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For camouflage applications, the performance requirements for metamaterials in different electromagnetic spectra
are usually contradictory, which makes it difficult to develop satisfactory design schemes with multispectral com-
patibility. Fortunately, empowered by machine learning, metamaterial design is no longer limited to directly
solving Maxwell’s equations. The design schemes and experiences of metamaterials can be analyzed, summarized,
and learned by computers, which will significantly improve the design efficiency for the sake of practical engineer-
ing applications. Here, we resort to the machine learning to solve the multispectral compatibility problem of
metamaterials and demonstrate the design of a new metafilm with multiple mechanisms that can realize small
microwave scattering, low infrared emissivity, and visible transparency simultaneously using a multilayer back-
propagation neural network. The rapid evolution of structural design is realized by establishing a mapping be-
tween spectral curves and structural parameters. By training the network with different materials, the designed
network is more adaptable. Through simulations and experimental verifications, the designed architecture has
good accuracy and robustness. This paper provides a facile method for fast designs of multispectral metafilms that
can find wide applications in satellite solar panels, aircraft windows, and others. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.442648

1. INTRODUCTION

Metasurfaces as two-dimensional counterparts of metamaterials
are subwavelength periodic or quasiperiodic arrays [1]. As con-
stituent elements of metasurfaces, small scatterers or apertures
have the characteristics to flexibly manipulate electromagnetic
(EM) waves, such as amplitude, phase, and polarization mode
[2–5]. The constituent elements of metasurfaces with tailored
EM properties significantly improved the capabilities of EM
control in different frequency regimes, leading to some fasci-
nating applications in theory and practice, such as perfect
absorbers, polarization-control devices, cloaking devices, and
planar lenses [6–9].

Because of the extraordinary ability of controlling EM
waves, the metasurface has a strong application value in the
field of EM camouflage technology. However, with the

development of multisensor detection technologies, the single-
spectrum camouflage technology is difficult to meet the
security requirements of scattering carriers. Fortunately, the
metasurface provides a new design method for multispectrum
compatible technology with its excellent control ability of EM
waves. At present, the mainstream detection methods include
optics, microwave radar, terahertz radar, and infrared detection
technologies [10]. Meanwhile, some methods have been pro-
posed to achieve better performance of the single-spectrum
camouflage.

At microwave frequencies, EM absorption [11,12], scatter-
ing [13,14], polarization conversion [7,15], and other mecha-
nisms have been widely used to reduce the radar cross section,
thus, achieving stealth for microwave radar detectors. For the
infrared, the fabrication and spraying of an infrared low emis-
sivity coating can effectively reduce the infrared heat radiation
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and realize infrared stealth [16,17]. In the visible (VIS) spec-
trum, digital camouflage and high transparency materials
have been widely used in camouflage and compatibility of
the VIS spectrum [18–20]. The above-mentionedmethods have
achieved excellent camouflage performance in the correspond-
ing spectra. However, due to different camouflage mechanisms
in such spectra, the compatibility among different spectra will be
deteriorated. Therefore, it is of great significance to integrate
these methods efficiently to achieve multispectrum compati-
bility.

In order to harmonize the compatibility among different fre-
quency spectra, some scholars have provided many solutions
through composite material design and structural design.
From the perspective of composite materials, the emissivity
and absorptivity can be supervised by adjusting the doping con-
centration of different substances, and then the compatibility
between microwave and infrared can be realized [21,22]. In
structural design, loading a photonic crystal film or a metasur-
face can realize radar-infrared compatibility. The thin film
based on photonic crystals is expected to achieve low infrared
and VIS features through photonic crystals and an optical in-
terference mechanism [23,24]. In the design of a multispectral
compatible metasurface, a layer of periodic conducting patches
with a high occupation ratio that is put on the top surface can
reduce the infrared emissivity effectively [25–27]. Moreover,
due to the transparency, flexibility, and customizable square re-
sistance of indium tin oxide (ITO) [28], a two-dimensional
periodic conductive patch array was proposed by using the
ITO films with high conductivity and transparency, which
has frequency selectivity and is compatible with low infrared
emissivity and the VIS spectrum [29–31].

