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A spectrum series learning-based model is presented for mode-locked fiber laser state searching and switching.
The mode-locked operation search policy is obtained by our proposed algorithm that combines deep reinforce-
ment learning and long short-term memory networks. Numerical simulations show that the dynamic features of
the laser cavity can be obtained from spectrum series. Compared with the traditional evolutionary search algo-
rithm that only uses the current state, this model greatly improves the efficiency of the mode-locked search. The
switch of the mode-locked state is realized by a predictive neural network that controls the pump power. In the
experiments, the proposed algorithm uses an average of only 690 ms to obtain a stable mode-locked state, which is
one order of magnitude less than that of the traditional method. The maximum number of search steps in the
algorithm is 47 in the 16°C–30°C temperature environment. The pump power prediction error is less than 2 mW,
which ensures precise laser locking on multiple operating states. This proposed technique paves the way for a
variety of optical systems that require fast and robust control. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.455493

1. INTRODUCTION

The all-normal dissipative (ANDi) soliton mode-locked fiber
laser based on the nonlinear polarization evolution (NPE)
mechanism [1,2] has been applied in several scientific fields,
such as high-power laser research [3] and two-photon micros-
copy [4], owing to its simple structure and high single-pulse
energy. However, the cavity parameters of this laser are sensitive
to environmental changes, resulting in changes in the mode-
locked operation state. Strict fixation of the fiber and environ-
mental shielding are required to achieve stable operation of the
laser, limiting its application. To improve the robustness of the
mode-locked fiber laser, various algorithms based on the evolu-
tionary algorithm and adaptive control have been adapted to
drive the electric polarization controller (EPC), making the la-
ser self-tuning [5–7]. However, the current control policy con-
siders mode-locked searching only as an optimization problem
and accelerates it using well-designed loss functions and special
feedback loops. The physical mechanism of the mode-locked
process has not been considered, making it difficult to establish
the mapping from the laser output to the EPC state.

The generation of ANDi pulses depends on the balance of
dispersion, gain, loss, and self-phase modulation (SPM) in the

fiber cavity. Maintaining this balance is a process of evolution-
ary propagation that exhibits high time dependence [8–10].
That means it is natural to choose a model that can use time-
series features to make decisions, rather than relying only on
current observations. On the other hand, the key aspect of
the self-tuning NPE-based mode-locked laser is the search for
an appropriate operating point in the cavity to realize a mode-
locked state switch. An intelligent algorithm in a specific envi-
ronment (fiber laser) needs to learn the high-dimensional char-
acteristics of the environment after sufficient exploration in the
initial stage, so that the next action can be directly obtained
based on previous experience and current observations. A
learning-based neural network is a solution to these problems
[11–13]. In particular, deep reinforcement learning (DRL)
[14–16] has been applied in complex system control for pho-
tonics research owing to its powerful high-dimensional feature
analysis ability. For mode-locked fiber laser control, neural net-
works have also been used to predict cavity parameters based on
numerical simulations [15]. DRL is also applied into mode-
locked control by using deep Q-learning (DQN) [17] and deep
deterministic policy gradient (DDPG) [18]. These DRL algo-
rithms are suitable for constant environments only; retraining is
required if the environment changes. Therefore, it is necessary
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to build a network that truly learns the essence of mode-locked
state adjusting to control the laser state in a changing
environment.

In this study, a mode-locked operating mode search
(MDRL) and a switching algorithm (MSP) are proposed based
on DRL and spectrum series learning. The dynamic process of
mode-locked evolution is related to the state of the last pulse. A
physical map is established between the input spectrum and the
EPC state of the output by extracting the associated features of
the time series and introducing spectral information, and it
greatly improved the search efficiency. The performance and
robustness of the proposed method are demonstrated both
theoretically and experimentally. This method is capable of
reaching the mode-locked state from a random state in fewer
search steps than the previously reported method [5–7].

