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Non-Hermitian physics has found a fertile ground in optics. Recently, the study of mode coalescence, i.e., excep-
tional points, has led to the discovery of intriguing and counterintuitive phenomena. Degeneracies are typically
modeled through the coupled mode theory to determine the behavior of eigenstates and eigenvalues. However,
the complex nature of the eigenvalues makes their characterization from the response spectrum difficult. Here,
we demonstrate that a coherent interferometric excitation allows estimation of both the real and imaginary parts
of the eigenvalues. We study the clockwise and counter-clockwise modes in optical microresonators both in the
case of Hermitian and non-Hermitian intermodal coupling. We show the conditions by which a resonant doublet,
due to the dissipative coupling of counter-propagating modes caused by surface roughness backscattering, merges
to a single Lorentzian. This permits us to estimate the optimal quality factor of the microresonator in the absence
of modal coupling caused by backscattering. Furthermore, we demonstrate that a taiji microresonator working at
an exceptional point shows a degeneracy splitting only in one propagation direction and not in the other. This
follows from the strongly non-Hermitian intermodal coupling caused by the inner S-shaped waveguide. © 2022
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1. INTRODUCTION

In an open system, energy can be exchanged with the environ-
ment. Its description by a Hermitian Hamiltonian is approxi-
mated, because the conservation of energy is not a priori
satisfied [1]. In this case, a non-Hermitian Hamiltonian has
to be used, which leads to many fascinating new phenomena
[2]. A radical difference between non-Hermitian (dissipative)
and Hermitian (conservative) physics arises in the presence
of degeneracies, i.e., when the Hamiltonian eigenvalues coa-
lesce [3]. In the conservative case, these degeneracies are called
diabolic points, while in the dissipative one they are called ex-
ceptional points. The former are characterized by real eigenval-
ues that coalesce while maintaining orthogonal eigenvectors
[4]. In contrast, the latter are characterized by complex eigen-
values that coalesce simultaneously with the eigenvectors [2].
Close to these exceptional points, counterintuitive and in-
triguing phenomena occur [3,5]. Since the propagation of light
is generally affected by losses, optics constitutes one of the most
fertile grounds to study open systems [6].

In recent years, the realization of optical structures working
near exceptional points has allowed the demonstration of

non-trivial effects such as unidirectional invisibility [7–9],
loss-induced transparency [10], directional emission [11–13],
and the PT-symmetric laser [14]. Typically, these optical sys-
tems are based on microring resonators, which are described
within the temporal coupled mode theory [11,15]. In these sys-
tems, knowledge of the eigenvalues represents a fundamental
aspect. However, their complex nature makes difficult a simple
and direct estimation from their optical response spectra.

In this work, we describe a method to estimate non-
Hermitian eigenvalues based on a coherent interferometric
technique to excite the modes of an optical microresonator.
The coherent interferometric excitation technique is based on
the simultaneous excitation of the clockwise and counter-
clockwise modes of a microresonator coupled to a bus wave-
guide. Its key aspect is that the microresonator response
depends on the relative phase difference of the signals input
at the two sides of the bus waveguide (Fig. 1). We apply
the coherent interferometric excitation to representative
Hermitian and non-Hermitian systems which are based on a
simple microring or taiji microresonator [8]. In the former case,
the coupling between the counter-propagating modes is given
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by the surface-wall roughness, i.e., the backscattering [16],
while in the second, it is related to an S-shaped waveguide em-
bedded in the taiji microresonator [17–19].

In Section 2, we model the bus waveguide/microresonator
system response as a function of the relative phase between the
signals input in the forward and reverse directions. We show
the merging of the resonant doublet, due to the microresonator
modes, into a single Lorentzian. We propose an analytical ex-
pression for the eigenstates and eigenvectors. We demonstrate
that, in both the Hermitian and non-Hermitian cases, the co-
herent interferometric excitation can be used to determine the
microresonator Q-factor in absence of the surface roughness
losses. For Hermitian systems, we show that the coupling co-
efficients can be estimated from the spectral position of the sin-
gle Lorentzian resonances. For non-Hermitian systems, we
demonstrate that the complex nature of the eigenvalues and
their characteristic parameters can be studied by changing the
relative intensities and phases of the input signals in the coher-
ent interferometric excitation. In this framework, we show that
the taiji microresonator works on an exceptional point and we
show a direction-dependent response due to the coherent in-
terferometric excitation. A resonance splitting is predicted only
for transmission in the propagation direction, which couples to
the reflection of the inner S-shaped waveguide.

In Section 3, we implement the coherent interferometric
technique in a simple setup and study two different types of
microresonators where non-Hermitian physics can be demon-
strated. We extract the different parameters (intrinsic and ex-
trinsic loss coefficients, real and imaginary intermodal coupling
coefficients) for a simple microring resonator and a taiji micro-
resonator, and we validate the model by fitting their transmis-
sion spectra.

2. THEORETICAL MODEL

Let us consider the electric field amplitudes of the clockwise
(αCW) and counter-clockwise (αCCW) propagating modes in
a simple or taiji microresonator coupled to a bus waveguide
[Figs. 1(a) and 1(b)]. We model these systems with the tem-
poral coupled mode theory and the properties of a time-
reversal-invariant system [19–21]. Therefore, αCW and αCCW
are solutions of [22]

i
d

dt

�
αCCW

αCW

�
�
�
ω0 − i�γ� Γ� −iβ12

−iβ21 ω0 − i�γ� Γ�

��
αCCW

αCW

�

−
ffiffiffiffiffiffi
2Γ

p �
E in,L

E in,R

�
, (1)

where ω0 is the angular frequency of the microresonator res-
onance, E in,L (E in,R) is the electric field amplitude input into
the left (right) edge of the bus waveguide, γ and Γ are the in-
trinsic and extrinsic damping rates, and β12 and β21 are the
intermodal coupling coefficients. Precisely, γ describes the
losses of the cavity related to intrinsic factors, such as material
absorption and bending, while Γ refers to the coupling with the
bus waveguide. It is worth noting that γ and Γ are real numbers
while β12 and β21 are complex numbers. These latter describe
the energy exchange between the counter-propagating modes,
which can have either Hermitian (conservative) or non-
Hermitian (dissipative) nature. In a simple microring, the inter-
modal energy exchange is caused by the backscattering, which
yields complex coupling coefficients with independent real and
imaginary parts [22]. In a taiji microresonator, neglecting the
backscattering, β21 reduces to zero while β12 is defined by the
inner S-shaped waveguide [8,17,23].