Altogether, the aforementioned processes can be mainly
summarized as the following steps. First, the structure is mod-
eled with 3D modeling software. Second, the model is parame-
terized and approximated as a finite element by mesh
generation. Then, the EM responses are obtained by solving
Maxwell’s equations, the simulation results are evaluated, the
parameters of the model are updated, and the structural param-
eters are determined by constantly cycling this process. Finally,
the prototype is fabricated, and the compatibility is verified by
measurement. However, the parameter sweepings and mesh
generation of finite element calculation are both time consum-
ing and labor consuming, which affect the progress and quality
of the whole calculation. Optimizing the process can effectively
save the design time and improve design efficiency. In addition,
the traditional design method needs the researchers’ hard work
based on physical principles or intuition and experience in
long-term scientific research, which raises the design threshold
of the metamaterials. The emergence of machine learning algo-
rithms gives the researchers more freedom from the summary of
physical laws and experiences, making the intelligent design
and accelerated design possible.

Recently, artificial intelligence has attracted growing atten-
tion due to its remarkable success in image processing [32],
natural language processing [33], pattern recognition [34],
and so on. Machine learning as a representative algorithm pro-
vides a new workaround for associating material design [35].
The combination of machine learning and metamaterials

makes metamaterial design less dependent on the experience
obtained from the previous practice and the intuitive reasoning.
In machine-learning-empowered metasurface designs from the
design direction of structure and EM response, the common
design paths mainly include two types, namely, forward
prediction and backward deduction. The forward prediction
means that the spectrum curve is obtained through the input
of structural parameters, and the accelerated calculation of
the phase and amplitude response of the specified unit can be
obtained through the forward prediction framework [36–42].
Conversely, the inverse deduction framework obtains the struc-
tural parameters by inputting the spectrum, for example, quickly
deduces the metamaterial unit structure using the phase or
amplitude spectrum curve, thus, simplifying the optimization
design process of the structural parameters [43–48]. The afore-
mentionedmethods inspire the creativity ofmetamaterial design
and extend novel design methods for metamaterials, which can
be readily extended to other material design scenarios.

In this paper, we propose a computer-aided design method
of metasurface using a multilayer neural network (NN), which
is trained by the backpropagation (BP) algorithm. The de-
signed NN architecture is composed of a four-layer artificial
neuron aiming to improve the accuracy of modeling by adjust-
ing the forward-propagation signal and backpropagation error
simultaneously. Based on this architecture, a metasurface film
called a metafilm with adaptability is designed and optimized.
Differently from the traditional numerical simulation methods,
we employ an NN instead of parameter scanning to accelerate
the design of the unit. In order to train the model, datasets are
collected from different materials. The datasets are randomly
divided into a training set, a validation set, and a test set
according to the proportions of 80%, 10%, and 10%.
Impressively, the training results show that the average error
is less than 0.6 and the linear regression fitting degree is about
95%, which indicates that the trained network can match the
parameters quite well with high robustness. The model success-
fully establishes the mapping between reflectivity and structure
with high precision, which provides a huge convenience for the
subsequent design. In order to verify our design, different ma-
terials are selected as carriers of the metafilm. The sketch of this
work is shown in Fig. 1, which illustrates a VIS-infrared-
microwave compatible metasurface. By fitting different reflec-
tivity curves and substituting them into the network, the
parameters of the structure can be quickly reversed. In order to
consider the subsequent processing tests, the structural param-
eters are further optimized. Due to the isolation nature of the
design unit, further ITO patches can be added to the blank area
to improve its filling ratio. The size of the patch is optimized by
a parameter sweep. Finally, polymethyl methacrylate (PMMA)
is selected as the dielectric substrate, the metafilm is successfully
designed and attached to the carrier, and a multispectral com-
patible metasurface (MCM) is fabricated and measured. For the
VIS light, the metafilm is transparent, and the mean transmit-
tance reaches 68% at 400–800 nm. For the microwave, MCM
can achieve co-polarized reflectivity reduction in the X band.
For the infrared, the infrared emissivity is reduced to 0.31. The
designed NN has high accuracy and response, which can in-
stantaneously obtain the structural parameters. Importantly,
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the designed metafilm can be readily applied in multispectral
compatible camouflage and protection.

