decomposed into a mesh of MZIs, as demonstrated in Fig. 1(b).
Each MZI consists of two phase shifters parameterized �θ,ϕ�
and two 50:50 directional couplers. The modulation of phase
shifters is implemented by tuning the temperature of the
rib waveguides according to the thermal-optic effect [46].
Consequently, the overall scattering matrix of each MZI is
derived as

UMZI � RϕSRθS
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where UMZI, Rϕ, Rθ, and S are the scattering matrices of MZI,
external phase shifter, internal phase shifter, and directional
coupler, respectively. This indicates that the MZI unit can be
characterized by the special unitary group of degree 2 [SU(2)]
transformation, providing a unitary interference of two input
modes assuming that the cell is lossless [47]. Hence, by con-
figuring �θ,ϕ�, any rotation of two-dimensional unitary groups
can be realized. For N -dimensional unitary transformation
U �N �, each N input mode must interfere with others for
N output modes. The feasible arrangement of MZIs for mode
connections was first proposed by Reck et al. [48], demonstrat-
ing a triangular topology of the MZI array. Followed by
Clements et al. [49], a more compact topology with the same
number of MZIs was described. Here we adopt the Clements
topology to implement the compact ONN as shown in the
diagram of the OIU in Fig. 1(a). Arbitrary synaptic weight
matrix W can be realized by two unitary matrices (U and V †)
and one diagonal matrix Σ factored out as W � UΣV †, using
a physical instantiation of the singular value decomposition
(SVD), where V † means the Hermitian transformation of V
[50]. In addition, the implementation of the nonlinear activa-
tion function of the ONN is essential for the network, and

we utilize the combination of electro-optic hardware platforms
to realize the nonlinear function in the activation layer in our
work [51].

B. Quantized Parameter Imprecisions
Since there are severe impacts of parameter imprecisions, the
distorted scattering matrix of the MZI caused by these errors
is consequently obtained. There are four main types of impre-
cisions in devices, including phase shift error, insertion loss,
drift of the coupling coefficient, and photodetection noise.
From previous experimental measurements [22], the phase er-
rors fδθ, δϕg can be modeled as random Gaussian distributed
variables GP�μ � 0, σ� where the expectation μ is zero, and the
standard deviation σ is typically in the range of 0.05 rad. To
have a more precise analysis of the parameters �μ, σ�, we have to
consider the source of phase errors. The source can be divided
into two parts. The first one can be treated as phase variation
ΔΦ caused by thermal effects from neighboring phase shifters
[52,53]. The ith affected phase shifter ΔΦi can be calculated
by the adjacent phase shifters fΦkg, defined by ΔΦi �P

k≠i Ck→i�Φk � ΔΦk�. Ck→i is the thermal effect coefficient
from the kth shifter to the ith shifter, which is determined by
the distance between two phase shifters, and ΔΦk is the phase
shift variation of the surrounded kth shifter. The coefficient can
be derived from the heat conduction equation [52] or measured
from experiments [53]. Since Ck→i is about 0.065 with a dis-
tance of 80 μm, the term

P
k≠i Ck→iΔΦk can be ignored. The

other variation source is from the fabrication imperfection and
digital to analog converter (DAC) limited precision. They can
be regarded as standard deviations σMZI and σP , respectively. In
this chip [22], an individual MZI has a far lower noise value of
σMZI → 5 × 10−3 rad. If a 12-bit DAC is used, the DAC res-
olution ΔV is about 1.2 × 10−3 V for 5 V voltage and
σP < ηΔV , where η is the voltage–phase conversion coeffi-
cient, typically about 1.6 rad/V. The overall standard deviation
σall � σMZI � σP is lower than 6.9 × 10−3.

