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Synchronized rotation of unit cells in a periodic structure provides a novel design perspective for manipulation of
band topology. We then design a two-dimensional version of higher-order topological insulator (HOTI) by such
rotation in a triangular photonic lattice with C3 symmetry. This HOTI supports the hallmark zero-dimensional
corner states and, simultaneously, the one-dimensional edge states. We also find that our photonic corner states
carry chiral orbital angular momenta locked by valleys, whose wave functions are featured by the phase vortex
(singularity) positioned at the maximal Wyckoff points. Moreover, when excited by a fired source with various
frequencies, the valley topological states of both one-dimensional edges and zero-dimensional corners emerge
simultaneously. Extendable to higher or synthetic dimensions, our paper provides access to a chiral vortex plat-
form for HOTI realizations in the terahertz photonic system. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.452598

1. INTRODUCTION

With further development of photonic crystals (PhCs) armored
by topological understanding for condensed matter, people have
found miscellaneous photonic counterparts of topological phases
[1–5]. Among them, the topological edge states generated on the
interface between different topological phases promise superior
features, such as robustly smooth transmission, backscattering
suppression, and defect immunity despite rather strong pertur-
bation of the local boundary. Following quantum Hall phases
[2], more intricate topological phases, such as quantum spin
Hall phases [3,5] and quantum valley Hall phases [4], are also
invented in the context of analog PhC systems, the two of
which, respectively, exploit the dichroism freedom by redefining
pseudospin/valley concepts in classical wave setups. Such config-
urable symmetrical lattices, furthermore, provide easy access to
topological crystalline insulators (TCIs), for example, those with
synchronous rotation giving rise to high tunability in practical
realization [6]. Specifically for a C3 kagome lattice of broken in-
version symmetry, distinct valley states will emerge in the first
Brillouin zone (FBZ) and produce their Berry curvature of op-
posite values [4,7,8]. Such a valleytronics concept calls for bulk
valley states locked to their chiralities, which are possible to cou-
ple into and out of communication devices, such as valley filters
and valley sources, respectively [4,7–10].

Nevertheless, a concept of corner states from higher-order
topology that is one further dimension lower than the edges
in a two-dimensional (2D) setup [11–15] has added new bricks
to the premise for topological information devices. Among the
class of higher-order phases, one type of topology is measured
by the fractional bulk polarization (or the position of Wannier
centers) [15]. For instance, 0D corner states, other than the
1D edge ones, emerge in the second-order TCIs, whose spatial
positions are associated with Wannier centers determined from
the polarization value [16–19].

Peculiar to the classical analog for topological quantum
physics, the spatial vortex, i.e., the wave function with an un-
defined phase in certain spatial locations, remains less explored
in the context of topological photonics despite its mechanical
power to manipulate macroparticles. The vortex flow of electro-
magnetic waves, also defined as the orbital angular momentum
(OAM) of light, may open up new avenues to exert optical tor-
ques to matters in a noninvasive manner. In this paper, we
will reveal such a possibility by designing a valley higher-order
topological insulator (HOTI) in a triangular lattice with C3
symmetry, which is fueled by synchronous rotation of each
unit cell. By observing the phase of electric fields near K
and K 0 points, we recognize a valley selection feature discussed
previously [4]. We also find that the synchronous rotation
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mechanism of unit cells induces a band inversion at valleys,
which leads to a topological phase transition in our photonic
system. This topological transition can be characterized by the
extended 2D bulk polarization related to the Zak phase
[15,20,21]. In the electric field of the valley HOTI, pointwise
corner states are predicted by the 2D bulk polarization.
Furthermore, not only does our proposed HOTI have a vortex
edge state locked to one of the dichroic valleys [22,23], but also
it supports a topologically corner state. Using chiral point
sources of different frequencies, our simulations verify that
the electromagnetic waves shape into high-quality corner states
and robust edge states. Our idea can be extended to higher or
synthetic dimensions, which contributes to an experimentally
feasible platform for HOTI in the photonic vortex system
[4,8,9,24–26].

2. THEORY AND MODEL

We propose a 2D PhC in a triangular lattice with C3v sym-
metry, the unit cell of which is composed of six identical pure
dielectric cylinders embedded in air as shown in the left panel
of Fig. 1(a). Additionally, the maximal Wyckoff points in the
unit cell are represented by labels o, p, and q in real space. The
dielectric permittivity is εd � 7.5, a0 is the lattice constant,

and a1 and a2 are the lattice vectors with cylinder dia-
meter d � 0.2a0, the lattice constants a0 � 50 μm, and
a0∕R � 3.5. The synchronous rotation angle of the dielectric
cylinders in the unit cell is represented by θ, shown in the right
panel of Fig. 1(a) with counterclockwise rotation as the positive
direction of rotation whose maximum rotation angle is 60°.