2. DESIGN METHODS

A. Structure and NN Design
Figure 2 shows the structure design and BPNN design.
Figure 2(a) shows the parameters and materials of the metasur-
face we designed, which has three layers including the top func-
tional metafilm, the intermediate layer of the dielectric
substrate, and the bottom reflected backplane. The indigo di-
electric substrate represents the carrier of the metafilm, whose
EM parameters are determined according to the specified ma-
terials. The magenta regions are the ITO with 10Ω/sq, and the
green regions are polyethylene terephthalate (PET) with a
dielectric constant of 3.0 (1–j0.06). Here, we employed the
commercial ITO film in which the ITO is attached to PET.
The ITO with 10 Ω/sq is put on PET to form a metafilm. The
thicknesses of PET t are 0.05 mm and of ITO is 185 nm. The
other parameters are to be designed, a means period size, b is
the outer boundary of the patch, c is the inner boundary of the
patch, d is the thickness of the dielectric substrate, and e is the
width of the gap of the patch. Figure 2(b) shows the architec-
tural design of the BPNN, including four layers of neurons,

which are the input layer, two hidden layers, and one output
layer. The reflectivity curve extracts 1001 values at equal inter-
vals as input; therefore, the input layer contains 1001 neurons.
Each of the two hidden layers contains 10 neurons, and the
output layer contains 5 neurons. Figures 2(c) and 2(d) show
the configuration details of the neuron in the hidden layers
where the activated function is a hyperbolic tangent function,
and the expression is shown in Eq. (1). Figure 2(e) exhibits the
configuration of a neuron in the output layer in which the ac-
tivated function is a linear transfer function, which is expressed
as Eq. (2).

f �x� � 2

1� e−2x
− 1, (1)

f �x� � x, (2)

where x is the input variable and f �x) is the output value. The
mean-square error function is defined as a loss function to mea-
sure training performance and is expressed as Eq. (3),

loss � 1

n

Xn
i�1

�yi − ŷi�2, (3)

where yi is the predicted value, ŷi is the true value, and n is the
number of samples. The smaller the loss, the more accurate the

Fig. 1. Schematic of this work: a multispectral compatible metasurface is designed via machine learning, which is compatible with VIS, infrared,
and microwave frequencies.
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model prediction. Levenberg–Marquardt is employed to train
the network because of its fast convergence [49].

B. NN Training
Different training data can be obtained by replacing different
dielectric substrates. Herein, PMMA with a dielectric constant
of 2.25 (1–j0.001) as an example is used as a substrate for dem-
onstration. The structures are randomly generated, and the cor-
responding EM responses are obtained by simulation. So as to
collect dataset, full-wave EM simulations were carried out using
the frequency-domain solver in CST Microwave Studio. The
boundary condition of the simulation setting is that X and
Y directions are set as the “unit cell,” and the Z direction is
set as the “open add space.” The unit is placed on the XOY
plane, and the EM waves are incident from the Z direction.
A total of 1388 units are randomly generated and simulated,
and the mapping between the structure and the EM response
is recorded. However, the same reflectivity curves can be gen-
erated by different structural parameters, and the structural
parameters corresponding to these curves are quite different,
that is, the collected source data have nonsingle mappings of
parameters and reflectivity curves. In the training of the
NN, nonsingle mapping will deteriorate the performance of
training. Therefore, the nonsingle mapping in the dataset is
preprocessed. The Euclidean distance between different data
is calculated in the structural parameters and reflectivity curves,

respectively. The same reflectivity curves can be generated by
different structural parameters, and the structural parameters
corresponding to these curves are quite different, that is, the
collected source data have nonsingle mapping of parameters
and reflectivity curves. Euclidean distance is introduced to
address the nonsingle mapping of the dataset, which can be
calculated by Eq. (4),

d �A,B� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A1 − B1�2 � �A2 − B2�2 � � � � � �An − Bn�2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i�1