Another error in the MZI is insertion loss α. It can be as-
sumed as a constant attenuation coefficient for each MZI. The
perturbed scattering matrix of the MZI array U 0�N � is char-
acterized as U 0�N � � αmU �N � for the case where the number
of MZIs is m and the insertion loss α. Also, the imprecise width
of the waveguide could change the coupling region of direc-
tional couplers, causing the coupling ratio error ε [36]. This
error can be calculated by measuring the extinction ratio E of
the MZI in the crossbar state, where ε � 10−E∕20. In summary,
the scattering matrix of the MZI with errors is expressed as
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Typically, after the optical–electrical conversion, there is
photodetection noise fδDg, experimentally following Gaussian
distribution GD�μ � 0, σ � σD�. The practical received
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output O 0
i with imprecisions is expressed as O 0

i � �1� δD�Oi
where Oi is the ideal output vector of the ith sample at the
output layer. Since the sources of these noises are different
and independent of each other, these noises are considered
as independent variables and are taken into account simultane-
ously when training the noisy ONN.

There are also other potential drifts existing in experiments,
including optical input encoding, device aging, temperature,
and learning duration. In the practical MZI-based ONN chip
[21,22,31], N input signals are encoded by N cascaded MZIs
for N input ports, and these input signals can be inferred from
the other port of the MZI. Hence, the effect of optical input
drifts can be minimized by real-time monitoring. Device aging
mainly exists in electric-optic phase shifters where slab Si wave-
guides are doped to form PN junctions [54]. As mentioned
before, we adopt thermal phase shifters, which typically use
TiN as heaters to modulate phases. Hence, device aging can
be minimized. The temperature drift can be controlled by a
thermoelectric controller to ensure long-term temperature sta-
bility better than 0.01 K in experiments. As the GA training is
conducted on computers, the computations in the ex situ train-
ing, which takes about 3–4 h, can also be accelerated by large
servers and cloud computing. The learning duration will not
have any impact on experimental performance.

By using the quantized parameter imprecisions, the degrada-
tion of ONN performance can be directly evaluated on the basis
of the network’s accuracy in the specific dataset. Distorted scat-
tering matrices of the MZI array were set as synaptic weights in
hidden layers. Then the imprecise ONN was applied to perform
a machine learning task in the supervised learning way.
Classification accuracy of the affected ONN in different error
ranges was obtained as depicted in Fig. 2. Figure 2(a) demon-
strates the accuracy degradation caused by phase shift error and
MZI loss. The typical phase shift error is about 0.05 rad, which
lowers the classification accuracy by about 4%. For silicon pho-
tonics, the loss of each MZI is about 0.05–0.1 dB, which indi-
cates that the accuracy would drop by about 1%. Figures 2(b)
and 2(c) indicate the impacts of the extinction ratio and photo-
detection noise on accuracy, respectively. The extinction ratio of
experimentally measured MZI can reach 20 dB and photodetec-
tion noise about 0.05, reducing the accuracy by about 11% and
0.7%, respectively. This indicates that in practical cases, the cou-
pling ratio error would contribute more to accuracy degradation
than MZI loss or photodetection noise.

C. Workflow of the Training Scheme
Without any calibration steps or extra imprecise network train-
ing, the ONN is typically sensitive to parameter imprecisions,
hindering the use of photonic chips in machine learning. Here
we propose a network training scheme using GA training con-
sidering practical imprecisions existing in optical components.
The training flow is illustrated in Fig. 3. First, neural synaptic
weights in the ONN are iterated and trained by using the gra-
dient stochastic descent algorithm. Based on the backpropaga-
tion of loss, the classification accuracy can rapidly converge to
the maximum, and the optimal phase shifts of MZIs are ob-
tained. Then, we consider the effect of parameter imprecisions,
and the GA is applied for the optimization of neuron weights

learning. The optimal phase shifts fξg are set as references.
Compensatory phase shifts fΔξg are added on fξg, and the
compensated phase shift array fξ� Δξg is defined as an indi-
vidual in the GA process. The compensated phase shift range of
fΔξg is based on the phase shift error standard deviation σ.
Randomly generating compensated phase shifts, γ individuals
fξ� Δξi∈f1,2,…,γgg are achieved as the initial population in the
GA training stage, where γ is the number of individuals in one
generation. Each individual will produce a diverse ONN. Then
we define average classification accuracy in M imprecise chips
with parameter imprecisions fσlall, αl , El , σlDg as the fitness
function f �O�, where l ∈ f1, 2,…,Mg, and O means the out-
put vector of the individual. To ensure that the numerical op-
timization can offer a significant improvement on practical
hardware, we define the fitness in GA as the average accuracy
in a large number of ONNs with randomly sampled noises.
In the GA, several operators are applied, including selection,

Fig. 2. Heat map of classification accuracy in the MNIST dataset
with the imprecise ONN chip. (a) Classification performance between
phase shift error σ and per MZI loss α. (b) Effects of phase shift error σ
and extinction ratio E . (c) Impacts of phase shift error σ and photo-
detection noise σD on the final achieved network performance.

