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Photonic topological insulators protected by the lattice spatial symmetry (e.g., inversion and rotation symmetry)
mainly support single type edge state, interpreted by either valley or pseudo-spin. Here, we demonstrate theo-
retically, numerically, and experimentally that a type of judiciously designed two-dimensional Kekulé photonic
crystal with time reversal symmetry can possess topological valley and pseudo-spin edge states in different fre-
quency bands. Topologically robust transportation of both the valley and pseudo-spin edge states was confirmed
by measuring the transmission of straight and z-shaped interface supported edge mode and comparing with bulk
modes in the microwave frequency regime. In addition, we show that due to the distinct topological origins, valley
and pseudo-spin edge states can be distinguished by examining their end-scattering into the free space. Our sys-
tem provides an alternative way in manipulating electromagnetic waves with additional degree-of-freedom, which
has potential applications for robust and high-capacity waveguiding and multi-mode dividing. © 2022 Chinese

Laser Press
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1. INTRODUCTION

One of the most striking topological phenomena in classical
wave systems is the support of topological edge states (TESs),
which are unidirectional, robust against perturbations, and
backscattering immune [1–11]. Recent studies of TESs are
mainly divided into valley and pseudo-spin types [12–15].
The former type requires a pair of degenerate but nonequiva-
lent energy extrema in the momentum space, named valley
[16–25]. The latter is often manifested by a linear band cross-
ing constructed by two degenerate eigenstate pairs [26–32]. To
extend the degree of freedom of TESs in one specific system, it
is possible to combine valley and pseudo-spin photonic topo-
logical crystals, resulting in pseudo-spin-valley coupled edge
states [33]. However, in all these scenarios, once the structure
is constructed, the interface channel only supports a single type
edge state, e.g., either the valley edge state (VES) [34], pseudo-
spin edge state (PES) [35], or pseudo-spin-valley coupled edge
state [33]. This obviously limits the application in multi-band
and multi-model on-chip signal processing and communica-
tions. In this regard, it is interesting and useful to construct
an interface channel that simultaneously supports VESs and
PESs within different bandgaps, which can definitely further

increase the capacity and the supported topological modes
in the specific interface channel. Chen et al. have proposed us-
ing interlacing triangular lattices to achieve the coexistence of
VESs and PESs [36].

In this work, we theoretically, numerically, and experimen-
tally demonstrate a quasi-2D lattice system that simultaneously
supports VESs and PESs in different frequency bandgaps. The
lattice is of the Kekulé type [37–40] and made of metallic scat-
terer covered by two metallic plates. Different from previous
studies of multi-band topological edge states guaranteed by
the Chern number in a honeycomb ferromagnetic lattice
[41] and dual bandgap topological insulators with identical
topological origin [42–44], the two bandgaps shown here
exhibit distinct topological phase transitions, one of which sup-
ports VESs and the other hosts a pair of helical edge states de-
scribable by the pseudo-spin. We fabricated microwave samples
and made both transmission and end-scattering near-field mea-
surements. In regard to the fact that VESs and PESs originate
from distinct topological phase transitions, they can be distin-
guished by the end-scattering direction. Our work may provide
an alternative way to realize multi-mode and high-capacity
waveguides, which can further promote the applications of
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topological devices in on-chip communication and signal
processing.

2. MODEL ANALYSIS OF THE DISTORTED
KEKULÉ LATTICE

We first consider a Kekulé-distorted tight-binding model, as
shown in Fig. 1(a). The coupling coefficients are t1 � t0 �
δt cos�θ�, t2 � t0 � δt cos�θ� 2π∕3�, and t3 � t0�
δt cos�θ� 4π∕3�, where t0 and δt characterize the modulated
coupling strength and θ varies from 0 to 2π. In the following
calculations, we set t0 � 1 and δt is smaller than t0. The unit
cell is marked by the black dashed box, including six sites with
equivalent onsite potential. When δt � 0, the inter- and intra-
cell couplings are t1 � t2 � t3 � t0 � 1 irrespective of θ. In
this case, the chosen unit cell (dashed box) is actually doubling
of the primitive unit cell (two nearest neighbor sites), and a
four-fold degeneracy appears at Γ due to the band-folding ef-
fect, as shown in Fig. 1(b).

