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Spectral compressive imaging (SCI) is able to encode a high-dimensional hyperspectral image into a two-
dimensional snapshot measurement, and then use algorithms to reconstruct the spatio-spectral data-cube. At
present, the main bottleneck of SCI is the reconstruction algorithm, and state-of-the-art (SOTA) reconstruction
methods generally face problems of long reconstruction times and/or poor detail recovery. In this paper, we
propose a hybrid network module, namely, a convolution and contextual Transformer (CCoT) block, that
can simultaneously acquire the inductive bias ability of convolution and the powerful modeling ability of
Transformer, which is conducive to improving the quality of reconstruction to restore fine details. We integrate
the proposed CCoT block into a physics-driven deep unfolding framework based on the generalized alternating
projection (GAP) algorithm, and further propose the GAP-CCoT network. Finally, we apply the GAP-CCoT
algorithm to SCI reconstruction. Through experiments on a large amount of synthetic data and real data,
our proposed model achieves higher reconstruction quality (>2 dB in peak signal-to-noise ratio on simulated
benchmark datasets) and a shorter running time than existing SOTA algorithms by a large margin. The code and
models are publicly available at https://github.com/ucaswangls/GAP-CCoT. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.458231

1. INTRODUCTION

A hyperspectral image is a spatio-spectral data-cube consisting
of many narrow spectral bands, each spectral band correspond-
ing to a wavelength. Compared with RGB images, hyperspec-
tral images have rich spectral information and can be widely
used in medical diagnosis [1], food safety [2], remote sensing
[3], and other fields. However, the long imaging time and high
hardware cost of existing hyperspectral cameras greatly limit the
application of these devices. To address the above problems,
spectral compressive imaging (SCI), especially the coded aper-
ture snapshot spectral imaging (CASSI) system [1,4,5], pro-
vides an elegant solution, which can capture information from
multiple spectral bands at the same time with only one two-
dimensional (2D) sensor. CASSI uses a physical mask and a
prism to modulate the spectral data-cube, and captures the
modulated and compressed measurement on a 2D plane sensor.
Then reconstruction algorithms are employed to recover the
hyperspectral data-cube from the measurement along with
the mask. This paper focuses on the reconstruction algorithm.

At present, SCI reconstruction algorithms mainly include
model-based methods and learning-based methods. Traditional

model-based methods have relevant theoretical proofs and
can be well explained. The representative algorithms are mainly
TWo-step Iterative Shrinkage/Thresholding algorithm
(TwIST) [6], generalized alternating projection total variation
(GAP-TV) [7], and DEcompress SCI (DeSCI) [8]. However,
model-based methods require prior knowledge and long
reconstruction times and usually provide only poor
reconstruction quality. With its strong fitting ability, a deep
learning model can directly learn the relevant knowledge from
data and provide excellent reconstruction results [9–13].
However, compared to model-based methods, learning-based
methods lack interpretability [14].

The deep unfolding network driven by physics combines
the advantages of model-based and learning-based methods, so
it is powerful with clear interpretability [15–18]. At present,
most advanced reconstruction algorithms [19,20] are based on
the idea of deep unfolding. Many models combine U-net [21]
with the deep unfolding idea for image reconstruction and
achieve good reconstruction results. However, the U-net model
is too simple to fully capture the effective information of
the image. Therefore, we use the inductive bias ability of
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convolution and the powerful modeling ability of Transformer
[22] to design a parallel module to solve the problem of SCI
reconstruction. As shown in Fig. 1, the integration of our pro-
posed method and deep unfolding idea can recover more details
with fewer artifacts.

Our main contributions in this paper are summarized as
follows:

• we first apply Transformer to deep unfolding for SCI
reconstruction;

• we propose an effective parallel network structure com-
posed of convolution and contextual Transformer (CCoT),
which can obtain more spectral features;

• experimental results on a large amount of synthetic and
real data show that our proposed method achieves state-of-the-
art (SOTA) results in SCI reconstruction;

• the proposed method can also be used in other compres-
sive sensing (CS) systems [25,26], such as video CS [27–29],
and yields excellent results.

2. RELATED WORK

In this section, we first review the forward model of CASSI, and
then briefly introduce existing reconstruction methods.
Focusing on deep-learning-based models, we describe the pros
and cons of convolutional neural networks (CNNs) and intro-
duce the vision Transformer (ViT) for other tasks.