In the interferometric excitation technique, electric fields
E in,L :� εin,Le−iωt and E in,R :� εin,Reiϕe−iωt are coherently in-
put from both sides (left L, right R) of the bus waveguide and
the transmitted fields Eout,L and Eout,R are measured to probe
the system response. Note the phase difference ϕ between E in,R
and E in,L. The input and output fields are related by [20,22]:�

Eout,R
Eout,L

�
�
�
E in,L
E in,R

�
� i

ffiffiffiffiffiffi
2Γ

p �
αCCW
αCW

�
, (2)

where in the steady state αCW=CCW :� aCW=CCWe−iωt .
Equations (1) and (2) lead to the following steady-state output
field amplitudes:

εout,R �
�
1 −

2Γ�−iΔω� γ � Γ�
�−iΔω� γ � Γ�2 − β12β21

�
εin,L

�
�

2Γβ12
�−iΔω� γ � Γ�2 − β12β21

�
eiϕεin,R , (3)

εout,L �
�
1 −

2Γ�−iΔω� γ � Γ�
�−iΔω� γ � Γ�2 − β12β21

�
eiϕεin,R

�
�

2Γβ21
�−iΔω� γ � Γ�2 − β12β21

�
εin,L, (4)

where Δω :� ω − ω0. Equations (3) and (4) show that the
output fields result from the sum of the transmitted and re-
flected input fields from the microresonator. Note the relevant
role played by the phase term ϕ, which allows tuning of the
excitation of the two microresonator modes. This role is
better exemplified by introducing the super-modes: b1,2 :�
�αCCW � αCWe−iϕ�∕ ffiffiffi

2
p

. Here, the sum and difference of
the counter-propagating amplitudes are governed by ϕ. In sta-
tionary condition, Eq. (1) can be expressed in the super-mode
description as

Fig. 1. Sketch of (a) ring and (b) taiji microresonator coupled to a
bus waveguide. The arrows indicate the propagating fields. Specifically,
the red (blue) highlights propagation in the clockwise (counter-
clockwise) direction. The different symbols are defined in the text.
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�
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�
�
�
ω0 − i�γ� Γ� g1� ig2

−ig2 ω0 − i�γ� Γ − g1�

��
b1
b2

�

−
ffiffiffiffiffiffi
2Γ

p
 εin,L�εin,Rffiffi

2
p

εin,L−εin,Rffiffi
2

p

!
, (5)

where g1,2 :� �β12eiϕ � β21e−iϕ�∕2. Within the super-mode
description, the microresonator excitation results from a linear
combination of only the left and right input field amplitudes.

On the contrary, the coupling terms (g1,2) depend on ϕ, on
β12, and on β21. Equation (5) has eigenvalues

λ1,2 � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−β12β21

p
− i�γ � Γ�, (6)

which do not depent on ϕ since they are an intrinsic property of
the system. In contrast, the normalized eigenstates of Eq. (5)

v1,2 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j g1�
ffiffiffiffiffiffiffiffi
g21−g

2
2

p
g2

j
2

r � g1�
ffiffiffiffiffiffiffiffi
g21−g

2
2

p
g2
1

�
(7)

are affected by the interferometric excitation, i.e., ϕ.
It is customary to define the Hermitian (h) and non-

Hermitian (n) intermodal coupling coefficients [12,22]

h :� i
β12 − β

�
21

2
, n :� β12 � β�21

2
: (8)

These definitions allow us to discuss in the following
Hermitian and non-Hermitian systems, separately.

A. Hermitian Coupling and Diabolic Point
Here, β12 � −β�21 � β, and therefore h ≠ 0 and n � 0. This
generates a continuous conservative exchange of energy between
the clockwise and the counter-clockwise modes inducing the
typical splitting (doublet) in the transmission spectra of a bus
waveguide/microring system [22]. Figures 2(a1) and 2(a2) show

the computed output spectral intensities for a real coupling
coefficient β � 33.2 GHz when εin,L � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
and

εin,R � 0 (top spectra) or when εin,L � 0 and εin,R �
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
(bottom spectra), i.e., in a standard, single excita-

tion side experiment. Hence, in the top graph, jεout,R j2 and
jεout,Lj2 are the transmitted and reflected intensities while the
reverse holds for the bottom graph. The output fields are not
simple Lorentzians, but show a balanced doublet (same peak
intensities) due to the interaction between the counter-propa-
gatingmodes in themicroring [24]. Lorentz reciprocity theorem
[25,26] assures equal transmission spectra and the Hermitian
coupling yields equal reflection spectra for both input (L or
R) directions.

The situation changes when the interferometric excitation is
used. In the Hermitian case, as shown in Appendix A, Eq. (7)
can be reformulated as

v1,2 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j sin	θh 
�1
cos	θh
 j2

q �
i sin	θh
�1

cos	θh

1

�
, (9)

where the angle θh � ϕ� arg	β
 is introduced to show that the
eigenstates do not depend on the strength of the coupling (jβj)
but only on its phase. As expected for a Hermitian system, its
eigenvectors are orthogonal and, therefore, their inner product
jhv1jv2ij � 0 for any ϕ. On the other hand, its eigenvalues
depend on jβj:

λ1,2 � ω0 � jβj − i�γ � Γ�, (10)

but not on ϕ. Their imaginary parts (I	λ1,2
 � −γ − Γ) are
related to the losses, while their real parts (R	λ1,2
 �
ω1,2 � ω0 � jβj) describe the splitting of the resonance as a
result of the coupling between the counter-propagating
(back-reflected) modes. When jβj � 0, the system works on a
diabolic point [3]. Indeed, the eigenvalues are degenerate

Fig. 2. Theoretical results for a Hermitian coupling. Panels (a1) and (a2) show the transmission and reflection spectra for an excitation from the
left and right input, respectively. Maps (b1) and (b2) show, respectively, the right and left output field intensities as a function of the angle (θh) and of
the detuning frequency (Δω) for a symmetric interferometric excitation in units of mW ·Hz. Panels (c1) and (c2) show the output field spectral
lineshapes for fixed values of θh � f�π, π∕4, π∕2, − π∕2g. The red (blue) lines denote the left (right) output fields. The graph (d) shows the
modulus of the inner product of the eigenstates and their real and imaginary parts as a function of θh. The solid-black, solid-orange, and
dashed-magenta lines refer to jhv1jv2ij, jhℑ	v1
jℑ	v2
ij, and jhℜ	v1
jℜ	v2
ij, respectively. The coupling is Hermitian, and therefore the two
eigenstates are orthogonal, i.e., hv1jv2i � 0. Here, we used the following coefficients: Γ � γ � 6.8 GHz, β12 � −β�21 � 33.2 GHz, and
ω0 � 2π · 193 THz.
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(ω1 � ω2 � ω0), the eigenvectors are orthogonal, and the res-
onance splitting is linear with jβj.