2. METHODS

A. Feedback Time-Series Spectrum Control Model
For a typical mode-locked fiber laser, the pulse evolution in the
fiber can be described by the Schrödinger equation [19,20]. In
the Fourier domain, it can be written as

d

dz
A�z,ω� �

�
α

2
−
iβ2
2

ω2 � iβ3
6

ω3

�
A�z,ω�

� iγjA�z,ω�j2A�z,ω�, (1)

where A�z,ω� is the electric field envelope, ω is the angular
frequency, z is the propagation coordinate, α is the fiber loss,
β2 and β3 are the second-order and third-order dispersion, re-
spectively, and γ is the nonlinear refractive index of the fiber.
This indicates that the state of the pulse in the Fourier domain
is a serialization process, and the spectrum jA�ω, z�j is highly
correlated with the electric field A�ω, 0�. To illustrate the

effectiveness of the time-series control, Eq. (1) is used to trace
the evolution of the pulse in a typical dissipative soliton mode-
locked laser based on NPE [21], with element parameters iden-
tical to those in the Section 3. To simplify the calculation, the
amplitude modulation mechanism of the NPE is considered
equivalent to the transmittance of a fast saturable absorber
[22,23]. In the simulation, we defined two NPE states: the low
loss transmission state TL and high loss transmission state TH.
The transmittance of the amplitude modulation generated in
the cavity is shown in Fig. 1(d).

When the laser is in the TL state, the higher peak power part
of the pulse corresponds to the larger nonlinear phase shift,
which can yield higher transmittance. The spectrum evolution
for this state is shown in Fig. 1(a). The pulse spectrum is rapidly
expanded and amplified during the first 35 round trips, estab-
lishing a mode-locked state. Subsequently, owing to the low loss
in the cavity, an excessive nonlinear phase shift is introduced,
which decreases the NPE transmittance and causes pulse
splitting. In this state, the pulse cannot maintain a stable mode-
locked output, and the final output spectral and time wave-
forms are shown as orange lines in Figs. 1(e) and 1(f ). In the
TH state, because of the low transmittance, the pulse portion of
the peak power does not increase its gain sufficiently, and the
spectrum of the pulse cannot be sufficiently stretched and am-
plified, as shown in Fig. 1(b). As shown by the purple line in
Figs. 1(e) and (f ), with a round trip increase, the pulse is only
stretched by the fiber group velocity dispersion, and such a low
peak power cannot form an effective output.

In the traditional mode-locked search algorithm [7], the
above two EPC states are considered to be unable to obtain
an effective mode-locked state. However, if combined with
two states as a time-series control Tm, the low loss state is used
to expand and amplify the pulse spectrum sufficiently. Then,

Fig. 1. GNLSE simulation result from the NPE-based mode-locking laser system. (a) Spectral evolution when EPC is in TL. (b) Spectral evolution
when EPC is in TH. (c) Spectral evolution when EPC is in TL initially and then converted to TH after 400 round trips. (d) Light transmittance
caused by NPE when EPC is in TL (orange line) and TH (purple line). (e) Spectrum output after 800 round trips when EPC is in TL (orange line),
TH (purple line), and Tm (green line). (f ) Temporal output after 800 round trips when EPC is in TL (orange line), TH (purple line), and
Tm (green line).
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TH is introduced to reduce the SPM effect and obtain a stable
mode-locked output with high peak power. The spectrum
evolution is shown in Fig. 1(c); in the first 400 round trips,
EPC is in TL, and similarly to Fig. 1(a), the spectrum of the
pulse is amplified, broadened, and split. After that, the EPC
state is changed to high loss, the splitting pulse is rapidly sup-
pressed, and the remaining pulse spectrum is expanded to
obtain a stable mode-locked output, as shown by the green line
in Figs. 1(e) and 1(f ). Therefore, considering the influence of
the previous spectrum distribution, time-series control can
make more effective decisions and greatly improve the search
efficiency.

This illustrates that the NPE-based mode-locked laser out-
put spectrum depends on the previous spectral distribution and
polarization modulation by the EPC. However, the shape of the
spectrum is difficult to quantify with simple features, and con-
ventional time-series feature extraction requires statistical or
wavelet analysis for each time segment [24], which is inefficient
and difficult to generalize. Long short-term memory (LSTM) is
an architecture of recurrent neural networks, and at each time
step, the output is connected cyclically to the hidden unit of the
next time step [25]. The gate cell of LSTM solves the problem
of gradient vanishing caused by the long-term dependence of
time-series data. This approach has been applied successfully to
speech recognition [26], machine translation [27], and other
sequential tasks. These characteristics make LSTM suitable
for analyzing and predicting the dynamic process of spectrum
variation in mode-locked lasers [28].