A. Mathematical Model of SCI System
The SCI system encodes a high-dimensional spectral data-cube
into 2D measurement, and CASSI [4] is one of the earliest SCI
systems. As shown in Fig. 2, the three-dimensional (3D) spatio-
spectral data-cube is first modulated by a coded aperture (a.k.a.,
mask). Then, the encoded 3D spectral data-cube is dispersed by
the prism. Finally, the entire (modulated) spectral data-cube is
captured by a 2D camera sensor by integrating across the spec-
tral dimension.

Let F ∈ Rnx×ny×nλ denote the captured 3D spectral data-
cube, and M ∈ Rnx×ny denote a pre-defined mask, where nx ,
ny, and nλ represent the height, width, and channel number
of the spectral image, respectively. For each spectral channel
l � 1,…, nλ, the spectral image is modulated to F 0

l �
F l⊙M , where F l and F 0

l represent the original and modu-
lated spectral images at the lth spectral channel, respectively,
and ⊙ denotes element-wise multiplication. Then after passing
through the dispersive prism, the modulated spectral data-cube
is tilted. Finally, by compressing across the spectral domain, the
camera sensor captures a 2D compressed measurement
G ∈ Rnx×�ny�nλ−1�, which can be expressed as

Gu,v �
Xnλ
l�1

F 0 0
u,v,l � Z u,v, (1)

where �u, v� represents the coordinate system of the camera de-
tector plane, F 0 0

u,v,l � F 0
x,y�d �λl−λc�,l denotes the tilted spectral

data-cube after passing through the dispersive prism of the lth
spectral channel, �x, y� represents the coordinate system of each
modulated spectral image, d�λl − λc� represents the spatial
shifting of the lth spectral channel where d is a scalar, λl is
the wavelength at the lth channel, λc denotes the reference
wavelength that does not shift after passing through the dis-
perser, and Z ∈ Rnx×�ny�nλ−1� denotes the measurement noise.

For the sake of simple notations, as derived in Ref. [23], we
further give the vectorized formulation expression of Eq. (1).
First, we define vec�·� as a vectorization operation of a
matrix. Then we vectorize g � vec�G� ∈ Rnx�ny�nλ−1�, z �
vec�Z � ∈ Rnx�ny�nλ−1�, and f � �f T1 ,…, f Tnλ �T ∈ Rnxnynλ ,
where f l � vec�F l�. In addition, we define the sensing matrix
generated by a coded aperture and disperser in the CASSI
system as

H � �D1,…,Dnλ � ∈ Rnx�ny�nλ−1�×nxnynλ , (2)

where Dl �
" 0�1�
Al

0�2�

#
∈ Rnx�ny�nλ−1�×nxny , where Al �

Diag�vec�M �� ∈ Rnxny×nxny is a diagonal matrix and its
diagonal element is vec�M �, and 0�1� ∈ R�l−1�×nxny and

Fig. 2. Schematic diagrams of CASSI system.

Fig. 1. Reconstructed real data of Legoman, captured by snapshot
SCI systems in Ref. [20]. We show reconstruction results of 12 spectral
channels, and compare our proposed method with the latest self-
supervised method (PnP-DIP-HSI [23]) and the method based on
maximum a posteriori (MAP) estimation (DGSMP algorithm [24]).
As can be seen from the purple and green areas in the plot, our method
reconstructs a clearer image, the PnP-DIP-HSI method produces some
artifacts, and the DGSMP method loses some details.
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0�2� ∈ R�nλ−l�×nxny represent the zero matrix. Finally, the vecto-
rization expression of Eq. (1) is

g � Hf � z: (3)

After obtaining the measurement g , the next task is to
develop a decoding algorithm. Given g and H , solve f .

B. Reconstruction Algorithms for SCI
SCI reconstruction algorithms mainly focus on how to solve the
ill-posed inverse problem in Eq. (3), a.k.a., the reconstruction of
SCI. Traditional methods are generally based on prior knowledge
as a regularization condition to solve the problem, such as using
TV [6], sparsity [30], dictionary learning [31,32], non-local low
rank [8,33], and Gaussian mixture modes [34]. The main prob-
lem of these algorithms is that they need to manually set prior
knowledge and iteratively solve the problem. Therefore, the
reconstruction time is long, and the quality is usually not good.