In this paper, a finite element method is used to calculate the
PhC dispersion and to solve for the related electric fields. In a
C3-symmetric lattice, the photonic FBZ contains a pair of K
and K 0 points in its vertices, which are named valley points
[27,28] as shown in the Fig. 1(c) inset. Here, the valley states
at K and K 0, connected by time-reversal (TR) symmetry
[29,30], are both linearly dispersed, which are, hence, named
Dirac points [31]. We only focus on the eigenstates near these
two valley points and refer valleys K and K 0 to Dirac points
throughout our whole paper to be succinct. De facto, there are
more valley points with Dirac dispersion [cf. Fig. 6(b) in
Appendix A]. Considering the transverse magnetic (TM) mode
for simplicity, the band degeneracy at two Dirac points in
Fig. 1(c) is levitated away from linear dispersion by rotating the
dielectric cylinders in every unit, which are shown in Figs. 1(b)
and 1(d). For the complete band diagram, see Appendix A. To
be specific, when rotated away from the original lattice
�θ � 0°� in Fig. 1(c), the Dirac degeneracy is levitated to open
a bandgap near the Dirac points. We define the lower- and
higher-frequency states at K (K 0) as represented by K 1 �K 0

1�
and K 2 �K 0

2�, respectively, in Figs. 1(b) and 1(d). When the
unit cells are rotated counterclockwise θ � 30°, two pairs of
valley states are presented as insets in Fig. 1(d). In addition,
these valley states in gap occupy chirality in the sense of circu-
larly polarized OAM, which is manifested by the phase distri-
bution of Ez , i.e., arg�Ez� [10,32]. For the K valley, the phases
of K 1 and K 2 have opposite vortex chirality at the positions of
p and q, respectively [denoted as p1 and q1 for θ � −30° and p2
and q2 for θ � �30° shown in the insets in Figs. 1(b) and 1(d)]
and vice versa for the K 0 valley. With the opposite signs of θ,
the frequency orders of the valleys corresponding to p and q
positions are reverse as shown in Fig. 1(e), indicating a typical
band inversion that leads to a topological phase transition [5].
The crayon and orange shadings in Fig. 1(e) mark out the com-
plete bandgap width of the system during synchronous rotation
of unit cells.

Let us focus on the properties of the K -valley state, i.e., K 1

and K 2 for its lower and higher band in frequency, respectively,
whereas the counterparts for the K 0 valley can be deduced by
TR symmetry (cf. Appendix B) [17,29,33]. We find that the
photonic valley states are chiral in the sense of phase singularity,
which can be readily seen from the electric fields in Fig. 2 where
the top and bottom panels display the phase and amplitude
distributions, respectively. In the positions of maximal Wyckoff
[13] q and p, the electric amplitudes Ez vanish, and, thus, the
phases become singular for the chiral valley states [34]. Note
that in our PhC unit of C3 symmetry, it has three maximal
Wyckoff positions: o at the center of the unit cell, and q and
p at the vertices of it [cf. Fig. 1(a) and Appendix D]. The elec-
tric fields above reveal a typical feature of the vortex field, align-
ing in flow directions defined by time-averaged Poynting
vectors S � Re�E ×H��∕2 [35], which are represented by

Fig. 1. (a) Left: Schematic of unrotated sampled PhC with lattice
constant a0 where the three positions in the C3 point group are labeled
by o, p, q, respectively. Right: Rotated unit cell with θ as the rotation
angle. (b)–(d) Dispersion bands of the valley PhC with θ � −30°, 0°,
and 30° [insets of (b) and (d) show the phase distributions]. Valley
points of lower and higher frequencies are labeled by K 1 �K 0

1� and
K 2 �K 0

2�, respectively. (b) When θ � −30°, at the p1 and q1 points
the phase distributions reveal that K 1 �K 0

1� and K 2 �K 0
2� have oppo-

site chiralities, whose handedness is indicated by the black arrow in the
insets. (c) When θ � 0°, the Dirac points appear at points K and K 0

in the FBZ, and the inset shows the FBZ of the triangular lattice.
(d) When θ � 30°, K and K 0 valley points near the bandgap are re-
versed in frequency order at q2 and p2 compared to panel (b). (e) The
blue and the red bands represent the frequency gap variation of the K
valley when the unit cell rotates between −60° and �60° in a period.
The crayon and orange shadings indicate the complete bandgap width
of bands when rotating for different angles. Note that no complete
gaps remain between −4° and �4°.
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the arrows of the lower panels in Fig. 2. Therefore, we can con-
trol the chirality of the valley vortex by choosing the source
chirality. Other than such valley-chirality locking, we also note
that the K 1 state in Ez field distribution in Fig. 2(a) actually
supports a whole circle of zero amplitude and singularity, and
that in Fig. 2(b) a Y-type singularity curve, other than discrete
singularity points. Recently, it has been suggested that the
HOTI state can be evaluated by integrating the Berry connec-
tion in the FBZ, which is actually the Zak phase along the
wave-vector direction [17,20,21,33]. The 2D Zak phase is con-
nected to the fractional polarization through θi � 2πPi for
i � 1, 2 where its Zak phase or polarization is completely de-
termined by the bulk property. In the 2D system, the bulk
polarization is defined in terms of the Berry connection as [36]