Using a symmetric (i.e., same field intensities) interferomet-
ric excitation (εin,L � εin,R � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
), εout,L and εout,R

depend on θh. Figures 2(b1) and 2(b2) show the transmitted
field intensities as a function of Δω and θh. A rich dynamics
is observed with transmitted intensities which increase or de-
crease depending on the excitation conditions. Note that
since the sum of the input intensities is equal to 2 mW ·Hz,
it is not surprising to find transmitted intensities larger than
1 mW ·Hz. Figures 2(c1)–2(c4) show the spectra of the trans-
mitted intensities for θh � f�π, π∕4, π∕2, − π∕2g. As a
function of θh, different transmission lineshapes at the bus
waveguide outputs are observed.

Figure 2(d) shows the modulus of the inner product of
the eigenstates (jhv1jv2ij) and their real (jhR	v1
jR	v2
ij)
and imaginary (jhI	v1
jI	v2
ij) parts as a function of θh.
Specifically, the inner product of the real and imaginary
components follows a periodic function proportional to
j cos	θh
j∕2, changing their mutual projection as θh varies.
When the real and imaginary parts of the eigenstates are paral-
lel, i.e., θh � f−π; 0; πg, the transmission doublet is balanced
[see Fig. 2(c1)], and there is a symmetric energy exchange be-
tween the counter-propagating modes. On the contrary, when
θh � �π∕2, the transmission doublet merges into a single res-
onance and the same spectra are observed from both waveguide
ends. In these peculiar cases, both the real and imaginary parts
of the eigenstates become orthogonal and their inner products
reduce to zero. For these θh values, both the left and right out-
put intensities take the shape of a single Lorentzian.

Under these conditions, i.e., for θh � ϕ� arg	β
 �
�π∕2� 2πm (m ∈ Z) and ε0 � εin,R � εin,L, Eqs. (3)
and (4) reduce to the typical analytical expression of a
Lorentzian [27,28]:

jεout,Rj2 � jεout,Lj2 �
�
1 −

4γΓ
�Δω� jβj�2 � �γ � Γ�2

�
jε0j2:

(11)

Let us discuss this result. Equation (11) shows that the trans-
mission of the bus waveguide/microresonator system is the
same as the one obtained in the absence of the intermodal cou-
pling (i.e., no backscattering). The position of the Lorentzian is
spectrally shifted by the intermodal coupling strength with re-
spect to the microresonator resonance. Thus, the interferomet-
ric excitation permits us to extract relevant parameters directly
from the measured transmission spectra:

1. The amplitude jβj, by measuring the resonant frequen-
cies of the Lorentzians;

2. The phase arg	β
, by measuring the input fields phase
difference (ϕ) at the Lorentzians;

3. The intrinsic and extrinsic damping rates γ � Γ, by
measuring the full width at half maximum (FWHM) of the
Lorentzians.

These parameters are not easily estimated from the usual (one-
side input) spectral response measurements because, the inter-
mode interaction strongly modifies the energy stored inside the
cavity and, furthermore, the minima of the transmission doublet
do not directly relate with the real parts of the eigenvalues.

In this subsection, we treated the case of a symmetric inter-
ferometric excitation. An asymmetric interferometric excitation
induces an asymmetric system response, giving rise to a con-
trolled unbalance of the resonant doublet. It is worth noting
that at the diabolic point, i.e., jβj � 0, the response of the
bus waveguide/microresonator system is insensitive to any
phase variation in the interferometric excitation. In fact, the
counter-propagating modes do not interfere, and the output
fields show a Lorentzian lineshape.

Fig. 3. Theoretical results for a non-Hermitian coupling. The transmitted and reflected intensities are shown in panels (a1) and (a2), for left
(εin,L � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
and εin,R � 0) or right (εin,L � 0 and εin,R � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
) input. The blue (red) curves denote the right (left) output fields.

Panels (b1) and (b2) show the intensity of the output fields as a function of the angle θ and frequency detuning Δω for a symmetric interferometric
excitation (εin,L � εin,R � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mW ·Hz

p
) in units of mW ·Hz. (c1)–(c4) Spectral output field intensities for few θ values given in each panel.

(d) Modulus of the eigenstate inner product. The non-Hermitian nature of the coupling makes the eigenstates non-orthogonal,
i.e., hv1jv2i ≠ 0. Here, we used the following coefficients: Γ � γ � 6.8 GHz, β12 � 20.2 GHz, β21 � �−20.2� 9i� GHz, and
ω0 � 2π · 193 THz.
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B. Non-Hermitian Coupling and Exceptional Point
In this case, there is no relation between β12 and β21. Both h
and n can be different from zero. Since we are dealing with
passive microring, we restrict ourselves to the no-gain case
where jnj ≤ γ [22]. As a result, n induces a dissipative term
which causes an asymmetric energy exchange between the
counter-propagating modes. In the case of a single-side input,
an unbalanced (i.e., different intensities) transmission doublet
is observed. This is shown in Figs. 3(a1) and 3(a2). Again, the
Lorentz reciprocity theorem ensures equal transmissions
[25,26]. On the other hand, the non-Hermitian intermodal
coupling induces different reflections for the different input
directions [2].