After the spectral series features are obtained, a model is still
needed to map the input spectral signal to the output EPC
driver signal to make the laser self-tuning. Recently, combined
with deep learning, DRL has made great progress in complex
tasks that are unreachable for conventional optimization algo-
rithms, especially to solve the sequential decision-making prob-
lem under uncertainty [14,17,18]. To apply the time-series
spectrum control to the ANDi laser, we have proposed a novel
feedback control model, which is shown in Fig. 2.

This model consists of two parts, which are the mode-locked
deep reinforcement learning (MDRL) agent and the mode-
locked state prediction (MSP) network, and these network
structures are described in detail in Section 2.B. The fiber laser
has two controlled objects: the polarization controller position
and the pump power. At first, the pump power of the fiber laser
is set to an appropriate point. By extracting the time-series spec-
tral features of fiber laser, MDRL can search for the best

position of polarization controller, so that the laser can reach
a stable fundamental mode-locked state from an arbitrary initial
state. After MDRL searching, the polarization controller posi-
tion is fixed to constant. From the output spectrum, it is diffi-
cult to quantify the differences between mode-locked states
from the spectral distribution by using simple low-dimensional
features. We use the MSP net starts to learn the map from the
laser output spectrum to the pump power. The well-trained
MSP network is used to realize mode-locked state switches
by controlling the laser pump power.

B. Mode-Locked Deep Reinforcement Learning
Agent
Reinforcement learning has two main components: the envi-
ronment and the agent make up a Markov process [16].
The agent learns the action at based on the current environ-
ment observation st to maximize its cumulative reward R.
At each step, the environment provides st and R when the last
action at−1 acts upon it. A common DRL architecture is actor–
critic (AC) [16,29], in which the actor is a policy network π�st�
to choose at based on st , and the critic refers to the estimation
of the value network V �st�. Based on the AC framework and
neural network, we establish a novel reinforcement model,
MDRL, shown in Fig. 3, which uses an actor network and
a critic network to represent π�st� and V �st�, respectively.
The environment is the NPE-based mode-locked fiber laser,
the input observation st represents the data from the optical
spectrum analyzer, and the action at consists of four channels
of voltage data for the EPC to control the polarization modu-
lation, and thus generate the NPE in the fiber cavity.

Because the EPC control voltages are continuous, at will
have a continuous action space, making uncertainty typically
grow in direct action prediction. Therefore, the diagonal
Gaussian policy [30] is chosen to regress the distribution of
at in the actor network, which has a mean value path μθ�st�
and a standard deviation path σθ�st� from the data after the
actor network pipeline process. at is computed using

at � π�st� � μθπ �st� � σθπ �st� · z, (2)

where t is the current step, · is an element-wise product, θπ
represents the parameters of the current actor network, and
z is a Gaussian noise term. In the critic network, the expected
cumulative return V �st jθV � is estimated by two fully connected
layers after the pipeline process, where θV represents the param-
eters of the critic network.

As shown in the Fig. 3, both the actor network and the critic
network first require a pipeline process for mapping input op-
tical spectrum data into high-dimensional space and extracting
the features from time series. The pipeline includes a full con-
nection layer, an LSTM layer, and a dropout layer. The dropout
layer is used to reduce the overfitting of the network during
training. In the networks, each full connection and LSTM layer
are activated by an ReLU function [31].

