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A Hardy-like proof of quantum contextuality is a compelling way to see the conflict between quantum theory and
noncontextual hidden variables (NCHVs), as the latter predict that a particular probability must be zero, while
quantum theory predicts a nonzero value. For the existing Hardy-like proofs, the success probability tends to 1/2
when the number of measurement settings n goes to infinity. It means the conflict between the existing Hardy-like
proof and NCHV theory is weak, which is not conducive to experimental observation. Here we advance the study
of a stronger Hardy-like proof of quantum contextuality, whose success probability is always higher than the
previous ones generated from a certain n-cycle graph. Furthermore, the success probability tends to 1 when n
goes to infinity. We perform the experimental test of the Hardy-like proof in the simplest case of n � 7 by using a
four-dimensional quantum system encoded in the polarization and orbital angular momentum of single photons.
The experimental result agrees with the theoretical prediction within experimental errors. In addition, by starting
from our Hardy-like proof, one can establish the stronger noncontextuality inequality, for which the quantum-
classical ratio is higher with the same n, which provides a new method to construct some optimal noncontextuality
inequalities. Our results offer a way for optimizing and enriching exclusivity graphs, helping to explore more
abundant quantum properties. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.452704

1. INTRODUCTION

Ideal measurements yield the same outcome when repeated,
even when other compatible measurements have been per-
formed in between. Some predictions of quantum theory for
ideal measurements cannot be explained under the assumption
that ideal measurements reveal preexisting outcomes that are
independent of the context (i.e., the set of compatible measure-
ments that have been jointly measured), this is known as quan-
tum contextuality or Kochen–Specker (KS) contextuality [1].
Quantum contextuality is an intrinsic signature of nonclassical-
ity as its classical simulation requires memory [2] and thermo-
dynamical cost [3]. Moreover, it has been proven that quantum
contextuality is necessary for fault-tolerant quantum computa-
tion via magic state distillation and measurement-based quan-
tum computation [4]. Quantum contextuality also plays a

fundamental role in some quantum key distribution protocols
[5] and is crucial for understanding the underlying physics be-
hind the limitation of quantum correlations [6]. So far, quan-
tum contextuality has been experimentally observed in trapped
ions [7], photons [8], ensembles of molecular nuclear spins in
the solid state [9], and superconducting systems [10].

KS contextuality is the first theory about contextuality. The
KS-type proof [1,11,12] serves as a no-go theorem, indicating
that it is impossible for the noncontextual hidden variable
(NCHV) models to describe quantum mechanics. For instance,
for Peres-33 rays [11], it is impossible to define any consistent
assignment of 0s and 1s to the states in the set. In other words,
the standard KS sets cannot be colored in a consistent way in
classical theory. Beyond all doubt, the KS-type proof is an
elegant argument for contextuality, which is similar to the
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Greenberger–Horne–Zeilinger (GHZ) proof for the Bell non-
locality. Throughout research history, many well-known scien-
tists have done excellent work on KS contextuality. The first
proof scheme of KS includes 117 ray quantities in three-
dimensional space, and that with less rays is found step by
step [11–14]. Those that we are familiar with are Peres-33 rays
[11], CEG-18 rays [12], and so on. There are some that also
have other famous research, for example, the Peres–Mermin
square—a considerable simplification of the original KS argu-
ment by Mermin and Peres using nine observables that are
organized in a 3 × 3 square [15,16]. Later, noncontextuality in-
equality has been proposed as an experiment-friendly approach
to reveal quantum contextuality and has been tested by many
experiments [7,12,14,17,18]. We will talk about noncontex-
tuality inequality in detail in the next paragraph. In general,
a KS-type proof must be transferred to a noncontextuality
inequality to be experimentally validated, and experimental
tests of contextuality based on standard KS-type proofs were
seldom performed in the literature, which may be due to this
reason: noncontextuality inequalities are straightforward for the
Klyachko–Can–Binicioğlu–Shumovsky (KCBS) cases [19], but
in the KS case, the meaning is less clear because value assign-
ments are logically inconsistent, and it is not clear how to com-
pare them with quantum prediction.

The graph-theoretic approach to quantum correlations bridges
a fundamental connection between graph theory and quantum
contextuality [20,21]. The central idea is that, for an arbitrary
exclusivity graph, [Note: Any graph G�V ,E� is made up by ver-
tices and edges, where V is a set of vertices and E is the set of
edges. The exclusivity graph described that the measurement
events ei are represented as the vertices i of the graph, and there
is an edge between vertex i and vertex j if events ei and ej are
mutually exclusive events, and the corresponding measurement
vectors jvii and jvji are mutually orthogonal.] one can always
associate it with a noncontextuality inequality, for which the
classical bound has a definite meaning as the independence num-
ber of the graph, and the maximum quantum violation of the
inequality is the Lovász number describing the Shannon capacity
of the graph. The noncontextuality inequality is a correlation
inequality that any theory should satisfy under the assumption
of outcome noncontextuality for ideal measurements. The typi-
cal examples are the KCBS inequality [12] and its extensions
[22] and some state-independent-contextuality (SIC) inequalities
[14,23]. The noncontextuality inequalities have these advantages:
(i) theoretically, quantum contextuality can be revealed in a direct
way by the violations of noncontextuality inequalities; (ii) com-
pared with the KS-type proofs, the violations of noncontextuality
inequalities are more feasible to observe quantum contextuality in
the experiments.

A natural result yielded from the graph-theoretic approach is
the so-called “Hardy-like proof” [24], which for quantum con-
textuality is analogous to Hardy’s proof for Bell nonlocality [25]
and is also a particularly compelling way to reveal contextuality.
A Hardy-like proof of contextuality may be seen as a particular
violation of the noncontextuality inequality, which is more ex-
perimentally friendly than noncontextuality inequalities some-
times. The first Hardy-like proof of contextuality was proposed
in Ref. [24] by studying the n-cycle graphs. In such a proof, the

NCHV theory predicts that the success probability PSUC of a
particular event must be zero, while quantum theory predicts a
nonzero value. For the simple Hardy-like proof of the five-cycle
graph, PSUC � 1∕9 has been experimentally observed [26].
Remarkably, for the n-cycle graphs, PSUC tends to 1/2 when
the number of measurement settings n goes to infinity [24].
The conflict between the simple Hardy-like proof and
NCHV theory has not reached the limit. A natural question
is whether there is a Hardy-like proof for a certain n-vertex
graph, in which PSUC tends to 1 when n → ∞, thus providing
the stronger quantum contextuality.