Pi � −
1

�2π�2
Z

d2kTr�Âi �, i � 1, 2, (1)

with i indicating the component of P along the reciprocal
lattice vector bi �i � 1, 2�. Here, �Ai�k��mn � −ihum�k�⋅
j∂kijun�k�i is the Berry connection matrix where m and n
run over occupied energy bands, and jun�k�i is the periodic
Bloch function for the nth band with k � k1b1 � k2b2 as
the wave vector, where k1, k2 are integers. In reciprocal space,
we can express the polarization in terms of the lattice vector
via a numerical integration in Eq. (1). Then, the bulk polari-
zation P of our PhC along b1,2 as illustrated in Fig. 3(a),
equaling �1∕3, 1∕3� or �−1∕3, −1∕3� for θ ∈ �10°, 30°� and
θ ∈ �−10°, −30°�, indicates the topologically nontrivial phase,
whereas (0, 0) for θ ∈ �−10°, 10°� is a trivial phase
(cf. Appendix C). In Fig. 3(a) the blue solid circles P1 and
the red hollow circles P2 represent the polarization values
in b1 and b2 directions. When θ ∈ �−10°, −30°�, P �
�−1∕3, −1∕3�. This means that the Wannier center is located
at the maximal Wyckoff position p as shown in Fig. 3(b).
When θ ∈ �10°, 30°�, P � �1∕3, 1∕3�. Wannier centers are
pinned to the maximal Wyckoff position q as shown
in the Fig. 3(c) inset. As the pillars in the unit cells rotate,

the topologically nontrivial polarization P varies from
�−1∕3, −1∕3� to �1∕3, 1∕3�. Consequently, the corner states
associated with different polarization values appear at the maxi-
mal Wyckoff positions due to valley selection.

Therefore, our HOTI supports, thus, defined corner states
in the bandgap, which appear at the maximal Wyckoff posi-
tions of the unit cell. Generally, in Cn-symmetric lattices, given
a choice of unit cell, there exist special high-symmetry points
(HSP) in the unit cell, which are called the maximal Wyckoff
position (cf. Appendix D). As in Eq. (1), the nontrivial second-
order topology and emergence of the valley-selective corner
states are theoretically characterized by the nontrivial bulk po-
larizations and the associated Wannier centers. Here, the
Wannier center refers to the center of the maximally localized
Wannier function and for nontrivial polarization insulators,
the Wannier center is located at the same position with the
maximal Wyckoff position in the unit cell [12,13].

3. NUMERICAL RESULTS AND DISCUSSION

To investigate the concept of valley-selective HOTI, we con-
struct nanodisks made of two types of triangular lattices with
distinct polarizations. When θ ∈ �−30°, −10°�, the eigenspectra
of our nanodisk are shown in Fig. 4(a). The two colored curves
indicate the eigenfrequency functions with θ for the two types
of vertices [up-corner I (U-I) and up-corner II (U-II) for
shorthand, respectively]. Here, we refer to the PhC with
θ � −30° as the up-triangular PhC (UPC) and θ � 30° as the

Fig. 2. Electric-field distribution jEz j�x, y� of the K -valley state
(low-frequency K 1, high-frequency K 2) at positions p, q (p, q indicate
positions with C3v symmetry). Parameter: rotational angle θ � 30°.
The upper and lower panels, respectively, represent the valley phase
and electric-field amplitude distribution of the large-period lattice,
and the arrows in the lower panel indicate the corresponding time-
averaged Poynting vector.