In the case of an interferometric excitation, the non-
Hermitian intermodal coupling makes the eigenstates of
Eq. (7) non-orthogonal (hv1jv2i ≠ 0). By writing β12∕21 �
jβ12∕21jeiφ12∕21 , we can write the eigenvalues as

λ1,2 � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ12jjβ21j

p
sin

�
φ12 � φ21

2

�

− i
�
Γ� γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ12jjβ21j

p
cos

�
φ12 � φ21

2

��
: (12)

Here, the real part is related to the splitting of the transmission
response. In contrast, the imaginary part induces an unbalance
in the energy exchange between the counter-propagating
modes. In analogy to the Hermitian case, we define the angle
θ � ϕ − φ21−φ12

2 − π
2. This allows for establishing a uniform no-

tation and, especially, treating several cases of non-Hermitian
coupling.

For a symmetric interferometric excitation, we obtain the
maps shown in Figs. 3(b1) and 3(b2). Changing ϕ, i.e., θ,
a redistribution of energy between the counter-propagating
modes is observed, which results in different doublet shapes
of the transmitted output fields. For θ � �π, the dissipative
term induces an unbalanced strongly asymmetric doublet
[see Fig. 3(c1)]. For θ � �π∕2, i.e., Figs. 3(c3) and 3(c4),
the doublet merges in a single asymmetric peak, which does
not have a simple Lorentzian shape as in the Hermitian case.
Moreover, jhv1jv2ij is different from zero for each θ, while
its real and imaginary parts follow a trend similar to the
Hermitian case [Fig. 3(d)]. However, jhR	v1
jR	v2
ij does
not decrease to zero at �π∕2, but shows a minimum equal
to jhv1jv2ij. In contrast, jhI	v1
jI	v2
ij goes to zero as in
the Hermitian case.

The lack of coalescence of the doublet into a simple
Lorentzian, when both the real and imaginary parts of the
eigenstates reach their inner product minima, is related to
the dissipative part of the coupling (n). To get a Lorentzian,
we can use an asymmetric interferometric excitation. Indeed,
when

εin,R �
ffiffiffiffiffiffiffiffiffi
jβ21j
jβ12j

s
εin,L and θ � � π

2
� 2πm, (13)

where m ∈ Z, the transmission lineshapes reduce to a single
Lorentzian lineshape (Fig. 4). The first condition in
Eq. (13) compensates for the different strengths of the coupling
coefficients, while the second ensures the same interference be-
tween the transmitted and reflected fields for both directions.

As a result, Eq. (13) establishes the proportionality between the
output field intensities. Substituting Eq. (13) in the Eq. (3), we
obtain

� jεout,R j2
jεout,Lj2

�
�
�
1 −

4�γ� γ̃�Γ
�Δω� β̃�2 ��γ� γ̃�Γ�2

�� jεin,Lj2
jεin,Rj2

�
,

β̃ :�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ12jjβ21j

p
sin	�φ12 �φ21�∕2
,

γ̃ :�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ12jjβ21j

p
cos	�φ12 �φ21�∕2
: (14)

β̃ and γ̃ are the real and imaginary parts of the shifts of the
eigenvalues with respect to ω0 [see Eq. (12)].

Figures 4(a1) and 4(a2) show the maps of the transmitted
field intensities as a function of Δω and θ for an asymmetric
interferometric excitation which satisfies Eq. (13). For
θ � �π∕2 [Figs. 4(b1) and 4(b2)], the transmitted fields show
a simple Lorentzian lineshape, and most importantly, their
minima indicate the real part of the eigenvalues. Furthermore,
the FWHMs of the Lorentzian lineshapes are related to the
imaginary part of the eigenvalues and depend on the intrinsic
microresonator losses. Thus, the interferometric excitation al-
lows for the study of both the real and imaginary parts of the
eigenvalues. In Fig. 4(b1), the best quality factor of the micro-
resonator in the absence of backscattering corresponds to the
value obtained by setting the relative phase ϕ so that θ � π∕2.

When just one of the two coupling coefficients β12∕21 tends
to zero, the eigenvalues [Eq. (12)] vary following a square root
dependence. More importantly, when one of the two coeffi-
cients is zero, the eigenvalues become degenerate and the eigen-
states [Eq. (7)] become parallel (hv1jv2i � 1). Therefore, the
system works on an exceptional point [3]. This situation might
be found in an ideal taiji microresonator [Fig. 1(b)]. Neglecting
the backscattering, this microresonator has β12 ≠ 0 and
β21 � 0. In this case, the energy exchange between the

Fig. 4. Theoretical results for an asymmetric interferometric excita-
tion which satisfies Eq. (13). Panels (b1) and (b2) show the intensities
of the output fields as a function of the angle θ and frequency detuning
Δω in units of mW ·Hz. The graphs (b1) and (b2) show the
spectral output field intensities for θ � π∕2 and θ � −π∕2, respec-
tively. Here, we used the same coefficients as in Fig. 3, i.e., Γ � γ �
6.8 GHz, β12 � 20.2 GHz, β21 � �−20.2� 9i� GHz, and
ω0 � 2π · 193 THz.
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counter-propagating modes is strongly unbalanced in one
direction. As can be seen in Figs. 5(a1) and 5(a2), the left- or
right-side transmission shows the simple Lorentzian lineshape
when a single input excitation is used. On the other hand,
the two reflections are completely different due to the non-
Hermitian intermodal coupling. The intensity reflected from
the right waveguide edge shows a peak, while that from the left
waveguide edge is zero. The response of the bus waveguide/taiji
microresonator system for a symmetric interferometric excita-
tion is shown in Figs. 5(b1) and 5(b2). It is observed that, un-
like the diabolic point case, the exceptional point case is
affected by an interferometric excitation. In particular, the left
output field is unaffected by a ϕ change and maintains the sim-
ple Lorentzian lineshape while the right output field has a line-
shape that depends markedly on ϕ [Figs. 5(c1)–5(c4)]. For
ϕ � 0, the right output field intensity exhibits a balanced dou-
blet [Fig. 5(c4)]. Figure 5(d) shows the inner products of the
eigenstates. As expected for a microresonator at the exceptional
point, they do not depend on ϕ. In particular, the inner prod-
ucts of the eigenstates and their real parts are equal to 1, while
they are 0 for the imaginary ones.