The target of the reinforcement learning agent is to maxi-
mize the expected cumulative reward R for each episode.
Reward shaping [32] is used to reduce the decrease in learning
efficiency owing to the sparse mode-locked state in the entire
search space. The final reward is

Optical spectrum

Stable 
fundamental 
mode-locked 

state 

Fundamental mode-locked state 
searching

Mode-locked state switch MSP NetMSP Net

MDRL AgentMDRL Agent

Fiber Laser
Environment

Optical spectrum

Optical spectrum

Stable 
fundamental 
mode-locked 

state 

Fundamental mode-locked state 
searching

Mode-locked state switch MSP Net

MDRL Agent

Optical spectrum

Fig. 2. Feedback time-series spectrum control model.
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R�wt� �
�
ReLU�wt − wt−1�, wt < wG
w2
t � α�T − t� � wt

wrise,t
, wt ≥ wG

, (3)

where wt is the full width at half maximum (FWHM) of st , also
known as the spectrum width, ReLU is the rectified linear unit
operator [31], wG is the threshold of wt , T is the total number
of search steps in each episode, α is the discount factor, and
wrise,t is the rising edge width. In mode-locked laser state
switching, wt of the free-run state is less than that of the
mode-locked state, so when wt < wG , the laser state is consid-
ered to be free run. The agent uses the increase in wt as the
reward function to make the reward in the search space rela-
tively dense, and searching is performed in the direction of in-
creasing wt . In addition, the ReLU operator is added to ensure
non-negative output. When wt ≥ wG , the laser is in a mode-
locked state, w2

t guarantees a sufficient reward of at−1, and
α�T − t� is used to minimize the number of search steps in
one episode. wt∕wrise,t is used to reduce the width of the rising
edge because the dissipative soliton mode-locked laser output is
a pulse that has a sharp optical spectrum edge, and a smooth
wrise,t will induce an unstable pulse. In the experiment
wG � 3 nm (spectrum width), α � 0.1.

In the agent training, each episode has two stages: sampling
and learning. In the sampling stage, the agent samples the envi-
ronment N times according to the current parameters θπ , θV .
At each sampling step, the estimated return Gt is computed
using Eq. (4), following the asynchronous advantage actor–
critic model:

Gt �
XN
i�t

γi−tRi � γN−tV �sN jθV �, (4)

where N is the number of environment samples, γ is the dis-
count factor, θV holds the current parameters of the critic net-
work, and sN is the N th environment observation. The data
fst , at ,Gtg are stored in the reply memory. After environment
sampling, the data in the reply memory are used as the training

set to train and update the parameters of the actor and critic
neural networks.

In contrast to general deep learning training methods,
reinforcement learning networks cannot use the truth value
directly to train the network because the environment is un-
known. Therefore, it is necessary to design the loss function
carefully to maximize Gi of the current policy. In MDRL,
the critic network and actor network training losses are defined
by proximal policy optimization (PPO) [33] to improve the
agent training efficiency and avoid training failure caused by
use of the wrong training set. The critic network loss
function is

Lcritic �
1

M

XM
i�1

�Gi − V �sijθV ��2, (5)

where M is the mini-batch size. The actor network loss func-
tion is

Lactor � −
1

M

XM
i�1

�rt�θπ�Ai, clip�rt�θπ�; 1 − ϵ; 1� ϵ�Ai�, (6)

where Ai � Gi − V �sijθV �, rt � πθ�st �
πθold �st �

is the probability ratio,
the clip function clip constrains rt�θπ� into �1 − ϵ, 1� ϵ�,
and ϵ is the clip factor. After obtaining Lactor, Lcritic, and error
backpropagation, the actor and critic network parameters are
updated by Adam optimization. In the learning stage, the agent
has trained over K epochs and then starts a new episode, until
the search reaches the maximum number of episodes.

C. Mode-Locked State Prediction Network
In a certain environment, as the pump power gradually in-
creases, the output of the mode-locked pulse evolves from
free-running, through Q-switching (QS) and Q-switched
mode-locked (QML), to the fundamental mode-locked (FML)
state [34]. In addition, the output spectrum will also transform
from a single-mode output to a stable wide mode-locked spec-
trum. If the pump power continues to increase, the spectrum
will broaden gradually owing to SPM until the pulse splits into
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higher-order solitons, resulting in a harmonic mode-locked
(HML) state. However, different mode-locked states have
different spectral distributions. Moreover, there is no effective
method to describe the spectral differences in different mode-
locked states. However, deep learning has a powerful feature
description ability that can classify signals in a high-
dimensional space. Therefore, we have established an MSP
neural network based on a convolutional neural network.