Fig. 3. (a) Bulk polarization changes when the unit cells rotate syn-
chronously. Red circles for P1, blue dots for P2, dotted line for the
theoretical calculation, and the inset for the schematic of the FBZ.
(b) Left: When θ � −30°, the polarization value along the wave-vector
b1,2 direction P1,2 � −1∕3 [bulk polarization P � �−1∕3, −1∕3�]
where the Wannier center in the unit cell aligns at the maximal
Wyckoff positions p (blue dots in the inset). Right: When θ � 30°,
bulk polarization P � �1∕3, 1∕3� where the Wannier center is located
at the maximal Wyckoff position q (red dots in the inset).
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down-triangular PhC (DPC). A schematic for our simulation is
shown in the left panel of Fig. 4(b) where the UPC is sur-
rounded by the DPC to interface a zigzag edge mode. The ei-
genfrequencies of a bulk-edge corner in the UPC structure are
shown in the right panel of Fig. 4(b) where the U-I and U-II
corner states both are triply degenerate. In the insets of
Figs. 4(b) and 4(e), Wannier centers are colored at the corners
of the UPC structure. As the electric field shows in Fig. 4(c),
Wannier center representation, illustrated by the red dots q in
the UPC structure, reveals the valley selectivity of U-I corner
states. Additionally, the blue dots q in the UPC structure
reveal the valley selectivity of the U-II corner state. When
θ ∈ �10°, 30°� the D-I and D-II corner states, respectively, ap-
pear below and above the edge state as shown in Fig. 4(d). From
the eigenfrequency distribution of the DPC structure, we find
that D-I and D-II corner states each also have three degenerate
corner states, and the Wannier center configurations (in red
dots) of the corner UPC structure are shown in the right panel
of Fig. 4(e); whereas the electric field in Fig. 4(f ) shows,
Wannier centers (cf. p, q points in the picture) of the UPC
and DPC are both fired by corner states. We speculate that
in the DPC case [cf. the left panel of Fig. 4(e)] the zigzag boun-
dary appears to disrupt and, hence, the corner states of the two
models are excited mixedly at the same time. Moreover, the
amplitude of the D-I corner electric field (f � 5.8301 THz)
is higher than that of the D-II corner electric field
(f � 6.4264 THz). For a further view of valley-selective
corner states, we construct two kinds of hexagonal nanodisks
forming armchair edges. Along some position of the armchair

edge, the corner state of a polarization model can be excited
separately, whose position is determined by its polarization
value of the unit cell (cf. Appendix E). We remark that the
valley selectivity behaves globally, which should apply beyond
the UPC and the DPC cases here.

Now, we set up full-wave simulation to verify the corner and
edge states above in one where the valley dependence of OAM
chirality can be exploited to achieve unidirectional excitation of
valley chiral states. In Fig. 5, we consider chiral line sources (in
blue pentagrams where we choose an LCP OAM source) with a
chiral phase, which are fired near the bottom of our PhC with
three zigzag boundaries. By switching the source frequency,
we can directly control the appearance of edge and corner states
as shown in Figs. 5(a) and 5(b). In the superunit where the
UPC is surrounded by the DPC, U-I and U-II corner states
are, respectively, excited at frequencies f � 5.9656 THz and
f � 6.0309 THz at the same frequencies as in Fig. 4(c). We
note that corner states rely more sensitively on frequency
parameters than edge ones do. Since the corner state transmits
with loss, the electric amplitude of the corner state near the
source remains higher than the further one. We choose fre-
quency f � 6.1700 THz to fire the edge states, and our sim-
ulation shows that electromagnetic waves propagate smoothly
along the interface even around sharp corners. It will promise
new methods for streering electromagnetic waves along arbi-
trarily cornered pathways (cf. Appendix G). In the nanodisk
where the DPC is surrounded by the UPC, D-I and D-II cor-
ner states are excited at f �5.8301THz and f �6.4264THz,
respectively. In addition, the edge states are excited at

Fig. 4. Up-corner states and down-corner states in a triangular nanodisk with opposite polarization. (a) Eigenfrequency evolution spectrum when
θ ∈ �−30°, −10°�. Red solid line for U-I corner states, and blue dot-dashed line for U-II corner states. (b) Left panel: Schematic for zigzag edges with
the DPC surrounding the UPC. Right panel: The UPC eigenspectra of the bulk-edge-corner states where the blue dots on the UPC indicate the
positions of the Wannier centers selected by U-I and U-II corner states. (c) Electric-field distribution jEz j�x, y� of the U-I corner states at frequency
f � 5.9656 THz and of the U-II corner state at frequency f � 6.0309 THz. (d) Eigenfrequency evolution spectra when θ ∈ �10°, 30°�. Red solid
line for D-I corner states, and blue dot-dashed line for D-II corner states. (e) Left panel: Schematic for zigzag edges with the UPC surrounding the
DPC. Right panel: The DPC eigenfrequency distribution of the bulk-edge-corner states. The red dot of the DPC superunit model represents the
Wannier center selected by the down-corner states. (f ) Electric-field distribution of D-I and D-II corner states at frequencies f � 5.8301 and
6.4264 THz, respectively.
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f � 6.1400 THz. Our results then show that corner states can
be selectively excited by tuning the source frequency in addi-
tion to valley selection.