In this work, a Hardy-like proof was presented for the
graphs with n � 4m� 3 �m � 1, 2,…� vertices, in which
the success probability tends to 1 when the number of measure-
ment settings goes to infinity. For a fixed n, the new Hardy-like
proof is stronger than the previous one for the n-cycle graph.
To illustrate our idea, we experimentally test the Hardy-like
proof with PSUC � 1∕4 in the simplest case of n � 7, by using
a four-dimensional quantum system encoded in the polariza-
tion and orbital angular momentum (OAM) of single photons.
For some symmetric graphs, by starting from the Hardy-like
proofs, one can establish some stronger noncontextuality in-
equalities, for which the quantum-classical ratio is higher or
optimal, and this provides a novel way to construct some useful
noncontextuality inequalities.

2. STRONGER HARDY-LIKE PROOF

Considering n � 4m� 3 �m � 1, 2,…� ideal measurements
represented in quantum theory by the rank-one projectors
and with possible outcomes 0 and 1, some of these measure-
ments are jointly measurable, while some of the corresponding
events are mutually exclusive. The n-vertex exclusivity graph
is shown in Fig. 1. Supposing that there is a state jϕi
(ρ � jϕihϕj), its probabilities for the triangles in Fig. 1 satisfy
the following Hardy-like constraints:
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Fig. 1. Exclusivity graph of the n measurements (with
n � 7, 11,15, 19,…) used for the Hardy-like proof of contextuality.
Each vertex represents a measurement. Vertices connected by an edge
are jointly measurable. Each of the outer vertices belongs to two
triangles. In total, there are �n − 1�∕2 triangles.
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X
j�1,2,n�1

2

P�τjρjρ� � 1,

X
j�2,3,n�3

2

P�τjρjρ� � 1,

..

.

X
j�1,n−12 ,n−1

P�τjρjρ� � 1, (1)

i.e., the sum of the probabilities of each triangle is 1. �τjρjρ� is
the event corresponding to outcome 1 obtained for the mea-
surement τj in the state jϕi, no matter which other compatible
measurements are performed. Under these assumptions, any
NCHV theory predicts that the outcome of the measurement
corresponding to the vertex in the center of Fig. 1 must be zero.
That is to say, the NCHV theory predicts P�τnρjρ� � 0. This
is due to the fact that, in the NCHV theory, Eq. (1) implies that
at least one of the events that are mutually exclusive with
�τnρjρ� has happened for any given hidden variable. Thus,
the event �τnρjρ� can never happen whatever the hidden var-
iable is, i.e., P�τnρjρ� � 0. In addition, for the odd number
(n−12 � 2m� 1) outer vertices in the polygon, not all of those
values can be zero; hence, at least one of the inner values has to
be 1, and vertex n must be a value of 0. See Appendix A for a
detailed proof for the NCHV value of the Hardy-like paradox.

In contrast, quantum theory predicts that for a four-
dimensional quantum state, when n measurements satisfy
Eq. (1), the success probability could be

PSUC ≡ P�τnρjρ� � cos2
�

2π

n − 1

�
: (2)

Clearly, the probability tends to 1 when n → ∞ and is 1/4 for
the simplest case of n � 7. Moreover, the probability is very
close to 1 even for a relatively small n [e.g., for n � 83,
P�τ83ρjρ� ≈ 0.994]. The state and the measurement vectors
for P�τnρjρ� are listed in Table 3 (see Appendix B), and the
detailed comparison of P�τnρjρ� with the success probability
obtained in the n-cycle Hardy-like proof [24] is shown in
Table 4 (see Appendix C).

Table 1 lists the state jϕi and the corresponding projectors
τj � jνjihνjj, and we have P�τnρjρ� � 1∕4 for n � 7. The ex-
clusivity relations between the projection measurements are
given by the graph in Fig. 2. In addition, three annex points
(denoted by jν8i, jν9i, jν10i) are added due to the need of ex-
perimental test for the compatibility conditions.

3. STRONGER NONCONTEXTUALITY
INEQUALITY

Every Hardy-like proof of quantum contextuality can be con-
sidered as a violation of a noncontextuality inequality [24].
Hence, a Hardy-like proof can be used as the starting point
for identifying new noncontextuality inequalities. An interest-
ing issue is identifying situations in which few measurement
settings can produce a high degree of contextuality. The issue
is of great importance for applications in which the degree
of contextuality has one-to-one correspondence with the
quantum-versus-classical advantage [27]. To characterize the
degree of quantum contextuality, it is defined as the ratio be-
tween the maximum quantum violation and the noncontextual
bound [27]. When performing an operation by the Hardy-like
proof presented above, we select the weights of the vertices in
the symmetric graph (Fig. 1) for achieving the optimal degree
of quantum contextuality. Thus, we obtain the following non-
contextuality inequality as

In � 2
Xn−12
j�1

P�τjρjρ� �
Xn
j�n�1

2

P�τjρjρ� ≤
NCHV n − 1

2
: (3)

This inequality is violated by the quantum state in the four-
dimensional quantum system. Notice that, in Fig. 1, black
vertices have a weight of 2 while white vertices have a
weight of 1 in Eq. (3). For n � 7, the noncontextual bound
of In is 3, while the maximum quantum violation is
�1� ffiffiffiffiffi

33
p �∕2 ≈ 3.372. This maximum violation can be

Table 1. State jϕi and the Measurement Vectors jνj i (j � 1,2, ..., 7), Where jν8i, jν9i, jν10i Are Annex Measurement
Vectors

jϕi jν1i jν2i jν3i jν4i jν5i jν6i jν7i jν8i jν9i jν10i
1
2 1 0 0 0 1ffiffi

2
p 0 1

2 0 0 1ffiffi
2

p
1
2

0 1 0 0 0 1ffiffi
2

p 1
2

0 1ffiffi
2

p 0
1
2

0 0 1 1ffiffi
2

p 0 0 1
2

1ffiffi
2

p 0 0
1
2

0 0 0 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p − 1
2

− 1ffiffi
2

p − 1ffiffi
2

p − 1ffiffi
2

p

1

2 3

4 6
7

5

8 9

10

Fig. 2. Exclusivity relations between the projection measurements
in the Hardy-like proof for n � 7, including the added measurements
(8, 9, 10) used in the experiment. The black vertices are twice of the
white vertices in weight.
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achieved by the state jψi � �α, α, α, β�T , and the measure-
ments correspond to the projectors onto the seven vectors of
jν1i � �1,0,0,0�T , jν2i � �0,1,0,0�T , jν3i � �0,0,1,0�T ,
jν4i � �0,0,γ, ζ�T , jν5i � �γ; 0; 0; ζ�T , jν6i � �0, γ; 0; ζ�T
jν7i � �μ, μ, μ, ε�T , where α �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11� 5

ffiffiffiffiffi
33

p �∕132
p

, β�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�33 − 5 ffiffiffiffiffi

33
p �∕44

p
, γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9− ffiffiffiffiffi

33
p �∕8

p
, ζ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ffiffiffiffiffi

33
p

− 1�∕8
p

,
μ �

ffiffiffiffiffiffiffiffi
2∕3

p
γ, ε � −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ffiffiffiffiffi

33
p

− 5�∕4
p

(see Appendix D for the
cases of higher n).