With its powerful learning capability, the neural network can
directly learn a mapping relationship from the measurement to
the original hyperspectral image, and the reconstruction speed
can reach the millisecond level. End-to-end (E2E) deep learning
methods (Spatial-Spectral Self-Attention network (TSA-net)
[35], λ-net [9], Spatial/Spectral Invariant Residual U-Net
(SSI-ResU-Net) [10]) take the measurement and masks as in-
puts, and use only one single network to reconstruct the desired
signal directly. Plug-and-play (PnP) methods [36,37] use a pre-
trained network as a denoiser plugged into iterative optimization
[7,38]. Different from PnP methods, the denoising networks at
each stage of deep unfolding methods [19,20] are independent of
each other, and the parameters are not shared, and thus can be
trained E2E.

Deep unfolding is driven by physics and offers the advan-
tages of high-speed, high-quality reconstruction while enjoying
the benefits of physics-driven interpretability. Therefore, in this
paper, we follow the deep unfolding framework [20] and pro-
pose a new deep denoiser block based on CCoT. The proposed
module along with deep unfolding leads to SOTA results for
SCI reconstruction.

C. Limitations of CNNs for Reconstruction
Due to local connection and shift-invariance, the convolutional
network [39] can well extract local features of images, and is widely
used in image recognition [40–42], object detection [43], seman-
tic segmentation [44], image denoising [45], and other tasks
[46,47]. However, its local connection property also makes it lack
the ability of global perception. To improve the receptive field of
convolution, deeper network architecture [41] or various pooling
operations [48] are often used. The squeeze-and-excitation net-
work (SENet) [48] uses the channel attention (CA) mechanism
[49] to aggregate the global context and redistributes the weight to
each channel. However, these methods usually lose a significant
amount of detail information and are not friendly to image
reconstruction and other tasks that need to recover local details.

Bearing the above concerns and considering the running
time, we do not use very deep network structure in our work
for SCI reconstruction. Instead, we use a convolution with
a sliding step of two instead of the traditional max pooling
operation, aiming to capture the local details of the desired
spatio-spectral data-cube.

D. Vision Transformers
ViT [50] and its variants [51–54] have verified the effectiveness of
Transformer architecture in computer vision tasks. However,
training a good ViT model requires a large number of train-
ing datasets (i.e., JFT-300M [55]), and its computational com-
plexity increases quadratically with image size. To better apply
Transformer to computer vision related tasks, the latest Swin
Transformer [56] proposes a local window self-attention mecha-
nism and a shifting window method, which greatly reduces com-
putational complexity. The Transformer network based on Swin
has achieved amazing results in computer vision tasks such as im-
age recognition [57], object detection [58], semantic segmenta-
tion [59,60], and image restoration [61], which further verifies
the feasibility of Transformer in computer vision. In addition,
when computing self-attention, most Transformers including
Swin Transformer are independently learned for all pairwise
query-keys, without using the rich contextual relations between
them. Moreover, the self-attention mechanism in ViTs often
ignores local feature details, which is not conducive to low-level
image tasks such as image reconstruction.

Inspired by contextual Transformer (CoT) [62] and con-
former networks [63], in this paper, we propose a network struc-
ture named CCoT, which can take advantage of convolution and
Transformer to extract more effective spectral features, and can
be well applied to image reconstruction tasks such as SCI.

3. PROPOSED NETWORK

In this section, we first briefly review the GAP-net [20] algo-
rithm, which uses deep unfolding ideas [64] and the GAP
algorithm [65] for SCI reconstruction. We select GAP-net be-
cause of its high performance, robustness, and flexibility for
different SCI systems reported in Ref. [20]. Following this,
we combine the advantages of convolution and Transformer
and then propose a module named CCoT. We integrate this
module into GAP-net to reconstruct hyperspectral images from
the compressed measurements and masks.

A. Review of GAP-net for SCI Reconstruction
The SCI reconstruction algorithm is used to solve the following
optimization problem:

f̂ � arg min
f

1

2
∥g −Hf ∥

2
� λΩ�f �, (4)

where the first term is the fidelity term, and the second term,
Ω�f �, is the prior or regularization to confine the solutions. In
GAP-net and other deep unfolding algorithms, implicit priors
(represented by deep neural networks) have been used to im-
prove the performance.