4. CONCLUSION

To summarize, we numerically realized a valley-type second-
order topology due to unit-cell rotation characterized by the
nontrivial bulk polarization. Specifically, the corner states are
found to be valley dependent and, therefore, enable flexible
manipulation on the wave localization. Thus, topological
switches by valley selection of the corner states were numeri-
cally demonstrated in our paper. Our valley HOTI and the
valley-selective corner states provide preliminary understanding
on the interplay between the higher-order topology and the
valley degree of freedom, which may find potential applications
in valleytronics for future information carriers, such as wave-
guides, couplers, and topological circuit switches in the tera-
hertz regime [24,30,37–42].

APPENDICES

Appendices A–G below are for the details of the complete band
diagram, symmetry operation, polarization theoretical analysis,
maximal Wyckoff positions, corner state distribution along
armchair interfaces, and transport efficiency of the edge state
along two boundary types.

APPENDIX A: COMPLETE BAND DIAGRAM

The nontrivial bandgaps were distributed in the range of
5.5–6.5 THz, i.e., seventh band, which is what we focused
on in the main text. We then showed the complete band dia-
gram of the PhCs for three rotation angles. When θ � −30°
and θ � 30°, four complete bandgaps were produced. The
green regions indicated the nontrival bandgap, and the brown

regions indicated the trivial bandgap as shown in Figs. 6(a) and
6(c). At θ � 0°, bands 2, 3, 7, and 8 were closed in Fig. 6(b).
Four Dirac points (phase-transition points) appeared at K and
K 0, and the topological nontrivial bandgap disappeared. In the
main text, we analyzed that bands 7 and 8 reversed in frequency
order during rotation, and we noted that no edge states ap-
peared between bands 1 and 2 by rotation of the unit cells.

Fig. 6. TM mode dispersion diagrams when the PhC unit cell ro-
tates for different angles. (a)–(c) When θ � −30° and θ � 30°, four
complete bandgaps are produced, the green regions indicate the non-
trival bandgap, and the brown regions indicate the trival bandgap.
(b) When θ � 0°, bands 2, 3, 7, and 8 are closed. Four Dirac points
(phase-transition points) appear at K and K 0, and the topological non-
trivial bandgap disappears. (d) When θ � −30° and θ � 30°, the
phase distribution of bands 2 and 3 at points K and K 0. (e) Berry
curvature near K and K 0 for the 7th band.

Fig. 5. Simulated electric-field jEz j�x, y� for a configuration consisting of the UPC [cf. inset of Fig. 4(b)] and the DPC [cf. inset of Fig. 4(e)]. The
blue pentagram at the bottom of the configuration indicates a chiral OAM source. (a) Field distributions of the U-I and U-II corners and U edge
where the UPC is surrounded by the DPC are excited by left-handed circularly polarized (LCP) chiral sources with frequencies
f � 5.9650, 6.0310, 6.1700 THz. (b) Field distributions of D-I, D-II corners, and the D edge where the DPC is surrounded by the UPC
are also excited by LCP sources with frequencies f � 5.8301, 6.4260, 6.1400 THz.

1248 Vol. 10, No. 5 / May 2022 / Photonics Research Research Article



Here, we focused on analyzing the properties of K and K 0

points in bands 2 and 3. At θ � −30° and θ � 30°, we found
the K -valley states had opposite vortex chirality, and vice versa
for the K 0 valley shown in Fig. 6(d). With the opposite signs of
θ, the frequency orders of the valleys corresponding to p and q
states were reversed, indicating a typical band inversion that led
to a topological phase transition. Additionally, there was no
complete bandgap in bands 2 and 3, which, although, might
still host topological edge states (not shown here). In the main
text, we determined through the polarization value that the
bandgap between bands 7 and 8 was nontrivial. Furthermore
we numerically calculated the Berry curvature of band 7 accord-
ing to its eigenstates and found the opposite sign of Berry cur-
vature in different valleys as shown in Fig. 6(e). The Berry
connection of the 7th band can be defined as [32]

~A�~k� ≡ ihu~kj∇~kju~ki � i
I
unitcell

d2rε�~r�u�~k �∇~ku~k �, (A1)

where u~k is the electromagnetic fields, an asterisk denotes com-
plex conjugation, and ε�~r� is the spatial permittivity distribu-
tion. Note that the eigenstate amplitude was normalized such
that hu~kju~ki � 1 and that phases of each eigenstate should be
normalized by keeping the phase constant at one arbitrary
point. The gauge-independent Berry curvature Ω�~k� is
obtained by

Ω�~k� ≡ ∇~k ×
~A�~k� � ∂Ay�~k�

∂kx
−
∂Ax�~k�
∂ky

: (A2)

Figure 6(e) shows the Berry curvature near K and K 0 points of
the 7th band for valley PhCs. The extreme Berry curvature is
located at each of the two valley centers. Topological indices
at K and K 0 valleys are defined as the integration of Berry
curvature within half a BZ.