Research Article Vol. 10, No. 8 / August 2022 / Photonics Research 1871



crossover, and mutation [55]. Roulette method selection is
adopted in the selection stage, meaning that the individual with
higher fitness is more likely to be chosen. Also, an individual can
be selected repeatedly in one evolution stage. By continuously
generating new individuals, the optimum individual can ensure
the average accuracy to be close to the ideal one by compensating
for all imprecisions. In this way, the genetics-based trainedONN
is shown to have enhanced robustness in erroneous cases.

3. SIMULATION, RESULTS, AND DISCUSSION

A. Software Implementation
Two types of datasets are chosen to validate our training
scheme. One is the Iris flower dataset, which consists of 50
samples from three species with four separate features. The
other is the MNIST dataset of handwritten digits with the
training set and validation set in the proportion of 500:100.
Here we export the first eight dominant features of each image
in the MNIST dataset using principal component analysis
(PCA). Each input image datum I � fI i∈f1,2,…,N gg, where I i
means the value of the ith feature and N � 4 in Iris and
N � 8 in MNIST, is encoded into the optical signal X �
fX i∈f1,2,…,N g � Ai exp�jθi�g. Here we apply only the intensity
to be modulated, hence defining Ai � I i and θi � 0. The
ONN contains three hidden layers in the Clements topology,
each followed by an activation layer using a rectified linear unit
(ReLU) function and an output layer with the square function
in the activation layer corresponding to the photodetector mea-
surement. After the input signal is encoded and propagates
through the ONN, the output layer exports an L-dimensional
vector O � fOi∈f1,2,…,Lgg. A one-hot encoding [56] scheme is
used to distinguish the class of the signal, implying that if
Max�O� � Ok, the input signal is identified as the kth class.
In the initial gradient descent training stage, we use categorical
cross-entropy (CCE) as the loss function, which is given by
C�O, Ô� � −

Pn
m�1 Ôm log Om, where n is the number of

classes, O is the obtained vector at the output layer, and Ô
is the ground truth vector in the form of �0, � � � , 1, � � � , 0�.
We use the Neuroptica Python package [57], which has been
adopted in Refs. [36,39,51], to simulate the ONN and apply
the gradient descent algorithm to train the ideal ONN without
practical errors. The training curves of loss, as well as accuracies
in training and test datasets of Iris and MNIST in 500 epochs

are plotted in Figs. 4(a) and 4(b), where the maximum accu-
racies in these training datasets can reach 97.1% and 92.0%,
respectively. After that, GA is applied in the gradient-based
trained ONN. The optimum phase shift array after gradient-
based training is selected as the initial base fξg, and the
extra phase shifts fΔξg are added to it. We define M � 50,
which means the average classification accuracy in 50 imprecise
chips is set as the fitness function. The parameter
imprecisions are set as fσall ∈ �0.04, 0.05�, α ∈ �0.05, 0.1�,
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Fig. 3. Training flow of the ONN with parameter imprecisions using the genetic algorithm. Two major stages are involved and illustrated,
including gradient training of the ideal ONN and genetic training in the imprecise chips.