�Ai − Bi�2
s

, (4)

where d �A,B� is the distance of vectors A and B, Ai and Bi
represent the element of a vector, and n is the dimension of
a vector. After preprocessing, the number of the dataset is re-
duced to 694, and the dataset is divided into a training set, a
validation set, and a test set according to the proportions of
80%, 10%, and 10%. The training process and results are
shown in Fig. 3. Figure 3(a) illustrates the performance varia-
tion during training in which the loss function values converge
to the 33rd epoch, and the minimum validation value is 0.397.
For the predicted parameters a, b, c, d , and e, the mean-square
errors of these parameters on the dataset are [0.9917, 0.5455,
0.0665, 0.2924, and 0.0028]. In addition, the normalized val-
ues of all variables are calculated to characterize the error range
of each variable. The relative errors of these parameters are

Fig. 2. Structure design: (a) three-dimensional structure diagram and geometrical parameter of the unit, (b) the architecture of BPNN, and
(c)–(e) details of neurons.
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[0.1084, 0.1317, 0.1608, 0.1861, and 0.3820]. Figure 3(b)
shows the validation checks of the training process in which
the error no longer drops in the 33rd epoch and keeps the
lowest for 6 consecutive epochs. The validation checks mean
that the value of the loss function no longer decreases. The ter-
mination condition is set to keep the loss function value from
falling for six consecutive epochs. Figure 3(c) shows the error
histogram, which is similar to normal distribution, that is, most
sample errors are distributed around 0. Figure 3(d) is a regres-
sion plot, which shows the relationship between the outputs of
the network and the targets. In Fig. 3(d), the x axis means target
values, and the y axis means output values. The regression co-
efficient of all the samples is 0.95, indicating the high degree of
fitting. After verification, the final fitting degree of all the sam-
ples can reach 95.645%. After training, the prediction time of
the network is less than 1 s. In order to explore the extensibility

of the model, different dielectric substrates are replaced
for training and testing. FR4 [with a dielectric constant of
4.3 (1–j0.3)], F4B [with a dielectric constant of 2.65
(1–j0.001)], and PI [with a dielectric constant of 3.4
(1–j0.003)] are used as dielectric substrates to train and test the
model. In other words, the different material datasets are col-
lected to train the BPNN, respectively. The training results are
recorded in Table 1. From Table 1, we can see that the network
under different materials can converge quickly with high accu-
racy, which means that the model can be extended to different
material datasets. Therefore, after training the model through
different datasets, different film patterns can be customized for
different dielectric substrates for attachment, that is, the model
has better adaptability.

C. Structure-Aided Design and Optimization
Herein, an MCM is designed with PMMA as the carrier.
Different reflectivity curves are generated and input into the
network to test the prediction accuracy of the model. Three
nonlinear curves and three nearly linear curves are used as input
reflectivity curves, respectively. Six curves are named lines 1–6
in sequence, which are shown in Fig. 4(a). With lines 1–6 input
into the NN, the derived parameters are shown in Fig. 4(b),
and the 3D views of six corresponding structures are captured
in Fig. 4(d). Then, the reflectivity curves of the six structures
are simulated, and the simulation results are shown in Fig. 4(d).
Figures 4(a) and 4(c) illustrate that the simulation results are
consistent with the input curves. Although there is a slight
deviation between the prediction and the simulation results,

Fig. 3. Process and results of NN training: (a) the variation of MSE
in the training process, (b) examination of the training process, (c) error
histogram of trained network, and (d) the regression plot of all the
samples.