As a last comment, Eq. (12) establishes that it is possible
to reach the exceptional point in several ways. In fact, by van-
ishing to 0 one of the two intermodal coupling coefficients,
e.g., β21 → 0 while β12 ≠ 0, one can have different situations
depending on the linear combination of their relative phases
(φ12�φ21

2 ). Precisely, when φ12�φ21

2 � π∕2� mπ with m ∈ Z,
the degeneracy is achieved as a result of the change of just
the real (resonant) part. Conversely, when φ12�φ21

2 � mπ with
m ∈ Z, the two eigenvalues coalesce as a consequence of the
change of just the imaginary (absorptive) part, whereas, for
any other phases, an intermediate situation is obtained, and
the degeneracy is achieved in the complex plane of the eigen-
values. Thus, the phase relation between β12 and β21 allows us
to study an exceptional point which can be resonant, absorptive

or both, in the same way as in the recent work [15]. From
Eq. (12), it follows that it is convenient to use the phase relation
that makes the perturbation on the eigenvalues purely real in
the case of sensing through passive microresonators capable of
working on an exceptional point. This permits us to estimate
the strength of the perturbation by simply measuring the split-
ting in the transmission spectra [29,30].

3. EXPERIMENTAL MEASUREMENTS

A. Experimental Setup and Samples
Our setup is sketched in Fig. 6. A fiber-coupled continuous-
wave tunable laser (Yenista OPTICS, TUNICS-T100S) is used
as the source. It operates at 2 mW, spanning a range of wave-
length from 1470 to 1580 nm. Its emission passes through an
optical isolator to avoid any spurious back-reflection, and then
passes through a 50:50 fiber splitter. This allows for coherent
interferometric excitation. After the fiber splitter, the two co-
herent signals in the different fibers are modulated in intensities
by a variable optical attenuator, and are adjusted in polarization
by a polarization control stage. We use the transverse electric
(TE) polarization in the waveguide. In order to balance the two
optical paths, the signal of one fiber is sent to a free space delay
line. Two fiber taps of 10% connected to two photodiodes
(Thorlabs, PDA10CS2) are used to monitor the input signals.
After these, two optical circulators route these signals into two
single-mode stripped fibers that couple the light into the sam-
ple. As is clear in the figure, the sample is excited from both the
left and right sides by two coherent light signals. The output
fields are collected by the same stripped fibers and are routed by
the circulator into two other photodiode detectors (Thorlabs,
PDA10CS2), labeled PDL and PDR in Fig. 6. Finally, an
oscilloscope (PicoScope 4000 Series) records simultaneously
the signals of all four detectors. The sample is mounted on
a thermostat holder whose temperature is controlled by a

Fig. 5. Theoretical results for a taiji microresonator coupled to a bus waveguide. Panels (a1) and (a2) show the transmitted and reflected intensities
as a function of the frequency detuning Δω at the left and right outputs, respectively. The blue (red) curves refer to the output fields from the right
(left) waveguide edges. The maps (b1) and (b2) show the intensities of the output fields as a function of the phase ϕ and Δω for a symmetric
interferometric excitation in units of mW ·Hz. The transmitted spectral intensities are plotted on the graphs (c1)–(c4) for ϕ � −π∕2, 3π∕4, �π,
and 0, respectively. The graph (d) shows the modulus of the inner product of the eigenstates. As expected, the taiji works on an exceptional point, and
therefore the eigenstates are parallel, i.e., hv1jv2i � 1. Here, we used the following coefficients: Γ � γ � 6.8 GHz, β12 � 12 GHz < 2γ, β21 � 0,
and ω0 � 2π · 193 THz.

Research Article Vol. 10, No. 4 / April 2022 / Photonics Research 1139



proportional-integral-derivative controller (SIM960 Analog
PID controller) connected to a Peltier cell and a 10 kΩ therm-
istor. The same setup is also used for standard (single-side ex-
citation) measurements. In these, the signal is input from the
left or right only.

Two different microresonator geometries have been studied,
which are based on silicon waveguides with a cross section of
450 nm × 220 nm embedded in silica cladding. The first mi-
croresonator geometry has a ring shape with a radius of 7 μm,
and is point-like coupled to two bus waveguides in the
common add and drop configuration with a gap of 300 nm.
These devices are described in detail in Ref. [31]. The second
is a taiji microresonator with a racetrack geometry. It is ob-
tained by coupling four Euler curves (radius 15 μm and angle
90°) to two pairs of straight sections of length 758 and
3106 nm. The perimeter of the microresonator is about
196.22 μm. The inner S-shaped waveguide is designed using
four Euler curves. The central ones have a radius of 10 μm and
an angle of 135°, and those at the ends have a radius of 10 μm
and an angle of 75°. At both ends of the S-shaped waveguide,
an inverse tapering ensures no back-reflections. The gaps be-
tween the taiji microresonator and the S-shaped waveguide
are 210 nm. The gap between the taiji and the bus waveguide
is 241 nm. In both types of microresonators, grating couplers
(≃3.7 dB coupling loss) are used to input and output the light
signals. The microresonators have been fabricated in different
runs at the IMEC/Europractice facility within the multi-project
wafer program.

B. Method to Control the Phase Shift
Since the interferometric excitation relies on coupling the light
signal in both propagation directions, spurious reflections can
induce unwanted interference fringes in the spectral measure-
ments. In order to reduce these, the weak Fabry–Perot oscil-
lations due to the reflections by the grating couplers [32]
have been decreased by using glycerol as a matched index fluid.
Furthermore, the different optical paths of the fibers after the
first 50:50 beam splitter are compensated by a delay line. In this
way, the free spectral range (i.e., period) of the interference

fringes caused by the large interferometric setup is much wider
than a single microresonator resonance doublet.

In our setup, we do not have an absolute control of the in-
terferometric excitation phase (ϕ). We leave ϕ to vary randomly
and extract its value from a fit of the spectra. In fact, the phase
shift between the two split signals is affected by fiber relaxation,
air fluxes, and room temperature variations whose accurate con-
trol is difficult. However, the nearly balanced condition makes
the time of these random phase variations much longer than the
time of a single spectral acquisition. Specifically, the phase
variation rate is measured to be dϕ

dt ≤ 0.1 rad∕s, while a typical
acquisition time for a Δλ � 0.3 nm wide spectrum is shorter
than Δλ∕ dλ

dt < �0.3 nm�∕�1 nm∕s� � 0.3 s, where dλ
dt is the

laser wavelength scanning rate. Hence, the phase variation dur-
ing a single scan is less than 3 × 10−2 rad, and therefore, we can
safely assume it negligible. A scanning rate of 1 nm=s is per-
mitted by the use of the Picoscope, which synchronizes the laser
wavelength scan with the recording of the data from the photo-
detectors. Furthermore, the symmetrical excitation is made
possible by the calibration of all detectors, the measurement
of the propagation losses along the two paths, and the estima-
tion of the coupling losses of the gratings (see also Appendix B).
The measurement of the resonance lineshapes, in the case of
interferometric excitation, has been obtained by acquiring
100 output fields spectra. Each spectrum has a resolution of
0.1 pm. Furthermore, a guard time of 1 s has been set between
each acquisition to ensure a sufficiently large relative phase
variation.