Fig. 4. Training curves of the ideal ONN using gradient descent al-
gorithm in (a) Iris and (b) MNIST datasets, including loss curve as well
as accuracies in training and test datasets. (c) Maximum accuracy in each
generation at the GA training stage considering imprecise optical com-
ponents. The optimal individual can have 91.4% and 82.7% accuracy
in Iris and MNIST datasets, respectively. (d) Accuracy distribution with
and without GA training in Iris and MNIST datasets. (e) Comparisons
of training curves between the two-step training method and the only
GA training method in Iris and MNIST datasets. (f) Standard devia-
tions of accuracy distributions in Iris andMNIST datasets with different
numbers of layers and different layer widths.
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E ∈ �13, 15�, σD ∈ �0.04, 0.05�g, which can typically be mea-
sured from experiments [22]. fΔξg is set in the form of fΔξ ∈
�−7σθ�ϕ, � 7σθ�ϕ�g since most of the phase shift errors are
distributed in this range in the Gaussian profile. Hence, fΔξ ∈
�−0.35, 0.35�g. Then, 50 initial individuals are generated as the
first generation. After GA training in 500 generations, the best
individual with the highest fitness is exported, as shown in
Fig. 4(c). To avoid local optima, we have adopted some methods
to judge the resulting optima, including repeating training and
adding randomness in GA. In the end, we test the best individual
in 200 imprecise chips. The classification accuracy distribution
with and without GA training in two types of datasets in 200
chips is plotted in Fig. 4(d). The results show that the GA train-
ing scheme is universally effective for different datasets, where the
average accuracy in the imprecise chips is enhanced by about
23.1% (from 68.3% to 91.4%) for the Iris dataset and
32.4% (from 50.3% to 82.7%) for the MNIST dataset. The
more complicated MNIST dataset requires more neurons at
the input layer, leading to the increase in network size and
the use of more phase shifters. Therefore, the convergence speed
of GA training in the MNIST dataset is slightly slower than that
in the Iris dataset, and there is also a larger difference in accuracy
between the ideal ONN and the GA trained ONN (97.1% and
92% in the ideal ONN compared to 91.4% and 82.7% after GA
training in Iris and MNIST datasets, separately). From the accu-
racy distribution in the imprecise chips, as shown in Fig. 4(d), it is
reported that the distribution can be approximated as a Gaussian
distribution profile with the expectation of the distribution close
to the maximum average accuracy in the GA training stage.

Since GA is a heuristic method to generate high-quality sol-
utions to search problems by relying on bio-inspired operators,
it strongly relies on initial individuals. Hence, the adoption of
the gradient descent algorithm in the first training of the ideal
ONN helps to find optimal individuals so that the training
based on GA would quickly converge to global optima instead
of local optima. As shown in Fig. 4(e), the two-step training
method is faster to converge than only GA training. In addi-
tion, we analyze the reason for the different standard deviations
of the accuracy distribution in Fig. 4(d). Figure 4(f ) compares
the standard deviations in different numbers of layers and layer
widths. The results show that a greater number of layers and
larger layer widths lead to larger standard deviations. A more
complex ONN would lead to more significant changes in ac-
curacy, while the difference in accuracy distribution in Fig. 4(d)
is mainly related to the type of dataset.

B. Analysis of Hyper-Parameters
The dominant factor in the GA training scheme is parameter
imprecision range. It determines the degradation of ONN per-
formance since larger ranges of imprecisions obviously increase
the randomization of the network’s functionality. Hence, it is
necessary to survey the training scheme in different imprecision
ranges. We compare the scheme in two types of imprecision
ranges as defined below.

Typical error range∶ fσall ∈ �0.04, 0.05�, α ∈ �0.05, 0.1�, E ∈ �13, 15�, σD ∈ �0.04, 0.05�g;
Low error range∶ fσall ∈ �0.004, 0.005�, α ∈ �0.04, 0.05�, E ∈ �20, 23�, σD ∈ �0.0009, 0.0011�g: (3)