Equation (3) has remarkable properties, as follows. (i) For
any n, Eq. (3) leads to a higher degree of contextuality than the
one obtained by the extended KCBS noncontextuality inequal-
ity (see Appendix E). The extended KCBS inequality is the de-
fault target inequality in the contextuality experiment [26] and
is also the inequality that naturally follows from the Hardy-like
proof in Ref. [24]. (ii) For the simplest case (n � 7), numerical
computation shows that the inequality (3) leads to a higher de-
gree of contextuality than other noncontextuality inequalities
in form

P
7
j�1 wjhPji ≤ C , where wj is the weight of the

rank-one projector Pj for the jth vertex, and C is the classical
bound. For n � 7, the maximum degree of contextuality for
the extended KCBS inequality is 1.106 [22], while for inequal-
ity I 7 ≤ 3, it is 1.124. For some of the discussions, see
Appendix F. This property reveals that searching for situations,
in which a few measurement settings lead to a high degree of
contextuality, may be beneficial for investigating symmetric
graphs and attributing different weights to each of the classes
of vertices.

4. EXPERIMENTAL RESULTS

The new Hardy-like proof and the corresponding inequality
can reveal the contextuality in a new system because they pro-
vide better contextuality witnesses than the extended KCBS in-
equality under the same number of measurement settings. We
will test the Hardy-like proof (for the simplest case of n � 7 ) in

a hybrid four-dimensional quantum system defined by the
polarization and OAM of single photons. Testing contextuality
is especially difficult as sequential measurements are not easy
to implement. To overcome this difficulty, a simple method
(which needs two measurements only) has been presented,
in which the first measurement can be simulated by a demo-
lition measurement followed by a preparation that depends on
the outcome [28]. Of course, the necessary no-signaling con-
ditions [29] also need to be satisfied. Based on this method, in
order to test the Hardy-like proof in Eqs. (1) and (2) for n � 7,
we should add mutually orthogonal vertices to form complete
sets. Figure 2 shows that f1,2,4,8g, f1,3,6,9g, and f2,3,5,10g
have formed three complete sets.

The experimental setup (Fig. 3) consists of two parts: the
state preparation and the projection measurement. In the state
preparation, photon pairs are produced via a type-II spontane-
ous parametric downconversion in a 10-mm-long periodically
poled potassium titanyl phosphate (ppKTP) crystal pumped by
a 405 nm cw TEM00 diode laser, and one photon serves as a
trigger. The produced photons can carry the discrete OAM of
lℏ [30] (l is an arbitrary integer, and ℏ is the reduced Planck
constant). Therefore, high-dimensional information can be en-
coded in the OAM of single photons [31]. As the original work
on OAM [32], we consider an OAM carried by Laguerre–
Gaussian (LG) mode of azimuthal l order and radial order
p � 0 in our experiment. Equally weighted superpositions
of LG modes with different OAMs (l 1ℏ and l2ℏ), and the rel-
ative phase ξ can be written as

LGl 1, l2�r,φ� �
1ffiffiffi
2

p �LGl1�r,φ� � eiξLGl2�r,φ��: (4)

We generate the ququart states based on the interferometric
superposition of horizontally (H) and vertically (V) polarized
photons carrying OAMs, which is similar to that in Ref.
[33]. The collimated photons at 810 nm are split into two

Single 
Photon
Source

State Preparation Projection  Measurement

BS

SLM

QWP

HG1

HG2

IF SMF Mirror

L Filter RGHWP

QP PBS SPAD

Fig. 3. Experimental setup. In the state preparation part, a 405 nm cw laser pumps a type-II ppKTP crystal (not shown) to create photon pairs.
One photon serves as a trigger. The other photon is projected into the horizontal polarization state with a polarizing beam splitter (PBS); the spatial
light modulator (SLM) combines a Rochi grating (RG) through two 4f systems to generate the ququart subset of OAM. In the projection mea-
surement part, two sets of q-plates (QPs, with different topological charges of q1 � 1∕2 and q2 � 1) are sandwiched by two quarter-wave plates
(QWPs), followed by a half-wave plate (HWP) and a PBS used to convert OAM mode into a fundamental mode that is coupled into a single mode
fiber (SMF); the photons are detected by a single photon avalanche photodiode (SPAD).
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paths by a beam splitter (BS). Two computer-generated holo-
graphic gratings (HG1 and HG2) displayed on a spatial light
modulator (SLM) (1920 × 1080 pixels) diffract the H-polar-
ized light into different diffraction orders. Then a Rochi grating
(RG) is used to recombine the −1st diffraction order of HG1
and the �1st diffraction order of HG2 into the single one, as
shown in Fig. 3. The weight and phase of two different OAMs
can be controlled by adjusting the HGs. Thus, we use the two-
dimensional orthogonal polarizations and four-dimensional
OAMs (l � �1 and �3) to build four-dimensional subspace
fjH , � 1i, jV , − 1i, jH , � 3i, jV , − 3ig. Finally, the pre-
pared state can be expressed as follows:

jϕi � 1

2
�jH , � 1i � jV , − 1i � jH , � 3i � jV , − 3i�:

(5)

In the projection measurement, we perform the projection
measurements by two q-plates (QPs) with topological charges
of q1 � 1∕2 and q2 � 1, respectively. The function of the QP

can be described as jL, li!QPjR, l � 2qi, jR, li!QPjL, l − 2qi
[34], where L and R denote left- and right-handed circular
polarizations, respectively. Two cascaded QPs sandwiched be-
tween two quarter-wave plates (QWPs) are used to convert jνji
into a TEM00 mode, which is easily coupled to a single photon
avalanche photodiode (SPAD) through the single mode fiber
(SMF).