Table 1. Training Performance of Different Dielectric
Substrates

Material Epoch Training Validation Test

PMMA 33 0.3966 0.3790 0.5050
F4B 21 0.4193 0.4501 0.5223
FR4 10 0.4914 0.5413 0.5642
PI 15 0.5358 0.5511 0.5581

Fig. 4. Prediction and verification of structures and EM response by the NN: (a) six generated curves, (b) structural parameters of network
prediction, (c) simulation results of the predicted structures, (d) the structures corresponding to the predicted parameters, (e) structural parameters
verified by CST program for different materials, and (f ) comparison between the input curves and the predicted curves with different materials.
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the prediction accuracy of the NN model is still verified.
Furthermore, in order to explore the expandability in different
scenarios, we employ different dielectric substrate materials
[FR4, F4B, and polyimide (PI)] and input reflectivity curves.
The materials are F4B (εr � 2.65 and tan δ � 0.001), FR4
(εr � 4.3 and tan δ � 0.025), and PI (εr � 3.4 and
tan δ � 0.003). Different datasets for different materials are
collected to train the BPNN. In addition, then CSTMicrowave
Studio is used to verify the predicted patterns, and all the
processes and results are recorded in Figs. 4(e) and 4(f ).
The results show that the model still has good accuracy and
robustness under different materials, which fully verifies that
the architecture we designed has good adaptability for different
materials.

Considering the machining accuracy and the parameters of
the commercial dielectric substrate, the structure corresponding
to line 1 is further optimized for manufacturing. The resonance
of the patch with a gap is mainly located at a gap and an internal
junction [50]; therefore, some conductive patches can still be
added in the inner blank area to increase the conductive area.
Based on structure 1, a further optimization design is carried
out, and the final structural parameters are shown in Fig. 5(a) in
which the thickness of PET t � 0.05 mm, period size
a � 5.4 mm, outer boundary of the patch b � 5.0 mm, inner
boundary of the patch c � 1.0 mm, the thickness of the
dielectric substrate d � 2.0 mm, and the width of the gap

e � 0.11 mm. Compared with the structure in Fig. 2, the ITO
area ratio of the optimized structure is increased from 77.08%
to 80.51% without affecting the reflectivity. The reflectivity of
the structure at different incident angles is obtained by simu-
lation, and the results are shown in Fig. 5(b). In Fig. 5, R
represents the reflectivity, and A represents the absorptivity.
Ryy and Rxy represent the co-polarized reflectivity and cross-
polarized reflectivity, respectively. It can be seen from Fig. 5(b)
that the reflectivity reduction is achieved at 0°–50° incident an-
gles. In order to explore the causes of reflectivity reduction, the
distribution of the electric field and the surface current is moni-
tored, which is shown in Figs. 5(e) and 5(f ), respectively.
Figure 5(e) shows the distribution of the electric field in the
top surface, which illustrates that the ITO surface realizes the
enhancement of the electric field and loses the energy of EM
waves. Figure 5(f ) shows the distribution of the surface current,
which illustrates that the surface current has a component in
the orthogonal polarization direction. From the above analysis,
the reduction of the co-polarization reflectivity is caused by two
parts, including EM absorption and orthogonal polarization ro-
tation. Because of multimechanism reflection, the proportion
of different components is calculated by reflectivity curves, and
the efficiency ratio is recorded in Fig. 5(c). Figure 5(d) is the
proportion of energy of each component at 8, 10, and 12 GHz
in which the EM absorption and orthogonal polarization con-
version reduce the reflectivity of the co-polarization.