The first case is the typical error ranges that we took from
this chip [22] to test the validation of GA training in previous
sessions. By applying a more precise phase shift error model
GP�μ � ΔΦ, σall�, the standard deviation of phase shift errors
can be remarkably reduced by about eight times as compared to
that reported in Ref. [22]. Considering the fact that the net-
work is ex situ trained, the optimal phase shifts of the network
are known, and hence, ΔΦ is assumed as a constant, which is
known right after the neuron weights training stage. The value
of σall has a much more significant impact on the GA accuracy
degradation. The constant ΔΦ, typically only 2% of the
applied phase, has little impact on GA training. The GA is ro-
bust enough to absorb the 2% error. Hence, here we set
μ � ΔΦ � 0 when training and testing the ONN. Note here
that setting to zero does not mean that we treat the thermal
cross talk as non-existent. The critical step to consider thermal
cross talk is to calculate ΔΦ from the neighboring phase shift
settings and compensate for accordingly after GA. Also, the
MZI loss can be reduced and the extinction ratio can be
improved using an advanced fabrication process and other op-
timization steps [58,59]. In this research [22], the photodetec-
tion noise can be extremely small in the range of 0.1%.
Therefore, we obtain much lower error ranges, which are then
tested and compared to the typical one. It is clearer to use
MNIST to exhibit the effects of hyper-parameters since the ac-
curacy distribution in MNIST is more concentrated than that
in Iris. The GA training curves and accuracy distribution in the
MNIST dataset are illustrated in Figs. 5(a) and 5(b), respec-
tively, where the average accuracy in the imprecise chips is en-
hanced from 85.5% to 90.8% in the condition of an extremely
low error range, which is much closer to the ideal ONN’s
accuracy (92%). Moreover, the lowest accuracy in the impre-
cision chip is 88.0%, which ensures the lower limit of ONN
performance.

Since the training scheme is a pure software method, various
hyper-parameters in GA training make a significant impact on
the overall robustness of the ONN. Therefore, we analyze the
effects of these hyper-parameters containing the compensated
phase shift range fΔξg, the number of imprecise chips M , and
the population in each generation. To illustrate the effects of
these hyper-parameters more universally, we use the MNIST
dataset and the typical error ranges fσall ∈ �0.04, 0.05�,
α ∈ �0.05, 0.1�, E ∈ �13, 15�, σD ∈ �0.04, 0.05�g for demon-
stration. Figure 6(a) demonstrates the training curves in the
condition of different compensated phase shift ranges, where
smaller ranges have more severe impacts on the training results.
In Fig. 6(b), it can be observed that when the compensated
phase shift range is fΔξ ∈ �−5σθ�ϕ, 5σθ�ϕ�g, the average accu-
racy after GA training can achieve the maximum, and the best
accuracy distribution is obtained. It is noted that if
Δξ ∈ �−σθ�ϕ, σθ�ϕ�, the average accuracy after training is only
about 73%, which is much less than in other ranges, indicating
that if the compensated phase shift range is too small, the
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GA training scheme cannot search out the individual with
high robustness in a small solution space. Also, if the compen-
sated phase shift range is larger than 	5σθ�ϕ, such as
Δξ ∈ �−7σθ�ϕ, 7σθ�ϕ�, it would increase the uncertainty of
the obtained solutions, leading to a reduction in average
accuracy.

When we change the number of imprecise chips, the num-
ber of imprecise chips used to evaluate the fitness of the indi-
vidual has a smaller impact on the accuracy distribution than
the compensated phase shift range. As shown in Fig. 7(a), for
different numbers of chips, the training curves converge to
the same results. Also, Fig. 7(b) shows a similar accuracy dis-
tribution in different numbers of chips, indicating that 30 im-
precise chips are sufficient to estimate the robustness of
the individual in these error ranges. The irrelevance between

the number of chips and classification accuracy can signifi-
cantly enhance the computational efficiency in the GA training
step. Regarding the effects of different populations in each
generation, as depicted in Fig. 8, the curves point out that in-
creasing the number of individuals impressively enhances the
maximum accuracy. However, the computation time also in-
creases exponentially as the population rises. Figure 8(a) reports
that more individuals can converge to the optima more quickly.
The average value of the accuracy distribution in Fig. 8(b) tends
to saturate when the population increases to 90, suggesting that
the number of individuals in the range of 70–90 is sufficient
and is a good balance between computation cost and the im-
proved robustness of the ONN chip.