APPENDIX B: TR SYMMETRY AND ROTATION
SYMMETRY

We first reviewed in concept TR symmetry (TRS), then rota-
tion symmetry, and finally the interplay of the two of them.
Using these constraints, we then constructed the complete
set of invariants for C3-symmetry insulators. Insulators in this
class have TRS with a Bloch Hamiltonian satisfying [15]

Θh�k�Θ−1 � h�−k�: (B1)

Here, Θ � K is the TR operator, which consists only of com-
plex conjugation K . The operator obeys Θ2 � 1. Acting on an
energy eigenstate, we have

h�−k�Θjunki � Θh�k�junki � ϵn�k�Θjunki: (B2)

Thus, Θjunki is an eigenstate of h�−k� with energy ϵn�k�. This
means that we can write the expansion,

Θjunki �
X
m

jum−kiV mn
k , (B3)

where

V mn
k � hum−kjΘjunki � hum−kjun�k i (B4)

is the unitary sewing (transformation) matrix. Using Eqs. (B2)
and (B3), we write

h�−k�Θjunki � ϵn�k�Θjunki
� ϵn�k�

X
m

jum−kiV mn
k : (B5)

Next, using Eqs. (B2) and (B3), we have

h�−k�Θjunki � h�−k�
X
m

jum−kiV mn
k �

X
m

ϵm�−k�jum−kiV mn
k

(B6)

for every n. Furthermore, since the eigenstate forms an orthogo-
nal basis, Eq. (B6) above implies that

V mn
k �ϵn�k� − ϵm�−k�� � 0, (B7)

and

V mn
k⋆ � humk⋆ jun�k⋆i, (B8)

whereas for rotation symmetry, we proceed in a similar way to
that for TRS. Rotation symmetry is expressed as

r̂h�k�r̂† � h�Rk�: (B9)

Here, r̂ is the n-fold rotation operator, which obeys r̂n � 1.
Acting on an energy eigenstate, we have

h�Rk�r̂junki � r̂h�k�junki � ϵn�k�r̂junki: (B10)

Thus, r̂junki is an eigenstate of h�Rk� with energy ϵn�k�. We
can, then, write the expansion,

r̂junki �
X
m
ju−kiBmn

k , (B11)

where

Bmn
k � humRkjr̂junki (B12)

is the rotation sewing matrix. An analysis analogous to TRS
leads to the following expression:

Bmn
k �ϵn�k� − ϵm�Rk�� � 0 (B13)

for every m and n. This means that the sewing matrix Bmn
k only

connects states at K and Rk having the same energy.
Invariant points under rotation with C3 symmetry, in

C3-symmetric TCIs, there are only three threefold HSPs:
K ,K 0, and Γ. These points are shown in Fig. 7(b) for all
the crystalline symmetries.

Finally, we inspect the interplay between TRS and rotation
symmetry. The two operators commute

�Θ, r̂� � 0: (B14)

Thus, on one hand, we have

Θ�r̂julki� � Θ
�X

n

junRkiBnl
k

�

�
X
m, n

jum−RkiV mn
RkB

nl�
k : (B15)

On the other hand, we have

r̂�Θjulki� � r̂
�X

m

jun−kiV nl
k

�

�
X
m, n

jum−RkiBmn
−kV

nl
k : (B16)

Research Article Vol. 10, No. 5 / May 2022 / Photonics Research 1249



In the last expression, we have used the fact that R�−k� � −Rk.
From these two expressions, we concluded thatX

n

�V mn
RkB

nl�
k − Bmn

−kV
nl
k � � 0 (B17)

for all l ,m. We consider points k � Π such that

RΠ � Π,

in the BZ. Thus, if V ml
Π ≠ 0, rl�Π � rm−Π, this is possible only if

ϵm�−Π� � ϵl �Π�. Thus, we have that under TRS,
frnΠg �

TRSfrn�−Πg: (B18)

In in C3-symmetric TCIs, there are only three threefold HSPs:
K ,K 0 map into each other under TR. This implied that the

rotation invariants defined obeyed �K �3�
2 ��C3�K 0

3�.

APPENDIX C: QUANTIZATION OF
POLARIZATION

In this appendix, we review the quantization of polarization due
to Cn symmetry [15]. We denote the lattice vectors in real
space as a1, a2 and the corresponding reciprocal lattice vectors
in K space as b1, b2. The reciprocal lattice vectors satisfy

ai · bj � 2πδij: (C1)

Without loss of generality, we choose our lattice vectors and
reciprocal lattice vectors for each symmetry to be those shown
in Fig. 7. The conventional modern definition of polarization
per unit cell in 2D crystals is

P � −
e
S

Z
BZ

Tr�A�k��d2k, (C2)

where S is the area of the BZ and A is the Berry connection,
which has componentsAαβ�k� � −ihuα�k�j∇kjuβ�k�i defined
at each K point in the BZ. We parameterize the BZ as
k � s1b1 � s2b2 so that the integral in Eq. (C2) is