C. Results

1. Microring Resonator
The experimental results for the microring resonator are re-
ported in Fig. 7. Figures 7(a1) and 7(a2) show the transmitted
and reflected intensities for a single left and right excitation,
respectively. It can be observed that the backscattering due
to the surface-wall roughness gives rise to a slightly unbalanced
doublet. The left (blue line in the top panel) and right (red line
in the bottom panel) transmission spectra are equal as a con-
sequence of the Lorentz reciprocity theorem. On the contrary,

Fig. 6. Sketch of the experimental setup. PC, personal computer to control the instruments; CWTL, continuous wave tunable laser to excite the
system; OI, optical isolator to protect the laser from back-reflections; FS, fiber splitter to split the signal; VOA, variable optical attenuator to control
the amplitudes; FPC, fiber polarization controller to set the transverse electric polarization at the chip grating couplers; DL, delay line to balance
the two optical paths; OC, optical circulator to measure and excite simultaneously the counter-propagating fields; PD, photo detector, and
PicoScope, PC oscilloscope, to measure the output powers; AS, alignment stage, and IRC, infrared camera, to see and align the stripped fibers
with the sample.
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the left (red line) and right (blue line) reflections show similar
features but different intensities. This is due to the non-
Hermitian intermodal coupling, which induces a different en-
ergy exchange between the counter-propagating modes. The fit
with the theoretical model [Eqs. (3) and (4) in the single-side
excitation] is shown by the dashed-black lines (right output
fields) and the dotted-black lines (left output fields). The fit
yields the resonance frequency (ω0 ≃ 2π · 196.593 THz) and
intrinsic (γ � 4.56� 0.01 GHz), extrinsic (Γ � 2.662�
0.003 GHz), and intermodal coupling [β12 � �−19.72�
0.02� − i�0.2� 0.4� GHz and β21 � �20.67� 0.02� �
i�0.8� 0.4� GHz] coefficients. As a result, the non-
Hermitian coefficient n��0.48�0.01�− i�0.5�0.3�GHz
is smaller than the Hermitian coefficient h � �−0.3� 0.3� −
i�20.20� 0.01� GHz. The effect of n ≠ 0 is visible in the
unbalanced doublet because of the relatively high Q-factor.

Measurement results by the symmetric interferometric ex-
citation are summarized in Fig. 7. Figures 7(b1) and 7(b2)
show the doublet splitting as a function of ϕ. Since our setup
does not allow an absolute control of ϕ, θ � ϕ − φ21−φ12

2 − π
2 was

estimated by fitting the 100 experimental spectra of the inter-
ferometric excitation with the model of Eqs. (3) and (4). In this,
we used the coefficients estimated for the single-side excitation
as fixed parameters and the relative phase ϕ as the only free fit
parameter. Typically the error on ϕ is of 3 × 10−2 rad. In the
figure, the doublet splitting is reported as a frequency detuning
with respect to the microring resonance δω � ω<∕> − ω0,
where ω<∕> are the measured frequencies of the doublet min-
ima and < ∕ > refer to the position with respect to ω0.
Figures 7(b1) and 7(b2) report δω for the right and left output

fields, respectively. In the plot, we use the following notation:
the magenta (purple) dots refer to δω � ω< − ω0, the black
(gray) squares refer to δω � ω> − ω0, and the dashed magenta
(purple) and dash-dotted black (gray) curves show the theoreti-
cally calculated detuning by Eqs. (3) and (4) with the param-
eters from the single-side excitation fits. It is worth noticing
that the analytical model of Section 2 reproduces the experi-
mental data.

Figures 7(c1)–7(c4) show the intensities of the output fields
as a function of Δω for θ � 0.73π, −0.74π, 0.48π, and
−0.52π. Notation is the same as for Figs. 7(a1) and 7(a2).
It is clear that our theoretical model is in agreement with
the experimental data. As expected, the ϕ variation induces
a deformation of the doublet which, when θ ≃�π∕2, merges
into a single resonance. For these θ values, the dots coincide
with the square in Figs. 7(b1) and 7(b2). Specifically,
Figs. 7(c3) and 7(c4) show that the output fields have a
quasi-simple Lorentzian lineshape. Their resonant frequencies
correspond to the real part of the eigenvalues with a negative
[Fig. 7(c3)] and positive [Fig. 7(c4)] detuning.

Assuming a pure Hermitian case, we can estimate from the
spectra the coefficient parameters following the method de-
scribed in Section 2. Table 1 shows the comparison between
the real and imaginary parts of the eigenvalues λ1,2 extracted
by a full fit of the single-side spectra [Figs. 7(a1) and 7(a2)]
or estimated from the spectral positions of the collapsed dou-
blet [Figs. 7(c3) and 7(c4)]. In particular, we fit the interfero-
metric excitation spectra with a Lorentzian lineshape to extract
the spectral positions and the FWHM of the merged doublets.
Table 1 shows that the two methods yield comparable