Fig. 5. Structure optimization and mechanism analysis: (a) three-dimensional structure diagram and geometrical parameter of the optimized
structure, (b) the simulation of co-polarization reflectivity (Ryy) at different incident angles, (c) the efficiency of different mechanisms including
co-polarized reflectivity (Ryy), cross-polarized reflectivity (Rxy), and absorptivity (A), (d) the efficiency proportion of different mechanisms, (e) the
E-field distribution, and (f ) the surface current distribution.
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After optimizing the geometrical parameters of the sample,
the area of the surface conductive layer reaches 80.51%.
According to an empirical formula, the emissivity ε of the sam-
ples is related to the proportion of different materials, which
can be calculated from Eq. (5) [25,29],

ε � εI f I � εSf S , (5)

where ε is the emissivity of the sample surface; εI and εS are the
emissivities of the ITO with 10 Ω/sq and the PET substrate,
respectively. f I and f S represent the occupation ratios of ITO
and PET, respectively. The emissivities of ITO and PET are
measured by a TSS-5X infrared emissivity meter, where
εI � 0.18 and εS � 0.86. The occupation ratios of ITO
and PET are f I � 80.51% and f S � 19.49%, and therefore,
the emissivity of the metafilm is about 0.3125.

3. EXPERIMENT AND VERIFICATION

In order to further validate the performance of our design, the
metafilm is fabricated by a laser carving technique. The com-
mercial ITO is employed as the base material. The ITO with
10Ω/sq is etched on PET, and the thickness of ITO is 185 nm.
The pattern of our design is engraved on the ITO film, and the
processing is shown in Fig. 6(a). The commercial ITO film is
plated on the whole surface of PET. Therefore, the designed
structure regions are reserved, and the regions without structure
are etched by laser engraving technology to achieve the prefab-
ricated structure. The fabricated metafilm is presented in

Fig. 6(b) from which we can see that the metafilm is transpar-
ent. The VIS light transmittance is measured by UV-VIS
spectrophotometer Agilent Cary 5000; the measured transmit-
tances of the ITO film and the metafilm at 400–800 nm are
recorded in Fig. 6(c). The mean transmittances of the entire
ITO and metafilm reach 66% and 68%, respectively, which
implies the samples have high transmittance. It is worth men-
tioning that the fabricated metafilm as shown in Fig. 6(d) is
flexible, which can be bent and attached to the curved surface
carrier for working.

The fabricated metafilm is attached on PMMA, and the mi-
crowave measurement is carried out using an anechoic cham-
ber. The measurement environment is presented in Fig. 7(a) in
which the sample is placed on the test board and a pair of
X-band horn antennas are used as receiving and transmitting

Fig. 6. Sample fabrication and performance characterization: (a) the
processing of the metafilm, (b) the details of the fabricated metafilm,
(c) the measurement of VIS light transmittance, and (d) demonstration
of the flexible metafilm.

Fig. 7. Measurement environment and results: (a) microwave mea-
surement environment, (b) the measured and simulated reflectivities of
the sample, (c) the measurement of mean infrared emissivity, and
(d) the measurement of infrared emissivity at 3–14 μm.

Fig. 8. Measurement of infrared radiation performance: (a) ITO
(10 Ω/sq), PMMA, PET, and the metafilm on heating platform,
and (b)–(d) infrared radiation detection at 28°C, 50°C, and
100°C.
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equipment to measure the reflectivity. The measurement results
are captured by a vector network analyzer (Agilent E8363B),
which are recorded in Fig. 7(b). A slight misalignment here
between the simulation and the measurement may be caused
by machining error and edge scattering. Nevertheless, the
measurement results still demonstrate that the sample can
reduce reflectivity in the X band. Subsequently, as shown in
Fig. 7(c), the mean infrared emissivity of the metafilm mea-
sured by the TSS-5X infrared emissivity meter is 0.31. To fur-
ther verify the detailed infrared emissivity in the infrared range
of 3–14 μm, an infrared spectrometer is employed to measure
the infrared emissivity. The measurement result with equip-
ment is shown in Fig. 7(d), which indicates that the emissivity
of the metafilm is 0.3 approximately in the infrared range of
3–14 μm.