P � −e
Z

1

0

ds1

Z
1

0

ds2Tr�A�s1b1 � s2b2��, (C3)

where the determinant of the Jacobian matrix that transforms
the variables of integration from dkxdky to ds1ds2 cancels the
area of the FBZ. We define the quantity,

μi ≡ −
e
2π

Z
1

0

ds1

Z
1

0

ds2Tr�A�s2b2 � s1b1�� · bi, (C4)

so that the projection of polarization along the reciprocal lattice
vector bi is

P · bi � 2πμi : (C5)

In real space, we can express the polarization in terms of lattice
vectors, P � �p1a1 � p2a2� modulo integer linear combina-
tions of lattice vectors. Following Eq. (C1), the projection
of P along the reciprocal lattice vector is

P · bi � �p1a1 · bi � p2a2 · bi� � 2πpi: (C6)

Therefore,

p1 � μ1 mod e, p2 � μ2 mod e: (C7)

e is the electronic charge. Now, we analyze the role of rotation
symmetries. Under a rotation operation r̂n, the lattice vectors
transform as a 0i � T ij

naj (in the following, we assume the sum-
mation over repeated indices). The polarization becomes

P � piai → piT
ij
naj : (C8)

If the model is Cn symmetric, the change in polarization after a
Cn rotation can only be multiples of lattice vectors,

P � piai → �pi � ni�ai, (C9)

where ni ∈ Ze, i � 1, 2. Comparing Eqs. (C8) and (C9), we
find the constraints on the polarization due to rotation sym-
metry,

pjT
ji
n � pi � ni: (C10)

Without loss of generality, we choose the lattice vectors for C3

symmetric TCIs to be a1 � �1, 0� a2 � �1∕2, ffiffiffi
3

p
∕2� [see

Fig. 7(b)]. The polarization components,

p1 �
n2 − n1

3
, p2 � −

2n2 � n1
3

, for C3 symmetry.

(C11)

Since p1, p2 are defined as mod e, the constraints from the
above equations imply that with C3 symmetry, p1, p2 are quan-
tized to be 0, e∕3, 2e∕3, and the difference of the two polari-
zation components p1 − p2 is a multiple of the integer charge
n2. Therefore, the two polarization components are the same,

p1 � p2 mod e, forC3 symmetry. (C12)

The quantization of the polarization indicates that with non-
trivial polarization, the center of negative charges coincides
with maximal Wyckoff positions in each unit cell as shown
in Fig. 7(c). InC3-symmetric TCIs, the only possible nontrivial
polarizations are �e∕3, e∕3� and �2e∕3, 2e∕3� with the center of
negative charges located at the maximal Wyckoff position p or
q, respectively.

Fig. 7. (a) Schematic showing our choice of lattice vectors a1, a2 for
C3 TCIs. (b) BZ and reciprocal lattice vectors for C3-symmetric crys-
tals, b1 � 2π�1, −1∕ ffiffiffi

3
p �, b2 � 2π�1, 1∕ ffiffiffi

3
p �. FBZ of crystals with

C3 symmetries and their rotation invariant points; K and K 0 are three-
fold HSPs. (c) Three maximal Wyckoff positions in the C3-symmetric:
point o at the center of the unit cell and the points p, q at the corners of
the unit cell.
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APPENDIX D: UNIT CELLS AND MAXIMAL
WYCKOFF POSITIONS

In Cn-symmetric lattices, given a choice of unit cell, there were
special high-symmetry points within the unit cell, called maxi-
mal Wyckoff positions, that were invariant under rotations
(about the center of the unit cell) up to lattice translations.
Let us take the C3 symmetric lattice as an example (Fig. 7).
In Figs. 7(a) and 7(c), we have three maximal Wyckoff posi-
tions: the C3-symmetric point o at the center of the unit cell
and the C3-invariant points p, q at the corners of the unit
cell [15].

APPENDIX E: SELECTION OF VALLEY HOTI
CORNER STATES

Cutting the C3 lattice structure in different directions, at least,
two types of boundaries can be formed: the zigzag and the
armchair types. In the eigenmodes, the UPC and DPC are
bounded by each other to create edges [4]. To investigate
the valley-locking property in our valley HOTI, we constructed
two types of boundary structures with zigzag and armchair
edges. The valley-selection property of HOTI in the zigzag
boundary was shown in the main text where the U-II corner
states were induced by long-range interactions of the unit cell
[25] as shown in Fig. 4(d).