Fig. 7. Experimental results for a microring. Panels (a1) and (a2) show the transmitted and reflected intensities as a function of the frequency
detuning (Δω) for the right and left excitations. Panels (b1) and (b2) display the doublet splitting (δω � ω<∕> − ω0) for a symmetric interferometric
excitation as a function of the phase θ for the right or left output fields. ω<∕> are the measured frequency minima of the doublet. The magenta
(purple) dots refer to δω � ω< − ω0 for the right (left) output fields. The black (gray) squares refer to δω � ω> − ω0 for the right (left)
output fields. The dashed magenta (purple) and dash-dotted black (gray) curves show the theoretical results modeled using the fitting parameters
of the one-side excitation. Panels (c1), (c2), (c3), and (c4) show the output field intensities as a function of Δω for θ � 0.73π, −0.74π, 0.48π, and
−0.52π, respectively. The blue (red) curves refer to the right (left) output field intensities. The dashed-black and dotted-black lines are the fit with the
theoretical model for the right and left output fields, respectively. From the fit we obtain the following coefficients: Γ � 2.662� 0.003 GHz,
γ � 4.56� 0.01 GHz, β12 � �−19.72� 0.02� − i�0.2� 0.4�GHz, and β21 � �20.67� 0.02� � i�0.8� 0.4� GHz.
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results. Note that the different values and the large error bars
for the estimated I	λ1,2
 are due to the presence of a
non-Hermitian term n ≠ 0 [see Eq. (12)]. In fact, the slight
non-Hermitianity, symmetric interferometric excitation with
θ ≠ �π∕2 causes a weak perturbation to the Lorentzian line-
shape, which is reflected in the values given in Table 1 (see also
Fig. 3). From the FWHMof the Lorentzian lineshapes, it is still
possible to estimate the Q-factor of the microring in absence of
surface-wall roughness, which results to be ≃9 × 104.

2. Taiji Microresonator
The experimental measurements for the taiji microresonator
are shown in Fig. 8. As in the case of the microring, we first
characterized the taiji microresonator with single-side excita-
tion experiments. Results are reported in Figs. 8(a1) and
8(a2). In agreement with the Lorentz reciprocity theorem,

the transmitted intensities are equal. In contrast, the presence
of the inner S-shaped waveguide makes the reflection approx-
imately equal to 0 for left excitation and close to 1 for right
excitation. Fitting the spectra with the Eqs. (3) and (4) in the
single-side excitation yields the values of the resonance fre-
quency (ω0 ≃ 2π · 194.430 THz) and intrinsic (γ � 42.6�
0.1 GHz), extrinsic (Γ � 75.1� 0.1 GHz), and intermodal
coupling [β12 � �−90.8� 0.1� − i�24.17� 0.03� GHz and
β21 � �8.7� 0.1� − i�7.30� 0.09� GHz] coefficients. The
coefficient β21 is non-zero due to the presence of surface-wall
roughness which causes a weak backscattering. The reflec-
tion due to backscattering is about 8.5 × 10−3times less intense
than the reflection due to the inner S-shaped waveguide.
Figures 8(b1) and 8(b2) show the doublet splitting for a sym-
metric interferometric excitation as a function of the ϕ and δω.
As before, ϕ is estimated by fitting 100 spectra with only the
relative phase as a free parameter, while all the other coefficients
are equal to the ones estimated from the single-side experi-
ments. Noteworthily, the theory shown in Fig. 5 catches the
experimental results. The doublet is only observed in the right
output field, while the left output field is insensitive to the ϕ
variations. Figure 8(b1) shows that the right output field exhib-
its a clear doublet for a relative phase of about�π. This doublet
is observed until ϕ � �π∕2, where it merges into a single
peak. In this case, the dots and squares perfectly overlap, and
in the region between −π∕2 and π∕2, the peak resonant fre-
quency shifts from the right to the left of ω0. On the contrary,
as shown in Fig. 8(b2), the left output field does not exhibit any
splitting.

Table 1. Real and Imaginary Parts of the
Microresonator’s Eigenvaluesa

Single-Side
Excitation [GHz]

Interferometric
Excitation [GHz]

jR	λ1,2 − ω0
j 20.2� 0.3 21.0� 0.3
I	λ1
 −6.73� 0.02 −6.8� 0.2
I	λ2
 −7.71� 0.02 −7.51� 0.07

aThe single-side excitation column shows the values calculated using the
parameters obtained from the fit of the spectral transmission and reflection
responses [Figs. 7(a1) and 7(a2)]. The column labeled interferometric
excitation shows the values estimated by using the experimental data in
Figs. 7(c3)–7(c4).

Fig. 8. Experimental results for a taiji microresonator. The red (blue) curves refer to the left (right) output field. The dashed and dash-dotted black
lines show the fit with the theoretical model. Panels (a1) and (a2) show the output fields as a function of the frequency detuning Δω for a left and
right excitation, respectively. Panels (b1) and (b2) display the doublet splitting (δω � ω<∕> − ω0) for a symmetric interferometric excitation as a
function of the phase ϕ for the right or left output fields. ω<∕> are the measured frequency minima of the doublet. The magenta (purple) dots refer
to δω � ω< − ω0 for the right (left) output fields. The black (gray) squares refer to δω � ω> − ω0 for the right (left) output fields. The dashed
magenta (purple) and dash-dotted black (gray) curves show the theoretical results modeled by using the fitting parameters of the one-side excitation.
Panels (c1) and (c2) show two examples of spectra for an interferometric excitation with a phase ϕ � 0.93π and −0.35π, respectively. From
the fit, we obtain the following coefficients: Γ � 75.1� 0.1 GHz, γ � 42.6� 0.1 GHz, β12 � �−90.8� 0.1� − i�24.17� 0.03� GHz,
β21 � �8.7� 0.1� − i�7.30� 0.09� GHz.
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The dots and squares overlap for all ϕ values. As a result, the
spectrum always shows a single Lorentzian. However, the pres-
ence of the small coefficient β21 ≠ 0 gives rise to small oscil-
lations of the resonant frequency. As an example, two
experimental spectra and their theoretical fits are shown in
Figs. 8(c1) and 8(c2) for ϕ � 0.93π and −0.35π, respectively.
Noteworthily, also in this case the model of Section 2 is in
perfect agreement with the experimental results.

4. CONCLUSION

We theoretically model and experimentally validate the coher-
ent interferometric excitation technique as a method to esti-
mate the real and imaginary parts of the eigenvalues of a
Hermitian and non-Hermitian two-level optical system. We
apply it to the measurement of the transmission spectra of a
bus waveguide/microresonator system where the microresona-
tor is characterized by two degenerate counter-propagating op-
tical modes. The variation of the relative phase and amplitude
of the input fields causes the merging of the typical resonant
doublet due to the counter-propagating microresonator modes
into a single Lorentzian lineshape. This allows a direct estima-
tion of the intermodal coupling coefficients from the transmis-
sion spectra in the Hermitian case. In the non-Hermitian case,
it allows extrapolating the real part of the eigenvalues from the
resonant frequencies and its imaginary part from the resonance
shape, i.e., the FWHM. In particular, it is possible to estimate
also the microresonator Q-factor in absence of the intermodal
coupling between the counter-propagating modes, i.e., without
the contribution of surface-wall roughness backscattering.
Furthermore, we show that a taiji microresonator works on
an exceptional point and that it has an asymmetric transmission
under a coherent interferometric excitation. In fact, the trans-
mitted output field from one side remains unaffected by
changes in the relative input field phases, while the other trans-
mitted field exhibits rich dynamics with a resonance splitting at
characteristic ϕ. These differences are due to the presence of the
inner S-shaped waveguide to which the propagating field cou-
ples only in one direction.