Following the framework of GAP, Eq. (4) can be rewritten
as a constrained optimization problem by introducing an aux-
iliary parameter v:

�f̂ , v̂� � arg min
f ,v

1

2
∥ f − v∥2

2
� λΩ�v�, s:t: g � Hf : (5)

To solve Eq. (5), GAP decomposes it into the following sub-
problems for iterative solutions, with η denoting the iteration
number.
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• Solving f : f �η�1� is updated via an Euclidean projection
of v�η� on the linear manifold M∶g � Hf :

f �η�1� � v�η� �H T �HH T �−1�g −Hv�η��: (6)

• Solving v: we can apply a trained denoiser to map f closer
to the desired signal space:

v�η�1� � Dη�1�f �η�1��, (7)

where Dη�1 denotes the denoising operation.

It has been derived in the literature [7] that Eq. (6) has a
closed-form solution due to the special structure of H in
Eq. (2). Therefore, the only difference (and novelty) is the
denoising step in Eq. (7). In the following, we describe the
novel CCoT block proposed in this work for efficient and ef-
fective SCI reconstruction. The general reconstruction frame-
work is illustrated in Fig. 3(a), and the detailed CCoT block
is depicted in Figs. 3(b)–3(f ).

B. Proposed CCoT Block for Deep Denoising
As mentioned in Section 2.D, to address the challenge of SCI
reconstruction, we develop the CCoT block, in which convo-
lution and Transformer are used in parallel, which can be well
applied to image reconstruction tasks such as SCI.

1. Convolution Branch
As shown in Figs. 3(c) and 3(d), the convolution branch con-
sists of a down-sampling layer and a CA block. In this paper, we
use convolution layer for down-sampling with sliding step s in-
stead of direct max pooling to capture fine details, and s � 2 is
used in the experiments. The CA block draws lessons from the
idea of SENet [48], automatically obtains the importance of
each feature channel by learning, then improves useful features
according to this importance and suppresses features that are
not significant for the current task. The first convolution layer
and CA module are followed by a LeakyReLU activation func-
tion [66]. The proposed convolution branch can extract local
features of images well.

Fig. 3. Architecture of the proposed GAP-CCoT. (a) GAP-net with N stages; G�·� represents the operation of Eq. (6), D�·� represents a denoiser,
and v�0� � HT g . (b) CCoT-net, the proposed denoising network plugged into GAP algorithm. (c) Convolution branch and Transformer branch;
the output is connected with concatenation. (d) Convolution block with channel attention; c represents the output number of convolution channels.
(e) Contextual Transformer block. (f ) Pixelshuffle algorithm for fast upsampling.
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2. Contextual Transformer Branch
By calculating the similarity between pixels, the traditional
Transformer makes the model focus on different regions and
extract more effective features. However, when calculating
paired query-keys, they are relatively independent. A single
spectral image itself contains rich contextual information,
and there is also a significant amount of correlations between
adjacent spectra. Therefore, we designed a CoT branch to bet-
ter obtain features of hyperspectral images.

As shown in Fig. 3(c), the CoT branch consists of a down-
sampling layer and a CoT block. The structure of the down-
sampling layer is the same as the convolution branch. As shown
in Fig. 3(e), we first recall that the input of the hyperspectral
image is of F ∈ Rnx×ny×nλ . Then we define queries, keys, and
values as K 1 ∈ Rnx×ny×nλ , Q ∈ Rnx×ny×nλ , V ∈ Rnx×ny×nλ , re-
spectively. Different from the traditional self-attention that uses
1 × 1 convolutions to generate mutually independent paired
query-keys, the CoT block first applies the group convolution
of size m × m to generate a static key K 1 ∈ Rnx×ny×nλ containing
the context, and K 1 can be used as a static context represen-
tation of input F . Q and V can be generated by the traditional
self-attention mechanism. Then, we concatenate K 1 and Q by
the third dimension (spectral channels), followed by two 1 × 1
convolutions to generate an attention matrix:

A � Conv1�Conv2��K 1,Q �3��, (8)

where ��3 denotes the concatenation along the third
dimension, Conv1,Conv2 represent two 1 × 1 convolutions,
A ∈ Rnx×ny×�m2×Ch� represents the attention matrix containing
context, and Ch denotes the number of attention heads. We
use the traditional self-attention mechanism to perform a
weighted summation of V through A to obtain the dynamic
context K 2 ∈ Rnx×ny×nλ , and then fuse dynamic context K 2

and static context K 1 as the output of the CoT block through
the attention mechanism [48].