In the prediction network, the spectrum signal is first sent to
five Conv-Blocks to extract the signal features, and each Conv-
Block has a convolution layer, a batch normalized layer, and an
ReLU layer. Then, after fully connected layer preprocessing, the
features are handled by two paths. In the classification path, the
softmax layer is used to map the spectrum features to the mode-
locked state. In the prediction path, the fully connected layer is
used to predict the current pump power.

D. Neural Network Implementation and Training
Under the actual NPE-based laser environment, both the
MDRL agent and MSP are implemented based on version
1.1.0 of the PyTorch platform using Python 3.6.4, running
on a computer with two NVIDIA TITAN RTX GPUs with
64 GB of memory. The MDRL agent is trained for 5000 epi-
sodes, and the maximum number of steps in the search stage of
one episode is 400. After the search stage, the Adam optimizer
with a learning rate of 0.001 updates the weights and biases of
the networks for 10 epochs. In our study, the input spectrum
from the optical spectrum analyzer is cropped to the range from
1030 nm to 1080 nm with a resolution of 0.1 nm. The agent
output consists of four channels of voltage data ranging from
22,125 V to 5 V, to control the EPC to produce different
polarization modulations. The total training time is ∼3 h
under a 3000 mW pump power environment.

After MDRL obtained a stable mode-locked state, we con-
trolled the pump power to increase linearly from 40 mW to
420 mW, with a 1 mW stepping value, and recorded 200 spec-
tral images at each voltage as the input training dataset for
MSP. At the same time, the distribution of pulse sequences
was observed using an oscilloscope to determine the current
mode-locked state. The MSP has two output channels: the
mode-locked state and the pump power. Therefore, the output
of the MSP training dataset is the set of the current pump
power and the current mode-locked state. After obtaining

the training dataset, the MSP network was trained for 200
epochs using the same optimizer as MDRL, with a learning
rate of 0.01. The cross-entropy loss function and smooth L1
loss function [35] are used to train the classification path
and the regression path, respectively.

3. RESULTS

Figure 4 shows the layout of the reinforcement learning envi-
ronment, which is a dispersion soliton fiber laser with a center
wavelength of 1053 nm. The fiber section consists of ∼15 m
single-mode fiber (SMF) and ∼0.3 m ytterbium-doped fiber
(YDF). The SMF has 2.1 dB/km attenuation and 6.2 μmmode
field diameter (MFD), the YDF has 25.6 dB/km attenuation
and 4 μm MFD, and the total dispersion is 0.338 ps2.
∼250 mW LD with a center wavelength of 980 nm is coupled
to the core of the YDF by a wavelength division multiplexer
(WDM). NPE is implemented by EPC (OZOptics EPC-400),
an isolator I, and a polarizer P. After passing through P, a ran-
dom noise pulse is polarized in a certain direction and then
converted to an elliptically polarized state. The nonlinear phase
shift generated by SPM in the fiber is converted to amplitude
modulation in P to produce saturable absorption [22]. The
EPC, which is used to generate NPE, can produce a state of
polarization (SOP) located at an arbitrary position of the
Poincaré sphere in the SMF. By inputting four channel volt-
ages, this component can precisely manipulate the NPE process
and realize simple and efficient control of the operating state in
the cavity. A spectrum filter SF with 1053 nm center wave-
length and 10 nm bandwidth is added after EPC1 to suppress
the emission peak at 1030 nm and improve mode-locked sta-
bility [21]. The output mode-locked pulse is coupled by C2,
and 1% output power is delivered into a diagnostic optical
spectrum analyzer D (Ocean Insight USB4000) to monitor
the spectrum change of the mode-locked pulses and send spec-
trum data as observations to the MDRL agent.