In order to measure the probability for n � 7 in Eq. (2), we
need to introduce two additional vertices (a, b) to form a
complete set f5,7,a, bg, where jνai � 1ffiffi

2
p �0,1,−1, 0�T and

jνbi � 1
2 �−1,1,1,−1�T . Here we describe the observables by

oj � jνjihνjj. For the sake of simplicity, P�τjρjρ� is replaced
by P�1joj�. We first perform the verification of no-signaling
between two measurements. We use the equations given in
Ref. [22] to characterize the influence,

δ�_,0joj, ok� � jP�0jok� − P�0,0joj, ok� − P�1,0joj, ok�j,
δ�_,1joj, ok� � jP�1jok� − P�0,1joj, ok� − P�1,1joj, ok�j,

which represent the statistical effects of the first measurement
on the second measurement, indicating that the result of pro-
jecting the state onto ok is 0 and 1, respectively. In the same
way, the statistical effects of the second measurement on the
first should be

δ�0, _joj, ok� � jP�0joj� − P�0,0joj, ok� − P�0,1joj, ok�j,
δ�1, _joj, ok� � jP�1joj� − P�1,0joj, ok� − P�1,1joj, ok�j:

To obtain P�0,1joj, ok�, we need to prepare the orthogonal
state jν⊥j i based on the Lüder rule [35]. Our experiment
meets the no-signaling condition within the experimental ac-
curacy, δ�_,0joj, ok� ≈ δ�0, _joj, ok� � 0 and δ�_,1joj, ok�≈
δ�1, _joj, ok� � 0 (see Appendix G). The projection probability
and the joint measurement probability should be measured in
their corresponding complete sets.

The measurement results for the Hardy-like proof of con-
textuality agree well with the predictions of quantum theory,
as listed in Table 2. The errors are always inevitable, due to
the limited number of experiments, unavoidable defects of

the devices, and the fluctuation caused by the long-lasting
experiments. From Table 2, our results also meet the three con-
ditions for verifying the Hardy-like contextuality in Ref. [26]:

(i) P�1jo1��P�1jo2��P�1jo4��0.989�0.010, P�1jo1� �
P�1jo3� � P�1jo6� � 0.989� 0.010, P�1jo2� � P�1jo3� �
P�1jo5� � 0.988� 0.009 are equal to 1 within the experimen-
tal errors.
(ii) P�1jo7� � 0.248� 0.006 is nonzero and agrees well

with the value predicted by quantum theory in Eq. (2).
(iii) The quantum violation of the noncontextuality inequal-
ity [Eq. (3)] from the results in Table 2 is calculated to be
I 7 ≈ 3.214� 0.018 in experiment, which is I7 � 3.250 in
theory (Fig. 4).

5. CONCLUSION

Stronger quantum contextuality is particularly significant as
it reveals a sharper contradiction between the NCHV theory
and the quantum theory. In this work, we have advanced
the study of a stronger Hardy-like proof of quantum contex-
tuality. We have theoretically presented a new Hardy-like
proof, which is stronger than the previous one given in
Ref. [24]. For the simplest case (n � 7), the success probability
equals 1/4, and it tends to 1 when n → ∞. We have also per-
formed the experimental test for the new Hardy-like proof
by the four-dimensional quantum system encoded in the

Table 2. Experimental Results of Hardy-Like Proof for
n � 7a

Projectors Experiment Ideal

o1 0.248� 0.005 0.25
o2 0.246� 0.004 0.25
o4 0.495� 0.008 0.50
o1 0.247� 0.006 0.25
o3 0.247� 0.005 0.25
o6 0.495� 0.007 0.50
o2 0.247� 0.005 0.25
o3 0.246� 0.006 0.25
o5 0.495� 0.005 0.50
o7 0.248� 0.006 0.25

aThe column “Ideal” denotes the predictions of quantum theory for an ideal
experiment. All of the errors are calculated from photon-counting statistics.

3.214 0.018I7

3                      3.25        3.372

QT2 QT1NCHV

Fig. 4. Quantum violation of Eq. (3) for n � 7. NCHV (�3) rep-
resents the classical bound of the NCHV theory. The maximum vio-
lation isQT1 ≈ 3.372 by using the optimal measurement settings, and
the non-maximum violation is QT2 � 3.250 by using the measure-
ments adopted in the Hardy-like proof.
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polarization and OAM of single photons. The experimental re-
sult gives PSUC � 0.248� 0.006, which agrees with the theo-
retical prediction within the experimental errors. Importantly,
the stronger Hardy-like proof can yield stronger noncontextual-
ity inequality and has an advantage over the extended KCBS
noncontextuality inequality for the n-cycle graphs. Our results
not only advance the study of the Hardy-like proof for quan-
tum correlations but also open a new approach to observe
quantum contextuality in new systems. That also paves a
way for further research on fundamental quantum resources.

APPENDIX A: PROOF FOR THE NCHV VALUE
FOR THE HARDY-LIKE PARADOX

For simplicity, we use Pi to represent P�τnρjρ�.
For the NCHV case, once the hidden variable is given, each

ray, which can be viewed as a dichotomic projective measure-
ment, can be either associated with the value 0 or 1. To put it
more explicitly,

Pi �
X
y∈Λ

p�y�℘i�y�, (A1)

where Λ is the set of hidden variables,℘i�y� ∈ f0,1g, and if i, j
are connected in the graph,

℘i�y�℘j�y� � 0: (A2)

The conditions in Eq. (1) can be rewritten as

P1 � P2 � Pn�1
2
� 1,

P2 � P3 � Pn�3
2
� 1,

..

.

P1 � Pn−1
2
� Pn−1 � 1: (A3)

In the NCHV case, it implies that, for any hidden variable y,
we have

℘1�y� �℘2�y� �℘n�1
2
�y� � 1,

℘2�y� �℘3�y� �℘n�3
2
�y� � 1,

..

.