Finally, we concatenate the output of the convolution
branch and CoT branch as the final output of the CCoT block.

C. GAP-CCoT Network
As shown in Fig. 3(b), we use the CCoT module and pixelshuffle
algorithm to construct a U-net [21] like network as the denoiser in
GAP-net. The network consists of a contracting path and an ex-
pansive path. The contracting path contains three CCoTmodules,
and the expansive path contains three up-sampling modules. Each
module of the expansive path is first quickly up-sampled by the
pixelshuffle algorithm [67], followed by a 3 × 3 convolution, and
finally concatenates the output from the corresponding stage of
the contracting path (after a 1 × 1 convolution) as the input of
the next module. Eventually, CCoT, GAP, and deep unfolding
form the reconstruction network (GAP-CCoT) of SCI.

Last, following GAP-net [20] and hyperspectral image
reconstruction using a deep Spatial-Spectral Prior (HSSP)
[19] network, the loss function of the proposed model is

LMSE�Θ� �
1

nλ

Xnλ
l�1

∥F̂ l − F l∥22, (9)

where LMSE�Θ� represents the mean square error (MSE) loss,
nλ again represents the spectral channel to be reconstructed,

and F̂ l ∈ Rnx×ny is the reconstructed hyperspectral image at
the lth spectral channel.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
GAP-CCoT network with several SOTA methods on both
simulation and real datasets. The peak-signal-to-noise-ratio
(PSNR) and structured similarity index metrics (SSIM) [68]
are used to evaluate the performance of different hyperspectral
image reconstruction methods.

A. Datasets
We use the hyperspectral dataset CAVE [69] for model training
and KAIST [70] for model simulation testing. The CAVE data-
set consists of 32 scenes, including full spectral resolution re-
flectance data from 400 nm to 700 nm with a 10 nm step, and a
spatial resolution of 512 × 512. The KAIST dataset consists of
30 scenes with a spatial resolution of 2704 × 3376. To match
the wavelength of the real CASSI system, we follow the method
proposed by TSA-net [71] and employ the spectral interpola-
tion method to modify the training set and test data wave-
length. The final wavelength was fitted to 28 spectral bands
ranging from 450 nm to 650 nm.

B. Implementation Details
During training, we use random cropping, rotation, and flipping
for CAVE dataset augmentation. By simulating the imaging pro-
cess of CASSI, we can obtain the corresponding measurement.We
use measurement and masks as inputs to train GAP-CCoT and
use the Adam optimizer [72] to optimize the model. The learning
rate is set to 0.001 initially and reduces by 10% every 10 epochs.
Our model is trained for 200 epochs in total. All experiments are
run on the NVIDIA RTX 8000 GPU using PyTorch.

Finally, we use a GAP-CCoT network with nine stages as
the reconstruction network, and no noise is added to the mea-
surement during training on simulation data. We added shot
noise to the measurements for model training on real data fol-
lowing the procedure in Ref. [20].

C. Simulation Results
We compare the method proposed in this paper with several
SOTA methods (TwIST [6], GAP-TV [7], DeSCI [8], HSSP
[19], λ-net [9], TSA-net [71], GAP-net [20], Plug-and-Play
Deep Image Priors Hyperspectral Images (PnP-DIP-HSI)
[23], Deep Gaussian Scale Mixture Prior (DGSMP) [24] and
SSI-ResU-Net (v1) [10]) on synthetic datasets. Table 1 presents
the average PSNR and SSIM results of different spectral
reconstruction algorithms. We can see that the average PSNR
value of our proposed algorithm is 35.26 dB and average
SSIM value is 0.950. The average PSNR value is 2.09 dB higher
than that of the current best algorithm SSI-ResU-Net (v1, pre-
printed, not published), and the SSIM value is 0.021 higher. In
addition, compared with the self-supervised learning method
PnP-DIP-HSI and DGSMP method (best published results)
based on the maximum a posteriori (MAP) estimation, the aver-
age PSNR of our proposed method is 3.96 dB and 2.63 dB
higher, respectively. Based on these significant improvements,
we can conclude the powerful learning capability of
Transformer and the proposed CCoT block.
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Figure 4 shows part of the visualization results and spectral
curves of two scenes using several SOTA spectral SCI
reconstruction algorithms. Enlarging the local area, we can
see that our proposed method can recover more edge details
and better spectral correlation than other algorithms.