Furthermore, the thermal radiation performance of the sam-
ples at different temperatures is measured by infrared thermal
imager G120EX, and the measurement environment is shown
in Fig. 8(a) where the four samples are placed on the heating
plate. The thermal radiations at 28°C, 50°C, and 100°C are
measured, respectively, and the captured results are presented
in Figs. 8(b)–8(d). The measurement results show that PET
and PMMA have higher thermal radiations, whereas ITO
and the metafilm have lower thermal radiations, which fully
demonstrates that the designed metafilm has lower infrared
thermal radiation performance.

4. CONCLUSION

Here, we applied a multilayer BPNN to design a metafilm,
which can achieve the VIS-infrared-microwave compatibility.
The datasets of the metafilm with different dielectric substrates
were collected to train the BP network, which makes the net-
work adaptable to different materials. Through training, the
mapping between the reflectivity and the structural parameters
was successfully established. As an example, PMMAwas chosen
as the substrate to carry the metafilm. Given a reflectivity curve,
the acquisition of its corresponding structural parameters no
longer completely depended on the numerical calculation
method of simulation software but was directly derived by
the inverse design of the NN. In this way, an initial optimiza-
tion unit was obtained, and the structure was optimized on the
basis of considering the processing factors. Finally, the opti-
mized metafilm and PMMA formed the MCM, which can
achieve VIS-infrared-microwave compatibility. For VIS light,
the mean transmittance of the designed metafilm reached
68% at 400–800 nm. For the infrared, the emissivity of the
metafilm is reduced to 0.31; meanwhile, it had low infrared
heat radiation. For microwave, the MCM can achieve the re-
flectivity reduction with the efficiency more than 90% in the
X band. The design utility of the BPNN is comprehensively
demonstrated via the mapping between reflectivity and
structure, also validated by measurement of a multifunctional
metasurface involving VIS-infrared-microwave compatibility.
Importantly, this architecture can establish the mapping from
EM response to electrical structure and was expected to accel-
erate the design process. In the future, this method can also be
extended to the design of phase or polarization, and the

metafilm has an important application value in the field of
camouflage and protection fields.

APPENDIX A: PREPROCESSES OF THE
DATASET

The same reflectivity curves can be generated by different struc-
tural parameters, and the structural parameters corresponding
to these curves are quite different, that is, the collected source
data have nonsingle mapping of parameters and reflectivity
curves. As shown in Eq. (4), Euclidean distance is introduced
to address the nonsingle mapping of the dataset. According to
Eq. (4), the Euclidean distances between pairwise units are cal-
culated. The distances of the original dataset are shown in
Figs. 9(a) and 9(b). Additionally, the distances of the clipped
dataset are shown in Figs. 9(c) and 9(d). From Fig. 9, we can
see that some regions have nonsingle mapping. The dataset can
be preprocessed with the distance matrices. After filtering, 694
units were retained as the new dataset.

APPENDIX B: TRAINING PROCESSES OF
OTHER MATERIALS

In order to demonstrate that the BPNN is effective in more
scenarios, we employed the other dielectric substrate materials
as carriers to validate the adaptability of the BPNN. The ma-
terials are F4B (εr � 2.65 and tan δ � 0.001), FR4 (εr � 4.3
and tan δ � 0.025), and PI (εr � 3.4 and tan δ � 0.003).
Different datasets for different materials are collected to train
the BPNN. Figures 10(a)–10(c) illustrate the training process
of different material datasets from which all the trainings
converge on about 10 epochs. Figures 10(d)–10(f ) illustrate
the error of fitting, which is the validation of the training
process. According to the training results of different
materials, the BPNN is effective and can be generalized to more
materials.

Fig. 9. Euclidean distance matrices: (a) and (c) distance matrices of
reflectivity curves, and (b) and (d) distance matrices of structural
parameters.
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