℘1�y� �℘n−1
2
�y� �℘n−1�y� � 1: (A4)

By taking the sum of the above equations, we have

�℘1�y� �℘2�y� �℘n�1
2
�y��

� �℘2�y� �℘3�y� �℘n�3
2
�y�� � 	 	 	

� �℘1�y� �℘n�1
2
�y� �℘n−1�y��

� 2�℘1�y� � δ2�y� � 	 	 	 �℘n−1
2
�y��

� �℘n�1
2
�y� �℘n�3

2
�y� � 	 	 	 �℘n−1�y��

� n − 1
2

: (A5)

According to the relation in Eq. (A2), we can know that

℘1�y� �℘2�y� � 	 	 	 �℘n−1
2
�y� ≤

n−1
2 − 1

2
� n − 3

4
, (A6)

which implies that

℘n�1
2
�y� �℘n�3

2
�y� � 	 	 	 �℘n−1�y� ≥ 1. (A7)

That is, for any hidden variable y, there are always at least one
k ∈ fn�1

2 ,…, n − 1g such that ℘k�y� � 1. Again, because of
the relation in Eq. (A2), we have ℘n�y� � 0. Consequently,

Pn �
X
y∈Λ

p�y�℘n�y� � 0. (A8)

APPENDIX B: MEASUREMENTS OF THE STATE
FOR THE HARDY-LIKE PROOF OF QUANTUM
CONTEXTUALITY WITH n MEASUREMENTS

For the n-vertex exclusivity graph (Fig. 1), based on whose sym-
metry and the mutually exclusive relationship of vertices, we
can set the measurements τj � jνjihνjj �j � 1, 2,…, n� form
as shown in Table 3. Via calculation, we can get the parameters.
Then, there are four-dimensional quantum state jϕi and n
measurements τj � jνjihνjj �j � 1, 2,…, n�, which are listed
in Table 3. Based on that, one can have the success probability
for the Hardy-like proof as

PSUC � P�τnρjρ� � cos2
�

2π

n − 1

�
: (B1)

From Eq. (B1), we can find that the success probability tends to
1 when n goes to infinity.

Remark 1. The measurement vectors jνji can be obtained
based on the symmetry of our exclusivity graph (Fig. 1). The state
and the measurements listed in Table 3 for n � 7 are equivalent
to the ones given in Table 1 under the unitary transformation.

APPENDIX C: COMPARISON BETWEEN THE
SUCCESS PROBABILITIES PSUC AND PCBCB

The success probability is described by Eq. (B1) or Eq. (2). In
Ref. [24], Cabello, Badzia, Cunha, and Bourennane (CBCB)
have proposed a simple Hardy-like proof of contextuality,
which is generated from the n-cycle graph. The corresponding
success probability is given by

Table 3. P�τnρjρ� Has the Maximum Quantum Value as
cos2�2π∕�n − 1��a

jν1i 1 0 −λ sin θ λ cos θ

jν2i −cos �2θ� sin �2θ� −λ sin θ λ cos θ

jν3i cos �4θ� −sin �4θ� −λ sin θ λ cos θ
..
. ..

. ..
. ..

. ..
.

jνn−1
2
i cos ��n − 3�θ� −sin��n − 3�θ� −λ sin θ λ cos θ

jνn�1
2
i λ sin θ λ cos θ 1 0

jνn�3
2
i −λ sin �3θ� −λ cos �3θ� 1 0

jνn�5
2
i λ sin �5θ� λ cos �5θ� 1 0

..

. ..
. ..

. ..
. ..

.

jνn−1i λ sin��n − 2�θ� λ cos��n − 2�θ� 1 0
jνni 0 0 0 1
jϕi 0 0 − sin�2θ� cos�2θ�

aThe n measurements τi and the state jϕi are given as follow. Here τj is
the projector onto the vector jνji (non-normalized) and ρ � jϕihϕj, θ �
π∕�n − 1� and λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�2θ�

p
.
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PCBCB � cosχ�π∕χ�
1� cosχ�π∕χ� , (C1)

where χ � �n� 1�∕2 and n � 4m� 3 �m � 1, 2,…�.
Table 4 lists the numerical values of the success prob-

abilities PSUC and PCBCB for different n, where n � 4m�
3 �m � 1, 2,…, 20�. From Table 4, we have also plotted
the curves of these two success probabilities versus n in Fig. 5.

From Table 4 and Fig. 5, we can find that the success prob-
ability PSUC is higher than PCBCB. In Ref. [24], the probability
PCBCB tends to 1/2 when n → ∞. However, in our work, the
probability PSUC has exceeded 1/2 for n � 11, i.e.,
PSUC � cos2�π∕5� ≈ 0.655 > 1∕2. In addition, the success
probability PSUC tends to be 1 when n goes to infinity.
Interestingly, for a finite number of settings, PSUC is already
very close to 1. For example, PSUC � cos2�π∕41� ≈ 0.994
for n � 83.

APPENDIX D: STATE AND MEASUREMENTS
FOR THE MAXIMUM QUANTUM VALUE OF In
For the noncontextuality inequality with n � 4m�
3 �m � 1, 2,…�,

In � 2
X�n−1∕2�
j�1

P�τjρjρ� �
Xn

j��n�1�∕2
P�τjρjρ� ≤

NCHV
αn ⩽

QT

Qn:

(D1)

The noncontextual bound is αn � �n − 1�∕2, and the maxi-
mum quantum violation Qn can be achieved when we choose

the four-dimensional quantum system state jψi (here
ρ � jψihψ j) and n measurements τj �j � 1, 2,…, n�, as shown
in Table 5. The vectors in Tables 3 and 5 share the similar struc-
ture. By optimizing two parameters, θ and x, one can obtain the
numerical value of quantum bound Qn as shown in Table 6.

Remark 2. The maximum quantum violationQn in Eq. (D1)
is obtained in the four-dimensional quantum system in Table 5.
The state and the measurement vectors are obtained based on the
symmetry of our compatibility graph. Except for the inequality
for n � 7, the other cases are hard to find analytical results. We
list the maximum quantum violation Qn in Table 6.

APPENDIX E: COMPARISON OF DEGREE OF
QUANTUM CONTEXTUALITY BETWEEN OUR
INEQUALITY AND THE EXTENDED KCBS
INEQUALITY

The degree of quantum contextuality is given by [27]

rn �
Qn

αn
, (E1)

which is the ratio between the maximum quantum violation
and the noncontextual bound.

The extended KCBS inequality reads [24]

I 0n �
Xn
j�1

P�0,1jj, j� 1� ⩽
NCHV

α 0
n ⩽
QT

Q 0
n, (E2)

where n ≥ 5 and n is odd. Here the classical bound is

α 0
n �

n − 1
2

, (E3)

and the maximum quantum value can be realized in the three-
dimensional quantum system as

Q 0
n �

n cos�π∕n�
1� cos�π∕n� : (E4)

Then one can obtain the degree of quantum contextuality
for the extended KCBS inequality as

r 0n �
Q 0

n

α 0
n
� 2n cos�π∕n�

�n − 1��1� cos�π∕n�� : (E5)

In Table 7, we list rn and r 0n with different n for the inequal-
ities in Eqs. (D1) and (E2), respectively. From Table 7, we plot
the curves of r versus n for the two inequalities in Eqs. (D1) and
(E2), as shown in Fig. 6.