These results represent a proof of concept of the coherent
interferometric excitation technique. Indeed, the experimental
setup is made of discrete optical components and lacks an ab-
solute control of ϕ. However, the coherent interferometric ex-
citation can be easily integrated in a single chip, where phase
shifters, splitters, and integrated Mach–Zehnder interferome-
ters can control both the phase and amplitudes of the input
fields to excite the microresonator counter-propagating modes;
see e.g., Ref. [33]. For this reason, our work paves the way to a
family of devices based on the exceptional points for sensing
applications where the accuracy of the spectral measurement
is improved by the coalescence of the eigenvalues.

The proposed method and analysis can be also generalized
to study other two-level optical systems such as two coupled
micoresonators or photonic molecules [34,35] where the com-
plex interplay of different optical modes is difficult to unfold. In
particular, the integration of a controlled coherent interfero-
metric excitation into these schemes leads to the study of differ-
ent kinds of degeneracies, which can be engineered in the
spectrum of coupled optical microcavities [15,36]. As a result,

the spectral response of an interferometric excitation allows us
to directly identify purely absorptive or radiative exceptional
points.

Finally, since the interferometric excitation is based on
measuring the linear response of Hermitian and non-
Hermitian systems, it can be extended to multi-level structures
having more than two input ports and different propagation
directions. This allows for the study of higher-order exceptional
points [37,38]. As an example, we might apply the coherent
interferometric excitation method to three-level systems such
as those discussed in Refs. [39,40]. Here, one deals with three
input ports that excite three distinct optical cavities in the same
propagation direction. It is thus necessary to split the input laser
into three beams and to control at least two amplitudes and two
phases in order to apply the interferometric excitation. Another
example, which involves the excitation of coupled counter-
propagating modes, is the two coupled-resonator optical wave-
guide (CROW) [41,42] in add and drop configuration. In this
four-level device, the four ports can be excited simultaneously.
Consequently, it is possible to probe the whole phase space in
both symmetric and asymmetric interferometric excitation con-
figurations by controlling three relative field amplitudes and
three relative phases. These extensions cannot be achieved
by the experimental setup discussed here, but are needed to
design a dedicated photonic integrated circuit.

APPENDIX A: HERMITIAN COUPLING

In this section, we show the Hermitian condition on the cou-
pling coefficients and how it reduces the other characteristic
parameters such as g1,2, eigenvalues, and eigenvectors.

From Eq. (1) of the main text, we define the following back-
scattering matrix:

K �
�

0 −iβ12
−iβ21 0

�
: (A1)

This K matrix satisfies the Hermitian condition, i.e., K � K �,
if and only if

β12 � −β�21 �: β: (A2)

Then, reformulating the backscattering coefficient as
β � jβjeiφ is easy to obtain:

g1 � ijβj sin	θ
 ⇒ R	g1
 � 0, (A3)

g2 � jβj cos	θ
 ⇒ I	g2
 � 0, (A4)

where θ � ϕ� φ � ϕ� arg	β
. Consequently, the eigenvec-
tors changed in

v1,2 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j sin	θ
�1
cos	θ
 j2

q �
i sin	θ
�1

cos	θ

1

�
: (A5)

On the other hand, the eigenvalues reduce to
λ1,2 � �ω0 � jβj� − i�γ � Γ�. As mentioned in the main text,
the eigenvectors depend just on the coefficient θ and are not
affected by the strength of the coupling β. Furthermore, the
inner product is equal to zero hv1jv2i � 0, and therefore, when
β � 0, the system works on a diabolic point.
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APPENDIX B: EXPERIMENTAL PROCEDURE

In this section, we disclose the experimental procedure used to
obtain a symmetric interferometric excitation. First, we mea-
sured the losses of each component of the experimental setup
and we calibrated the responses of the detectors. Then we
coupled light into the microresonator and, using the detectors
PDC1, PDC2, PDL, and PDR and VOAs, we set the intensity in
the two arms almost equal and low enough not to observe non-
linear effects. At this point, the first step is to balance the length
of the two optical paths after the first fiber splitter. This is
needed to decrease the relative phase variation between the
two input fields as a function of wavelength �2πnΔL∕λ�,
and thus to achieve an almost constant relative phase ϕ for
a microresonator resonant wavelength. Therefore, we per-
formed repeated wavelength scans, using a scan rate of
100 nm/s, over the entire spectrum and changed the optical
length of the right arm to find the condition where the period
of the observed oscillations at the PDR and PDL detectors is
maximum.

Once we set the delay line, we used the following procedure
to input the same intensities in the bus waveguide sides, i.e., to
perform a symmetric interferometric excitation.

1. We block one of the two arms of the setup and then
maximize the transmission of the device at a non-resonant
wavelength (1530 nm).

2. We repeat this for the other arm.
3. We set the VOAs to ensure the same transmissions from

both device outputs (taking into account different circulator
losses and detector sensitivities).

4. We determine the ratio of the powers at the two detec-
tors PDC1 and PDC2 (I 3,C1∕I 3,C2).

5. We set the VOAs to obtain the same reflections from
both device outputs.

6. We determine the ratio of the powers at the two detec-
tors PDC1 and PDC2 (I 5,C1∕I 5,C2).

7. By using these data, we derive the relation between the
grating coupler coefficients:

gL
gR

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I5,C2
I5,C1

I 3,C1
I 3,C2

s
, (B1)

where gL and gR are the coupling coefficients for the left and
right gratings at the bus waveguide edges.

8. Considering the ratio of the coupling coefficients
(gL∕gR), we set the VOAs such that the field amplitudes within
the bus waveguide are the same for both the excitation
directions.
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