The valley selectivity was further manifested in the armchair
edges where the corner states surprisingly only emerged at three
(out of six) corners as shown in Figs. 8(a), 8(c), 8(d), 8(e), 8(f ),
and 8(g). In the UPC case, the eigenfrequencies of U-I and U-II
corner states were represented by blue and red dots, and the
brown dots indicated that there were corner states at the edge
of the model. Observing the electric field of the U-corner states,

it was found that the corners appeared in the blue (red) posi-
tions [cf. the inset of Fig. 8(a)] as shown in Figs. 8(b) and 8(c).
It is worth noting that the corner state only appeared at the
Wannier center with a polarization of P � �−1∕3, −1∕3� as
shown in Figs. 8(c) and 8(d). In the DPC case, we found the
frequencies of D-I and D-II corner states were the same as that
of U-I and U-II corner states. It was also found that the corner
state of the polarization of P � �1∕3, 1∕3� structure was ex-
cited alone. Whereas the D-I corner states only appeared in
the blue positions [cf. inset of Fig. 8(e)], the D-II corner states
only appeared in the red positions as shown in Figs. 8(g) and
8(h). In short, in the armchair-type model, the corner state of a
polarization model was excited separately, whose position was
determined by its polarization value of the unit cell.

APPENDIX F: THE BAND STRUCTURES OF
NANORIBBON SUPERCELLS

In this appendix, we calculate the projected band of the ribbon
surpercells for our valley photonic crystal (VPC). Consider four
types of supercells, comprising the zigzag and armchair interfaces
between the UPC and the DPC. From calculation, we know that
in the trivial bandgap between bands 1 and 2, rotation of unit
cells cannot induce topological edge states. Here, we focus on the
edge states of the nontrivial bandgap between band 7 and band 8
[cf. Figs. 6(a)–6(c)]. In the nontrivial bandgap, the black solid
line indicated the dispersion curve of the edge state, and the gray
area was marked according to the frequency intervals of the cor-
ner states as shown in Fig. 9. Note that, in Figs. 9(a) and 9(b),
frequency ranges of the zigzag edge states and corner states match
the eigenspectra of Figs. 4(b) and 4(e) in the main text. A
similar rule of valley selection for corner states applies as in

Fig. 8. Dual-polarization models (UPC and DPC) select the corner state in the armchair boundary. (a) Left panel: Schematic structure for
armchair edges with the DPC surrounding the UPC. Right panel: UPC eigenfrequency distribution of the bulk-edge-corner states. The red
and blue dots indicate the positions of U-I and U-II corner states, and the brown dots indicate those of corner states. (b)–(d) Electric-field dis-
tribution of U-I and U-II corner states. (e) Left panel: Schematic for armchair edges with the UPC surrounding the DPC. Right panel: DPC
eigenfrequency distribution of the bulk-edge-corner states. The red and blue dots indicate the positions of D-I and D-II corner states, and
the brown dots indicate those of the corner states. (f )–(h) Electric-field distribution of D-I and D-II corner states. Note that the U-I corner states
both appear at the same p positions in (b) and (c), and the D-I corner states appear at the same q positions in (g) and (h).
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Figs. 9(c) and 9(d). Because the two armchair-type interfaces have
the same shape, the edge state transmission is also the same [26].

APPENDIX G: TRANSPORT OF VALLEY EDGE
STATES

In order to further verify the edge-transmission features of our
design, we test five boundary types for waveguides and use the

chiral OAM source in Figs. 10(a)–10(e). It was shown that the
zigzag and the armchair boundaries were able to host scatter-
ingless states. Hereby, we define transmission efficiency in
Figs. 10(a), 10(b), and 10(d) as

T �dB� � 10 log10
Pout

Pin

� 10 log10

RR
poutdSRR
pindS

, (G1)

Fig. 9. Projection bands for the zigzag and armchair interfaces between the UPC and the DPC and its unit-cell layout. (a) The corner state of the
zigzag interface appears below the edge state. (b) The corner state of the zigzag interface appears above and below the edge state. (c) and (d) The
corner state of the armchair interface all appears below the edge state and the gray area is marked according to the frequency interval of corner states.
Note that we omit two edge dispersion curves in (c) and (d) resulting from irrelevant interaction due to perfect electrical conductor (PEC) boundaries
along the y direction.

Fig. 10. Defected waveguides of various shapes excited by an OAM source, which is an LCP OAM one. (a) In-line waveguide along the zigzag
interface; (b)–(e) curved waveguides along the zigzag interface; (f ) transmission spectrum for three zigzag edge states (a), (b), and (d) [cf. also the edge
mode of Fig. 9(a)], which gives a wide bandwidth between 5.9 and 6.5 THz.
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where pin and pout are the planar densities of power flow in
the input and output regions, respectively. By calibrating
transmission spectra around the bandgap of the zigzag-type
waveguide as shown in Fig. 10(f ), we found that the topologi-
cally protected edge state was also highly efficient in transmis-
sion therein.
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