For any n, the inequality in Eq. (D1) leads to a degree
of quantum contextuality higher than that obtained by the
extended KCBS noncontextuality inequality in Eq. (E2).
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Fig. 5. Success probabilities PSUC (blue curve) and PCBCB (red
curve) versus n.

Table 4. Success Probabilities PSUC � cos2�2π∕�n − 1�� and PCBCB � cosχ �π∕χ �∕�1� cosχ �π∕χ ��
n 7 11 15 19 23 27 31 35 39 43

PSUC 0.250 0.655 0.812 0.883 0.921 0.943 0.957 0.966 0.973 0.978
PCBCB 0.200 0.297 0.347 0.377 0.397 0.412 0.423 0.432 0.438 0.444

n 47 51 55 59 63 67 71 75 79 83

PSUC 0.981 0.984 0.987 0.988 0.990 0.991 0.992 0.993 0.994 0.994
PCBCB 0.449 0.453 0.456 0.459 0.461 0.464 0.466 0.468 0.469 0.471
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Interestingly, the maximum degree of quantum contextuality
r 05 � 1.118 of the KCBS inequality with n � 5 is also lower
than r7 � 1.124 of our inequality with n � 7.

APPENDIX F: OPTIMAL NONCONTEXTUALITY
INEQUALITY WITH WEIGHTS OF c � 2 AND
d � 1

The exclusivity graph in Fig. 1 of the main text is a family of
symmetric n-vertex graphs. Since the symmetry, �n − 1�∕2 ver-
tices in the outer circle should possess the same weight, which is
denoted by c. Similarly, the �n − 1�∕2 vertices in the inner circle
should possess the same weight, which is denoted by d. We
then have a more general noncontextuality inequality as

In � c
X�n−1�∕2
i�1

P�τiρjρ� � d
Xn−1

i��n�1�∕2
P�τiρjρ�

� P�τnρjρ� ≤
NCHV

αn ⩽
QT

Qn, (F1)

where n � 4m� 3 �m � 1, 2 ,…� and the weights c, d ≥ 0.
Notice that in Eq. (F1), for simplicity, three weights have been
reduced, and the weight of P�τnρjρ� is set to 1.

Now we would like to discuss on the optimization of
Eq. (F1) within the framework related to the symmetric graphs.
For the noncontextuality inequality [Eq. (F1)], a question is
raised: what are the optimal values of c and d when the

Table 5. Quantum State jψi and Measurements τj �j � 1, 2,…,n�, for the Maximum Quantum Value of In
a

jν1i 1 0 λ sin θ λ cos θ
jν2i cos�t� sin�t� λ sin θ λ cos θ
jν3i cos�2t� sin�2t� λ sin θ λ cos θ
..
. ..

. ..
. ..

. ..
.

jνn−1
2
i cos�n−32 t� sin�n−32 t� λ sin θ λ cos θ

jνn�1
2
i κλ sin θ cos�t2� κλ sin θ sin�t2� 1 0

jνn�3
2
i κλ sin θ cos�3t2 � κλ sin θ sin�3t2 � 1 0

jνn�5
2
i κλ sin θ cos�5t2 � κλ sin θ sin�5t2 � 1 0

..

. ..
. ..

. ..
. ..

.

jνn−1i κλ sin θ cos�n−22 t� κλ sin θ sin�n−22 t� 1 0
jνni 0 0 0 1
jψi 0 0 cos x sin x

aHere τj are the projectors onto the vectors jνji (non-normalized) and ρ � jψihψ j, t � �n − 3�π∕�n − 1�, k � −1∕ cos�t∕2�, and λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�2π∕�n − 1��

p
.

Table 6. Numerical Value of Quantum Bounda

n 7 11 15 19 23 27 31

θ 1
2
arccos�� ffiffiffiffiffi

33
p

− 7�∕2� 0.269 0.198 0.158 0.131 0.112 0.098

x 1
2 arccos�−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�23 − 4 ffiffiffiffiffi

33
p �∕11

p
� 1.106 1.219 1.285 1.329 1.362 1.386

Qn
1
2 �

ffiffiffiffiffi
33

p � 1� 5.730 7.849 9.903 11.932 13.950 15.962

n 35 39 43 63 83 103

θ 0.087 0.079 0.071 −0.049 −0.037 0.030
x 1.406 1.421 1.434 1.666 1.644 1.512
Qn 17.970 19.975 21.980 31.990 41.994 51.996

aFor the optimal values of the parameters θ and x, one can obtain the maximum quantum violation Qn in Eq. (D1).

Table 7. Numerical Values of the Ratios rn and r 0n with n for the Inequalities in Eqs. (D1) and (E2)

n 5 7 11 15 19 23 27 31 35 39 43 63 83 103

rn – 1.124 1.146 1.121 1.100 1.085 1.073 1.064 1.057 1.051 1.047 1.032 1.024 1.020
r 0n 1.118 1.106 1.077 1.060 1.048 1.041 1.035 1.031 1.027 1.025 1.022 1.016 1.011 1.010
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Fig. 6. Curve of the ratio rn versus n. The red curve represents the
relationship of rn with n in our paper, while the blue curve represents
the relationship of r 0n with n for the extended KCBS noncontextuality
inequality.
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quantum-classical ratio Qn∕αn is the highest? The answer will
be c � 2 and d � 1 as the following proof.