In addition, we also analyze the computational complexity
of our method and compare it with several previous deep-
learning-based SOTA spectral reconstruction algorithms. As
shown in Table 2, our proposed GAP-CCoT-S3 (with three
stages) achieves higher reconstruction quality than previous
SOTA algorithms with lower computational cost.

D. Flexibility of GAP-CCoT to Mask Modulation
CCoT-net serves only as a denoiser for the GAP algorithm, so
the GAP-CCoT network proposed in this paper has flexibility
for different signal modulations. To verify this, we train the
GAP-CCoT network on one mask and test it on five other un-
trained masks. Table 3 shows the test results of the average
PSNR value and SSIM value on 10 simulation data using dif-
ferent masks (five new masks of size 256 × 256 randomly
cropped from the real mask of size 660 × 660). We can observe
that for a new mask that does not appear in training, the average
PSNR decrease remains within 0.27 dB, which is still better

Table 1. Average PSNR in dB (upper entry in each cell) and SSIM (lower entry in each cell) of Different Algorithms on 10
Synthetic Datasetsa

Algorithms Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Average

TwIST [6] 24.81 19.99 21.14 30.30 21.68 22.16 17.71 22.39 21.43 22.87 22.44� 3.32
0.730 0.632 0.764 0.874 0.688 0.660 0.694 0.682 0.729 0.595 0.704� 0.077

GAP-TV [7] 25.13 20.67 23.19 35.13 22.31 22.90 17.98 23.00 23.36 23.70 23.73� 4.45
0.724 0.630 0.757 0.870 0.674 0.635 0.670 0.624 0.717 0.551 0.685� 0.088

DeSCI [8] 27.15 22.26 26.56 39.00 24.80 23.55 20.03 20.29 23.98 25.94 25.35� 5.38
0.794 0.694 0.877 0.965 0.778 0.753 0.772 0.740 0.818 0.666 0.785� 0.087

HSSP [19] 31.48 31.09 28.96 34.56 28.53 30.83 28.71 30.09 30.43 28.78 30.35� 3.79
0.858 0.842 0.832 0.902 0.808 0.877 0.824 0.881 0.868 0.842 0.852� 0.049

λ-net [9] 30.82 26.30 29.42 36.27 27.84 30.69 24.20 28.86 29.32 27.66 29.14� 3.20
0.880 0.846 0.916 0.962 0.866 0.886 0.875 0.880 0.902 0.843 0.886� 0.035

TSA-net [71] 31.26 26.88 30.03 39.90 28.89 31.30 25.16 29.69 30.03 28.32 30.15� 3.92
0.887 0.855 0.921 0.964 0.878 0.895 0.887 0.887 0.903 0.848 0.893� 0.033

PnP-DIP-HSI [23] 32.70 27.27 31.32 40.79 29.81 30.41 28.18 29.45 34.55 28.52 31.30� 3.98
0.898 0.832 0.920 0.970 0.903 0.890 0.913 0.885 0.932 0.863 0.901� 0.038

GAP-net [20] 33.03 29.52 33.04 41.59 30.95 32.88 27.60 30.17 32.74 29.73 32.13� 3.81
0.921 0.903 0.940 0.972 0.924 0.927 0.921 0.904 0.927 0.901 0.924� 0.021

DGSMP [24] 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63� 3.07
0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917� 0.024

SSI-ResU-Net (v1) [10] 34.06 30.85 33.14 40.79 31.57 34.99 27.93 33.24 33.58 31.55 33.17� 3.34
0.926 0.902 0.924 0.970 0.939 0.955 0.861 0.949 0.931 0.934 0.929� 0.030

Ours 35.17 35.90 36.91 42.25 32.61 34.95 33.46 33.13 35.75 32.43 35.26� 2.89
0.938 0.948 0.958 0.977 0.948 0.957 0.923 0.952 0.954 0.941 0.950� 0.014

aBest results are in bold.
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Fig. 4. Reconstruction results of GAP-CCoT and other spectral reconstruction algorithms (λ-net, HSSP, TSA-net, GAP-net, DGSMP,
PnP-DIP-HSI) in scene 3 and scene 9. Zoom in for better view.
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than other algorithms. Therefore, we can conclude that the
GAP-CCoT network proposed in this paper is flexible for
large-scale SCI reconstruction.