In the experiment, the pump power is first fixed at 300 mW
and then begins MDRL agent training. Each search step of the
MDRL agent costs ∼50 ms, including ∼10 ms spectrum
analyzer exposure time and ∼40 ms communication and com-
putation time. Using the well-trained MDRL agent, the mode-
locked state can be searched at a 20 Hz control frequency
starting from arbitrary initial EPC voltages. We first set EPC

Fig. 4. MDRL environment layout. LD, laser diode; WDM, 980/1060 nm wavelength division multiplexer; YDF, ytterbium-doped fiber; C,
coupler; SMF, single-mode fiber; P, polarizer; I, isolator; EPC, electrical polarization controller; SF, optical spectrum filter; D, diagnostic optical
spectrum analyzer.
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voltages to four random values and run the MDRL agent to ob-
tain an FML state. The spectrum and time-wave evolution data
that are acquired from D and an oscilloscope (TELEDYNE
Lecroy WaveMaster 813Zi-B) are shown in Figs. 5(a) and 5(b).
In the FML state, the average output power is 37 mW, the rep-
etition rate is 13.5 MHz, the center wavelength is 1053 nm, the
spectrum bandwidth is 8.5 nm, and the pulse output width is
14.2 ps. Since the ANDi laser has no dispersion management in
the cavity, the output pulse is highly chirped [1] as shown by the
blue line in Fig. 5(d). Grating pairs are used to compensate for
the dispersion of the pulses outside the cavity, and the measured
autocorrelation results of the pulses are shown in Fig. 5(d). The
autocorrelation width of 272 fs fitted by sech2 is converted to the
pulse width of∼176.6 fs, which is close to the Fourier transform
limit [36,37].

In the first 30 search steps, the laser is in a free-running state.
The central wavelength of its spectrum is discretely distributed
between 1048 nm and 1058 nm because of the spectrum filter
being limited. From Fig. 5(a), when the laser is in a free-
running state, the central wavelength varies during searching,
which indicates that the laser is in a different evolution state.
However, the time waveform is basically a noise signal as shown
in Fig. 5(b), which cannot obtain effective information. This
shows that using spectrum information as the observation of
MDRL can better represent the state of the laser than the time
waveform, improving search efficiency. Therefore, the process
of pulse evolution can be obtained more intuitively by using
spectral changes as the basis of mode locking. After 30 search
steps, the MDRL has already obtained a wide spectrum output
as shown in Fig. 5(a) and formed a stable pulse sequence as seen

in Fig. 5(b). In steps 30–35, the agent fine tunes the mode-
locked state based on the previous spectrum distribution to ob-
tain a spectral output with a sharp edge, reducing the intensity
difference between the output pulses and obtaining a stable
mode-locked state. The environmental rewards, which are
defined in Eq. (3) at each step, are shown in Fig. 5(c). When
the laser is in the free-running state, the reward obtained from
the environment is close to 0, and when the search reaches the
mode-locked state, the reward is greatly improved. When the
laser is in the mode-locked state after three consecutive
searches, and the reward change is less than 1, the agent con-
siders that the laser has reached a stable mode-locked state and
ends this episode.

After obtaining a stable FML state by the MDRL agent at
300 mW, we fixed the EPC voltage and scanned the pump
power from 40 mW to 420 mW to obtain the MSP net training
dataset. From 40 mW to 170 mW, the laser is in a free-running
state. From 170 mW to 220 mW, the laser starts to output a
Q-switch temporal wave, and the output spectrum has a strong
output at 1047 nm as shown in Figs. 6(f ) and 6(j). From
220 mW to 290 mW, the temporal output of the laser is in a
Q-switch mode-locked state as shown in Figs. 6(e) and 6(i), and
as the pump power increases, the Q-switch modulation be-
comes smaller. From 290 mW to 380 mW, the laser enters
an FML state as shown in Figs. 6(c) and 6(g), and the laser
output gradually increases from 35 mW to 53 mW. From
380 mW to 400 mW, the output pulse starts to split but is
not stable. Until the pump power is larger than 400 mW,
the laser enters the stable second-order HML state, as shown
in Figs. 6(d) and 6(h).

Fig. 5. Spectrum and time-wave evolution during MDRL search. (a) Spectrum evolution data from the spectrum analyzer. (b) Time-wave evo-
lution data from the high-speed photodetector and oscilloscope. (c) Obtained reward at each search step. (d) Direct autocorrelation output (blue line)
and autocorrelation output after dispersion compensation (orange square, purple line).