For the proof, the state jψi, and the n measurement vectors
jνii shown in Table 3 in the main text, from the left-hand side
of Eq. (F1), we can directly obtain the quantum value as

Qn�c, d , x, θ� � c
n − 1
2

λ2 sin2�θ� x�
1� λ2

� d
n − 1
2

cos2x
r2λ2sin2θ� 1

� sin2x: (F2)

By analyzing the deterministic probability assignments for the
NCHV case, we can have

αn�c, d � � max

�
n − 1
2

d ; 1� n − 3
4

c, d � n − 3
4

c
�
: (F3)

So the quantum-classical ratio is

rn�c, d , x, θ� �
Qn�c, d , x, θ�

αn�c, d �
: (F4)

Notice that Qn is a linear function of c and d for any given
�x, θ� as shown in Eq. (F2) and αn is also a linear function
of c and d in different regions as illuminated in Fig. 7.
Therefore, rn is a monotone function of c and d in each region.
This implies that the maximum value of rn for given �x, θ�
should appear at a certain boundary point within a region.
A direct calculation shows that rn ≤ 1 for all the cases except
for �c, d � � p3 � �2,1�. When c � 2 and d � 1, Eq. (F1) de-
generates into Eq. (3) in the main text, and then the quantum
violation of the Hardy-like proof implies that

Qmax
n ≥

�n − 1�
2

� cos2
�

2π

n − 1

�
, (F5)

which is easily obtained directly by adding Eqs. (1) and (2) in
the main text. Since αn � �n − 1�∕2 in this case, rmax

n > 1.
Thus, we prove that the maximum value of rn can be obtained
when �c, d� � �2,1� only.

Remark 3. Here we would like to provide a detail proof for
the case of n � 7. In this case, the quantum bound becomes

Q7�c, d , x, θ� � c sin2�θ� x� � 3d cos2�x�
2 − cos�2θ� � sin2�x�,

(F6)

and the noncontextual bound is

α7�c, d � � maxf3d ; 1� c, d � cg: (F7)

Thus, the quantum-classical ratio reads

r7�c, d , x, θ� �
Q7�c, d , x, θ�

α7�c, d �
: (F8)

• If assuming that 3d is maximum, we have α7 � 3d , and
then �

3d ≥ 1� c ⇒ d ≥ �1� c�∕3,
3d ≥ d � c ⇒ d ≥ c∕2.

The quantum-classical ratio is

r7�c,d ,x,θ��
Q7�c,d ,x,θ�
α7�c,d �

�
csin2�θ�x�� 3dcos2�x�

2−cos�2θ�� sin2�x�
3d

� c
3d

sin2�θ�x�� cos2�x�
2− cos�2θ��

1

3d
sin2�x�

≤
2d
3d

sin2�θ� x�� cos2�x�
2− cos�2θ��

1

3d
sin2�x�

� 2

3
sin2�θ�x�� cos2�x�

2− cos�2θ��
1

3d
sin2�x�:

(F9)

From the above formula, we know that the larger d, the
smaller r7.

1. Supposing c∕2 ≥ �1� c�∕3, then c ≥ 2 and d ≥ c∕2.
From Eq. (F9), r7�c, d , x, θ� has the maximum value when

d � c∕2, and the quantum-classical ratio is

r7�c, x, θ� �
Q7�c, d , x, θ�

α7�c, d �

� c
3 c
2

sin2�θ� x� � cos2�x�
2 − cos�2θ� �

1

3 c
2

sin2�x�

� 2

3
sin2�θ� x� � cos2�x�

2 − cos�2θ� �
2

3c
sin2�x�, (F10)

implying that the larger c, the smaller r7. Then the maximum
value of r7 can be obtained when c � 2 and d � 1.

2. Supposing �1� c�∕3 ≥ c∕2, then c ≤ 2
and d ≥ �1� c�∕3.

From Eq. (F9), r7�c, d , x, θ� has the maximum value when
d � �1� c�∕3, and the quantum-classical ratio is

r7�c, x, θ� �
Q7�c, d , x, θ�

α7�c, d �

� c
3 1�c

3

sin2�θ� x� � cos2�x�
2 − cos�2θ� �

1

3 1�c
3

sin2�x�

� c
1� c

sin2�θ� x� � cos2�x�
2 − cos�2θ�

� 1

1� c
sin2�x�,

(F11)

implying that r7 is a linear function of c for any given �x, θ�.
Then the maximum value of r7 for given �x, θ� can be obtained
at the boundary point of c. From Eq. (F11), when c → 0, we
have

Fig. 7. Different regions for αn, where pi are boundary points,
p1 � �0,0�, p2 � �0,2∕�n − 1��, and p3 � �2,1�.
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r 07�x, θ� �
cos2�x�

2 − cos�2θ� � sin2�x�: (F12)

In this case, r 07 can get the maximum value of 1 when θ � 0
and x � π∕2.

When c � 2, we have

r 0 07 �x, θ� �
2

3
sin2�θ� x� � cos2�x�

2 − cos�2θ� �
1

3
sin2�x�: (F13)

In this case, r 0 07 has the maximum value of 1.124 > 1 when
θ � 0.446 and x � 0.808. Then the maximum value of r7 can
be also obtained when c � 2 and d � 1.

• If assuming that 1� c is maximum, we have α7 � 1� c,
and then �

1� c ≥ 3d ⇒ d ≤ �1� c�∕3,
1� c ≥ d � c ⇒ d ≤ 1:

The quantum-classical ratio is

r7�c, d , x, θ� �
Q7�c, d , x, θ�

α7�c, d�

�
csin2�θ� x� � 3dcos2�x�

2−cos�2θ� � sin2�x�
1� c

� c
1� c

sin2�θ� x� � 3d
1� c

cos2�x�
2 − cos�2θ�

� 1

1� c
sin2�x�: (F14)

From the above equation, we know that the larger d, the
larger r7.

1. Supposing 1 ≤ �1� c�∕3, then c ≥ 2 and d ≤ 1.
From Eq. (F14), r7�c, d , x, θ� has the maximum value when

d � 1. Then we have the quantum-classical ratio,

r7�c, x, θ� �
csin2�θ� x� � 3cos2�x�

2−cos�2θ� � sin2�x�
1� c

: (F15)

Clearly, r7 is a linear function of c for any given �x, θ�. Then
the maximum value of r7 for given �x, θ� can be obtained at the
boundary point of c. From Eq. (F15), when c → �∞, r7 → 1.
But through a direct calculation, when c � 2, we can get the
quantum-classical ratio as Eq. (F13), and then the maximum
value of r7 can be obtained when c � 2 and d � 1.

2. Supposing �1� c�∕3 ≤ 1, then c ≤ 2, d ≤ �1� c�∕3.
From Eq. (F14), r7�c, d , x, θ� has the maximum value when

d � �1� c�∕3. Then, we have the quantum-classical ratio,

r7�c, x, θ� �
csin2�θ� x� � 1�c

3
3cos2�x�
2−cos�2θ� � sin2�x�

1� c

� c
1� c

sin2�θ� x� � cos2�x�
2 − cos�2θ� �

1

1� c
sin2�x�:

(F16)

This is similar to Eq. (F11), and the maximum value of r7
can be obtained when c � 2 and d � 1.