E. Ablation Study
To verify the effectiveness of CoT and GAP algorithms, we
trained two different GAP-CCoT networks and two different
Stacked CCoT networks (shown in Fig. 5) for spectral SCI
reconstruction, respectively. Table 4 shows the reconstruction
results of the proposed two networks, where “w/o” CoT means
removing the CoT branch at each stage of coding. We can
clearly observe that the GAP-CCoT network is 0.99 dB higher
in PSNR than the Stacked CCoT network. The PSNR value of
the CoT module is improved by 1.13 dB and 1.41 dB on the
GAP-CCoT network and Stacked CCoT network, respectively.

To verify the impact of the number of stages on the
reconstruction quality, we trained multiple models with differ-
ent numbers of stages. As can be seen from Fig. 6 and Table 5,
the model proposed in this paper needs only three stages to
achieve high reconstruction quality, and the reconstruction
quality improves with the increase in number of stages, but
the computational complexity also increases. In addition, we
also notice that the spectral reconstruction quality improves
slowly after nine stages. To trade off between accuracy and
computational complexity, we set the number of stages to nine.

To verify the effect of the loss function on reconstruction
quality, we use the least absolute deviation (LAD) loss function
to retrain our proposed model. As shown in Table 6, our
method can further improve the reconstruction quality by us-
ing the LAD loss function.

F. Real Data Results
We test the proposed method on several real data captured by
the CASSI system [4,71]. The system captures 28 spectral
bands with wavelengths ranging from 450 nm to 650 nm.
The spatial resolution of the object is 550 × 550, and the spatial
resolution of the measurements captured by the plane sensor is
550 × 604. Due to the flexibility of our proposed method for

Table 2. Computational Complexity and Average
Reconstruction Quality of Several SOTA Algorithms on
10 Synthetic Datasets

Algorithm Params (106) FLOPs (109) PSNR (dB) SSIM

λ-net [9] 66.16 514.33 29.25 0.886
TSA-net [71] 44.25 135.03 30.15 0.893
GAP-net [20] 2.89 54.16 32.13 0.924
DGSMP [24] 3.76 647.28 32.63 0.917
SSI-ResU-Net
(v1) [10]

1.25 81.98 33.17 0.929

GAP-CCoT-S3 2.68 31.84 33.89 0.934
GAP-CCoT-S9 8.04 95.52 35.26 0.950

Table 3. Average PSNR and SSIM Results on 10
Synthetic Data with Different Masks

Mask PSNR (dB) SSIM

Mask used in training 35.26� 2.89 0.950� 0.014
New mask 1 35.10� 2.92 0.949� 0.015
New mask 2 35.06� 2.91 0.948� 0.015
New mask 3 35.06� 2.91 0.949� 0.015
New mask 4 35.02� 2.92 0.948� 0.014
New mask 5 34.99� 2.90 0.948� 0.014

Stage number

PS
N

R
(d

B
)

Fig. 6. Effect of stage number on SCI reconstruction quality.

Table 4. Ablation Study: Average PSNR and SSIM Values
of Different Algorithms on 10 Synthetic Data

Algorithms PSNR (dB) SSIM

Stacked CCoT w/o CoT 32.86� 3.01 0.924� 0.021
GAP-CCoT w/o CoT 34.13� 2.95 0.933� 0.019
Stacked CCoT 34.27� 2.94 0.936� 0.018
GAP-CCoT 35.26� 2.89 0.950� 0.014

Fig. 5. Architecture of the proposed Stacked CCoT. The input of
the network is H T g , and CCoT-net is the same as in Fig. 3(b).