1496 Vol. 10, No. 6 / June 2022 / Photonics Research Research Article



After MSP training, using the trained network to accom-
plish the state switch. By inputting the typical target spectrum
distributionW t , the desired pumping power PMSP�W t� can be
obtained through the MSP net. The different laser states can be
reached by minimizing the error LMSP�W c� between the
present predicted power PMSP�W c� and PMSP�W t�, where
W c is current laser spectrum output. If LMSP�W c� is equal
to zero, the spectral output of the laser has switched to the tar-
get state. In the experiment, the target spectra of the QS, QML,
HML, and FML operating states are acquired at 200 mW,
240 mW, 300 mW, and 400 mW pump power. As shown
in Figs. 6(a) and 6(b), LMSP�W c� can converge to zero within
300 ms, which means that the laser output state can be quickly
switched to the target spectrum distribution W t . The output
current can also be stabilized at the current position corre-
sponding to the target state, which is shown by the blue line
in Fig. 6(b). The average control pump power is <2 mW. The
green dashed line in Fig. 6(b) indicates that the error between
the predicted power and the true power is equal to zero, show-
ing that MSP can predict the pump power accurately. This er-
ror is mainly caused by quantization error in training the MSP
network. Figures 6(c)–6(f ) show the typical spectral distribu-
tion during the control process, and the corresponding time
distribution is shown in Figs. 6(g)–6(j). The fundamental rep-
etition rate is ∼13.5 MHz, and the sharp spectral edge indi-
cates that the output laser is in ANDi type [2]. The HML
state has ∼27 MHz repetition rate as the second-order mode-
locked state. The spectrum of QML is narrower than that of

FML, and the peak values of different pulses are not uniform in
the time domain. The traditional method requires different
evaluations of the time-domain waveform to achieve state con-
trol. However, under the guidance of MSP, the laser can accu-
rately obtain the QS, QML, HML, and FML operating states.

4. DISCUSSION AND CONCLUSION

To demonstrate the MDRL performance using time series, we
randomly generated 100 random EPC initial voltage groups as
initial states of the agents using MDRL, the DDPG algorithm,
which is the same as in Ref. [18], and the traditional genetic
algorithm as the basis to search for the mode-locked state. The
results are shown in Fig. 7(a). With the help of LSTM, MDRL
requires an average of only 13.8 search steps to obtain a stable
mode-locked state (purple solid circle), compared with the aver-
age of 116.1 search steps for the DDPG framework without the
LSTM layer (orange solid square) [18] and 143.5 search steps
for the GA (green solid triangle). Note that each search step
costs 50 ms, MDRL can take the laser from the initial state to
the stable mode-locked state in an average time of approxi-
mately 1 s, and the minimum time is only 200 ms. On the
other hand, as DRL requires a well-trained network containing
all the laser information, a decision can be made directly with-
out excessive sampling; therefore, many search steps can be
omitted. Compared with the genetic algorithm, which requires
a minimum of 23 search steps, MDRL and DRL require a
minimum of only four and eight search steps, respectively.
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This illustrates that prior knowledge is critical for high-speed
mode-locked control. To observe the spectrum evolution dur-
ing the mode-locked search, we recorded the spectrum dis-
tribution of each search step under the first initial state in
Fig. 7(a). The spectrum width changes in Fig. 7(b) show that
the MDRL can quickly reach a stable mode-locked state
(purple line). However, the genetic algorithm (GA) cannot
guarantee the stability of the searched mode-locked state (green
line). More stringent termination conditions can also make the
GA search to a stable mode-locked state, but doing so will add
additional search steps.

Table 1 shows a comparison of recent auto mode-locked
algorithm performance. It is unilateral to compare the con-
sumed time by the algorithm from a random state to a basic
mode-locked state because the laser environment and the single
search time of the algorithm are different. MDRL still has the
lowest average time consumption, and its minimum time con-
sumption of 200 ms is comparable to HLA [6]. Using the same
DDPG algorithm, the average search time required in our laser
environment is much higher than that reported in Ref. [18],
because the self-starting ability of the laser is improved by add-
ing a fast saturable absorber in Ref. [18]. The average search
times can better indicate the search efficiency of the algo-
rithm. Compared with traditional methods, MDRL has fewer
search times, which can better meet the real-time control
requirements.