C. Comparison to SA and PSO
In the self-learning process of weights in ONNs, there are also
alternative approaches that can replace the GA to train neurons
based on similar evolutionary algorithms, such as simulated
annealing (SA) and particle swarm optimization (PSO) [60].
However, the training process of ONNs has the feature of
multiple variables updating, which can restrain the convergence
speed and training performance of the algorithms. To demon-
strate the efficiency of the GA in this situation, we implement
these three algorithms in the same conditions and evaluate their
performance in imprecise chips. Because the MNIST dataset
requires more neurons and layers than Iris, Iris can minimize
the training performance induced by hyper-parameters. It is
better to use Iris to compare GA, SA, and PSO. We ensure
that the training curves in all three algorithms converge to a
specific value with the same epochs and then compare the
trained phase shift settings in imprecise chips. The training
curves depicted in Figs. 9(a) and 9(b) indicate that the GA

Fig. 7. (a) Accuracy training curves in the GA training stage using
different numbers of imprecise chips M . (b) Effects of the number of
imprecise chips M on accuracy distribution.

Fig. 8. (a) Accuracy training curves in the GA training stage in the
condition of different populations. (b) Effects of different populations
in evolution on the accuracy distribution in imprecise chips.

Fig. 9. (a) Accuracy training curves in three heuristic algorithms
with the accuracy converging to a particular value. (b) Accuracy dis-
tribution of three algorithms in the same imprecise chips.

Fig. 6. (a) Accuracy training curves in the GA training stage in dif-
ferent compensated phase shift ranges fΔξg. (b) Effects of compen-
sated phase shift ranges fΔξg on the accuracy distribution in
imprecise chips.

Fig. 5. (a) Accuracy training curves in the MNIST dataset during
the GA training stage in the condition of typical error ranges
fσall ∈ �0.04,0.05�,α∈ �0.05,0.1�,E ∈ �13,15�,σD ∈ �0.04,0.05�g and
experimentally measured low error ranges fσall ∈ �0.004, 0.005�,
α ∈ �0.04, 0.05�,E ∈ �20, 23�, σD ∈ �0.0009, 0.0011�g. (b) Accuracy
distribution of imprecise chips in two error range cases.
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training scheme has a faster convergence speed than PSO and
the highest average accuracy in imprecise chips. Although the
SA training method can rapidly converge at an earlier stage, it
tends to get stuck in local optima and can reach only about
74% accuracy. The PSO training has the lowest convergence
speed and relatively lower accuracy compared to GA. These
results prove that the GA training scheme is more suitable
for multivariate function optimization since all of the phase
shifts in MZIs need to be trained simultaneously. In addition,
if the MNIST dataset is used and the network is scaled up,
after-trained accuracy in SA and PSO reduces and reaches only
about 60%. The accuracy distribution also demonstrates the
ascendancy of GA, showing that cases with accuracy lower than
40% can almost be eliminated, and more proportions of cases
are distributed in the range of 80% to 93% compared to SA
and PSO. In short, the GA training not only has faster
convergence speed and better solutions in high-dimensional
solution space but also realizes the trained phase shifts with bet-
ter robustness to practical component imprecisions.

4. CONCLUSION

To sum up, we propose and demonstrate a two-step ex situ ro-
bust training method for an MZI-based ONN with three hid-
den layers and 224 imprecise tunable thermo-optic phase
shifters. The simulation results show more than 23% accuracy
enhancement in both Iris and MNIST datasets and comparable
accuracy of 90.8% in the imprecise ONN to the ideal accuracy
of 92.0%. Our method is an ex situ training method of the
ONN, which means that the method is used on a computer
model of the ONN. The ex situ step can provide trained weight
parameters used as initial individuals for the second GA step.
The weight parameters configurated in realistic ONN chips
can achieve improved practical accuracy. Furthermore, the
comparison of GA, PSO, and SA demonstrates the superiority
of GA in the training of imprecise ONNs. Our proposed
scheme could also be applied to other network architectures
where the phase shift is the only element to be configurated,
such as CNNs and RNNs. Our method has great potential in
optical linear programmable processors [5,8,23–25], ONN
accelerators [21,22,31], and photonic quantum information
applications [23,61–63]. With this paper, we provide an error-
resistant training scheme that is generalized and efficient for
practical photonic neuromorphic computing platforms with
imperfect components.
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