Table 5. Computational Complexity and Average
Reconstruction Quality of GAP-CCoT on 10 Synthetic
Data with Different Stages

Stage Number Params (106) FLOPs (109) PSNR (dB) SSIM

3 2.68 31.84 33.89 0.934
5 4.47 53.06 34.30 0.936
7 6.25 74.29 34.86 0.940
9 8.04 95.52 35.26 0.950
12 10.72 127.35 35.43 0.951
15 13.41 159.19 35.54 0.952

Table 6. Average PSNR and SSIM Results on 10
Synthetic Data with Different Loss Functions

Loss Function PSNR (dB) SSIM

LAD 35.48 0.952
MSE 35.26 0.950
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different masks, we trained GAP-CCoT with a mask of spatial
size 256 × 256 and directly applied it to real measurements
with a spatial size of 550 × 640. We compared our method with
several SOTA methods (λ-net [9], TSA-net [71], GAP-net
[20], PnP-DIP-HSI [23], DGSMP [24]) on real data. In ad-
dition to the results shown in Fig. 1, Fig. 7 shows partial visu-
alization reconstructed results and spectral curves of real data
from another scene. By zooming in on a local area, we can
see that our proposed method can recover more details and
has fewer artifacts. In addition, from the spectral correlation
curve, our proposed method also achieves higher spectral accu-
racy than existing methods.

5. CONCLUSION AND DISCUSSION

In this paper, we use the inductive bias ability of convolution
and the powerful modeling ability of Transformer to propose a
parallel module, named CCoT, which can obtain more effec-
tive spectral features. We integrate this module with a physics-
driven deep unfolding idea and GAP algorithm, which can be
well applied to SCI reconstruction.

In addition, we have also developed similar models for video
CS [14,27,73] and our model produces excellent results, which
are summarized in Table 7 and Fig. 8. We can see that our

method can achieve higher reconstruction quality and more de-
tails. As shown in Table 8, we further analyze the computational
complexity of GAP-CCoT and compare it with previous SOTA
reconstruction algorithms. Due to the addition of the CA
mechanism and the Transformer module, our algorithm has
more parameters and running time than some previous deep-
learning-based algorithms (U-net, MetaSCI, GAP-net), but
these modules bring about a significant improvement in
reconstruction quality, and our proposed method maintains a
high real-time performance (0.064 s). Moreover, it has better
real-time performance than other high-precision reconstruction
algorithms, such as BIdirectional Recurrent Neural networks
with Adversarial Training (BIRNAT) (0.165 s) and Reversible
SCI (RevSCI) (0.190 s). We believe that by fine-tuning the pro-
posed network, we should be able to achieve SOTA results in
video CS [79,80] and other reconstruction tasks [32,81–92].

During the review of our paper, we did notice that several
new algorithms were proposed for spectral SCI reconstruction
[35,93–96]. One of them used Transformer and brought com-
petitive results to ours [93].

Regarding future work, advances in deep learning have em-
powered computational imaging for practical applications.
Most recently, Transformer has shown promising performance
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Fig. 7. Reconstruction results of GAP-CCoT and other spectral reconstruction algorithms (λ-net, TSA-net, GAP-net, DGSMP, PnP-DIP-HSI)
in two real scenes (scene 1 and scene 2).

Table 7. Extending Our Method for Video Compressive Sensing: Average PSNR, SSIM, and Running Time per
Measurement of Different Algorithms on Six Benchmark Datasets

Algorithm PSNR (dB) SSIM Running Time (s)

GAP-TV [7] 26.73� 4.33 0.858� 0.082 4.201 (CPU)
PnP-FFDNet [74] 29.70� 6.75 0.892� 0.071 3.010 (GPU)
DeSCI [8] 32.65� 7.07 0.935� 0.047 6180 (CPU)
BIRNAT [75] 33.31� 5.90 0.951� 0.027 0.165 (GPU)
U-net [76] 29.45� 4.75 0.882� 0.057 0.031 (GPU)
GAP-net-U-net-S12 [20] 32.86� 5.92 0.947� 0.030 0.03 (GPU)
MetaSCI [77] 31.72� 5.72 0.926� 0.040 0.025 (GPU)
RevSCI [78] 33.92� 6.02 0.956� 0.025 0.190 (GPU)
Ours 33.53� 5.90 0.954� 0.026 0.064 (GPU)
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on many vision problems mainly because of its strong capability
of extracting features. The self-attention mechanism in
Transformer can capture global interactions between contexts and
thus has advantages for global and local, muti-scale, spatial–
temporal, or other features extraction that is difficult to realize by
normal CNN-based networks. This can also inspire us to design
new computational imaging systems. Specifically, the sampling
process should be able to play the role of the first layer in
Transformer to extract global or local features of the desired scene.
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