A stable intelligent laser requires the same mode-locked state
recovery capability in a changing environment. This means
that the search algorithm needs to learn the control policy

rather than simply obtaining an optimal output for the current
environment. It is a frequent problem of mode-locked lasers
that the output state changes in response to temperature
changes. Therefore, we tested the search time of the GA, the
DDPG without LSTM layer, and the MDRL from a random
initial state to mode-locked operation from 16°C to 30°C. At
each temperature sampling point, the same 10 groups of ran-
dom EPC voltages are used as the initial state, and the test re-
sults are shown in Fig. 8. MDRL maintains fast and stable
search performance at all test temperatures, and the mean and
standard deviation of the search steps are far smaller than for the
other methods. This shows that the trained MDRL is insensi-
tive to temperature. DDPG without the LSTM layer can only
maintain search stability in a narrow temperature range, and
the number of search steps will increase rapidly in an environ-
ment below 20°C or above 28°C; the output will be trapped in
local optimization, and cannot reach a mode-locked state.
In order to recover the searching ability, the neural network
needs to be retrained [18], which is not acceptable in real-time
wide temperature range testing. Although the GA can obtain
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Table 1. Time Consumption Comparison with Recent
Works

Algorithm Average Time Average Search Step

Genetic algorithm [7] 30 min 6000
HLA [6] 3.1 s 3100
DDPG [18] 1.948 s
DDPG in this environment 5.8 s 116.1
MDRL in this environment 0.69 s 13.8
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Fig. 8. Search stability test at different temperatures with MDRL
(purple), DDPG (orange), and genetic algorithm (green).
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effective output at all test temperatures, its search efficiency is
relatively low because it wastes numerous steps in environmen-
tal exploration. In addition, a high standard deviation indicates
that the GA includes randomness, which cannot guarantee that
the laser can accurately obtain a certain mode-locked state.
Mode-locked state searching requires an additional optical
spectrum analyzer and controllers, which will increase the com-
plexity and cost of the fiber laser. But the proposed method
enables the laser to operate stably over a wide temperature
range, which reduces the environmental requirements of ultra-
short pulse lasers in the applications.

The current model scheme is only applicable to the SMFs,
because the principle of polarization modulation by EPC is to
bend SMFs to generate stress birefringence. Therefore, it is not
suitable for polarization-maintaining (PM) fiber directly, as for
large mode area (LMA) fiber, stress birefringence is also not a
suitable polarization modulation method because significant
losses can arise from small fiber bending [38]. Additional wave
plates and analyzers need to be introduced to generate NPE
[39,40]. But the polarization control speed is limited by rotat-
ing machinery. A potential way is using liquid crystals [41,42]
to rapidly generate polarization modulation by applying the
control voltage. So changing the MDRL output from EPC
voltage to the angle of wave plates or the voltage of the liquid
crystal can also make the proposed model applicable to NPE
mode-locked searching in the PM fiber and LMA fiber. In
addition, this method can not only be used to search for mode-
locked states. If combined with temporal pulse data, in a suit-
able laser environment, the algorithm can also search for some
special time-spectral pulse states such as dissipative soliton res-
onance [43,44], chirp-free pulses [45], and supercontinuum
pulses [43,46]. It would be a powerful tool for both fundamen-
tal research and practical applications.

In conclusion, we introduce an algorithm to obtain the
mode-locked state of an ANDi fiber laser efficiently and accom-
plish the switch between different operating states. The map-
ping of the laser spectrum output to the controller is established
by combining the spectral sequence and the DRL agent.
Experimental results show that it can drive the EPC to achieve
a stable mode-locked state, the algorithm performance is
insensitive to changes in the external environment, and the
environmental robustness expands the application range of
mode-locked fiber lasers. It should be emphasized that the pro-
posed method is model-free and can not only be used for mode-
locked state control, but also be extended to other complex
optical systems that require fast and robust control.
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