• If assuming that d � c is maximum, we have α7 � d � c,
and then

�
d � c ≥ 3d ⇒ d ≤ c∕2,

d � c ≥ 1� c ⇒ d ≥ 1:

1. If c∕2 < 1, the above conditions are not valid.
2. If c∕2 ≥ 1, then c ≥ 2 and 1 ≤ d ≤ c∕2.

The quantum-classical ratio is

r7�c,d ,x,θ��
Q7�c,d ,x,θ�
α7�c,d �

�
csin2�θ�x�� 3dcos2�x�

2−cos�2θ�� sin2�x�
d� c

≤
csin2�θ�x�� 3dcos2�x�

2−cos�2θ�� sin2�x�
3d

� c
3d

sin2�θ�x��3d
3d

cos2�x�
2− cos�2θ��

1

3d
sin2�x�

� c
3d

sin2�θ�x�� cos2�x�
2− cos�2θ��

1

3d
sin2�x�:

(F17)
From the above formula, we know that the larger d, the

smaller r7. Then r7 can obtain the maximum value when
d � 1. The quantum-classical ratio is

r7�c, x, θ� �
Q7�c, d , x, θ�

α7�c, d�

�
csin2�θ� x� � 3cos2�x�

2−cos�2θ� � sin2�x�
1� c

: (F18)

This is the same as Eq. (F15), and the maximum value of r7
can be obtained when c � 2 and d � 1.

Now we have finished the proof for the case of n � 7.
Remark 4. In addition, for the case of n � 7, we can also

calculate the values of the inequality of the other seven vertices,
and it shows that Eq. (3) in the main text leads to a higher
degree of quantum contextuality than any other noncontextual-
ity inequality in the form

P
7
i�1 wiPi ≤ α7, where wi is the

weight of the rank-one projector Pi for the ith vertex and
α7 is the classical bound. More intuitively, the maximum degree
of quantum contextuality for the extended KCBS inequality
with n � 7 is 1.106 [19], while the maximum degree of quan-
tum contextuality for our inequality with n � 7 is 1.124,
which is a higher degree of quantum contextuality under
the same number of measurement settings.

APPENDIX G: EXPERIMENTAL DETAILS

Equally weighted superpositions of LG modes with different
OAMs can be written as

LGl 1, l 2�r,φ� �
1ffiffiffi
2

p �LGl1�r,φ� � eiξLGl2�r,φ��, (G1)

where ξ denotes the relative phase between the two modes. In
our experiment, the �1st and −1st diffraction orders of the
blazed gratings carry the OAMs we needed. A non-optimized
initial state we obtained experimentally can be expressed as

jϕinon � �AjH ,�1i � BeiξjH ,�3i� � eiΔ�AjV , −1i
� BeiξjV , −3i�, (G2)

where the two weights (A and B, here be not normalized) and
the phase ξ can be controlled by the holographic grating, and
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the phaseΔ is controlled by the RG. After optimizing the initial
state, we obtain the state we needed, as described in Eq. (5).

First, we test the efficiencies of two cascaded QPs with topo-
logical charges q1 � 1∕2 and q2 � 1 in our experiment, as
shown in Table 8. We can see that the two cascaded QPs have
almost the same efficiency for the OAMs needed in our experi-
ment. This is the guarantee of realizing projection measure-
ments. In the experiment, the detection efficiency of SPAD
is about 60% at 810 nm. Therefore, the overall detection effi-
ciency of the OAM system is about 40%. The detection effi-
ciency can be improved by high efficiency detector and coating
q-plates.

Second, it is necessary to satisfy the no-signaling conditions
[29] in any quantum contextuality. As mentioned in Ref. [22],
the influences can be written as

δ�_; 0joj, ok� � jP�0jok� − P�0,0joj, ok� − P�1,0joj, ok�j,
δ�_; 1joj, ok� � jP�1jok� − P�0,1joj, ok� − P�1,1joj, ok�j, (G3)

δ�0, _joj, ok� � jP�0joj� − P�0,0joj, ok� − P�0,1joj, ok�j,
δ�1, _joj, ok� � jP�1joj� − P�1,0joj, ok� − P�1,1joj, ok�j, (G4)

where

P�0,0joj, ok� � P�0joj� − P�0,1joj, ok�,
P�0,1joj, ok� � P�0joj�P�1jok�,
P�1,0joj, ok� � P�1joj� − P�1,1joj, ok�,
P�1,1joj, ok� � P�1joj�P�1jok�: (G5)

Equation (G3) represents the statistical effect of the first mea-
surement on the second measurement, indicating that the re-
sult of projecting the state onto ok is 0 and 1, respectively.
Meanwhile, Eq. (G4) indicates the statistical effect of the sec-
ond measurement on the first measurement, implying that the
result of projecting the state onto oj is 0 and 1, respectively. In
order to obtain P�0,1joj, ok� � P�0joj�P�1jok�, we need to pre-
pare the orthogonal state jν⊥j i based on the Lüder rule [30],

jν⊥j i �
�I − jνjihνjji�jϕi

�hϕj�I − jνjihνjj�jϕi�1∕2
, (G6)

where I is the identity matrix. In our experiment, the orthogo-
nal states are shown as

jν⊥1 i �
1ffiffiffi
3

p �0,1,1,1�T , jν⊥2 i �
1ffiffiffi
3

p �1,0,1,1�T ,

jν⊥3 i �
1ffiffiffi
3

p �1,1,0,1�T , jν⊥4 i �
1ffiffiffi
2

p �0,1,1,0�T ,

jν⊥5 i �
1ffiffiffi
3

p �1,0,1,0�T , jν⊥6 i �
1ffiffiffi
2

p �1,1,0,0�T ,

jν⊥7 i �
ffiffiffi
3

p

6
�1,1,1,3�T : (G7)

As stated in the main text, all the measurements should be
implemented in a complete set. In our experiment, the statistics
of each count is assumed to follow the Poisson distribution.
The measured value for any quantity is obtained by averaging
the 100 randomly grouped counting sets. The errors are evalu-
ated by the standard deviation. Based on the experimental data,
we easily calculate the probabilities. Substituting Eq. (G5) into
Eq. (G4), we get δ�0, _joj, ok� � δ�1, _joj, ok� � 0. The errors
described in Eq. (G4) determine the experimental precision.
The influence results shown in Fig. 8 mean no-signaling be-
tween the first and second measurements.
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