To lift up the degenerate points, we consider nonzero δt and
θ. In this way, the band-folding effect is broken and the rota-
tion symmetry of the lattice is reduced from C6 to C3, thus
resulting in two complete bandgaps around Γ and K points.
Figures 1(c) and 1(d) show the band structures for the cases
of δt � 0.8, θ � π∕6 and δt � 0.8, θ � 7π∕6, respectively.
They both demonstrate the same dispersion since the two struc-
tures can be converted to each other by the rotation operation.
To explore the topological properties of each bandgap, the
Berry curvatures are calculated (see details in Appendix A)
and shown in the right panel around K (first column) and
Γ (second column). The corresponding valley (spin) Chern
number is calculated by integrating the Berry curvature over
the half (whole) irreducible Brillouin zone (BZ). For the valley
Hall bandgap (marked by the yellow shaded area), the valley

Chern number is CK
v � 1∕2 for δt � 0.8, θ � π∕6 and

CK
v � −1∕2 for δt � 0.8, θ � 7π∕6. We note that the band

inversion occurs between the first and the third bands, which is
different from previous studies of valley Hall photonic topo-
logical insulators where the first and the second bands are
switched [34,45]. As for the pseudo-spin bandgap (marked
by the green shaded area), the spin Chern number is
C�

s � �1 for δt � 0.8, θ � π∕6 and C�
s � 0 for

δt � 0.8, θ � 7π∕6. The distinct valley (spin) Chern number
indicates that these two structures exhibit different topological
phases in the first and second bandgaps.

3. VALLEY AND PSEUDO-SPIN EDGE STATES:
SIMULATION AND MEASUREMENT

According to the Kekulé tight-binding model, we design a mi-
crowave topological insulator which is composed of a hexagon
lattice with lattice constant a, as shown in Fig. 2(a). The met-
allic scatterer is confined between two copper plates and con-
sists of six via holes with diameter r and height h, as well as six
triangle patches with side length l at the top. The scatterer is
directly connected to the bottom metallic plate, and there is a
gap g between the scatterer and the upper metallic plate. The
thickness of the copper films is t � 0.035 mm and the back-
ground material is FR4 of dielectric permittivity ε � 4.2. It is
worth noting that the widths of the connecting strips are set to
wi � w� d cos�θ� �i − 1�2π∕3� for i � 1, 2, 3, where
w � 2 mm, d and θ are used to modulate the strip widths.
When d � 0 mm, the widths of the connecting strips are
w1 � w2 � w3 � 2 mm. In this case, there exists a three-fold
degeneracy with frequency f � 3.4 GHz at K and a four-fold
degeneracy with frequency f � 5.5 GHz at Γ point, which are
guaranteed by the band-folding effect and C6 rotation sym-
metry; the corresponding band structure is shown in Fig. 2(b)

Fig. 1. Tight-binding model band structures and Berry curvature. (a) Kekulé tight-binding model with intra-cell coupling t1 � t0 � δt cos�θ�,
t2 � t0 � δt cos�θ� 2π∕3� and inter-cell coupling t3 � t0 � δt cos�θ� 4π∕3�. Here t0 and δt characterize the modulated strengths and θ varies
from 0 to 2π. The unit cell is marked by the black dashed lines. (b) Band structure when t0 � 1 and δt � 0. (c), (d) Band structures for the case of
δt � 0.8, θ � π∕6 and δt � 0.8, θ � 7π∕6. The first and second bandgaps are marked by yellow and green shaded areas, respectively. Right panel:
Berry curvatures around K (first column) and Γ point (second column).

1000 Vol. 10, No. 4 / April 2022 / Photonics Research Research Article



wherein the blue and red lines represent double degener-
ated bands.

It is well known that by shrinking or expending the honey-
comb lattice, the four-fold degeneracy at the Γ point would
evolve into a pair of double degenerate points, thus opening
a bandgap around the degeneracy frequency. However, under
the same operations, the degenerate point at the K valley per-
sists, which is protected by the C6 rotation symmetry [46].
Here, in order to simultaneously break the three-fold degen-
eracy at K and the four-fold one at Γ, we consider the nonzero
modulated strength d . This reduces the rotation symmetry of
the Kekulé lattice from C6 to C3. Consequently, these two
degenerate points can be both lifted up, resulting in two com-
plete bandgaps. Figures 2(c) and 2(e) show the band structures
for d � 1.8 mm, θ � π∕6 and d � 1.8 mm, θ � 7π∕6,
respectively. As expected, two bandgaps show up and are re-
spectively ranged from f � 2.6 GHz to f � 3.41 GHz
(marked by the yellow shaded area), and f � 4.5 GHz to
f � 6.3 GHz (marked by the green shaded area). We note
that in this distorted Kekulé lattice with C3 rotation symmetry,

the double degeneracy at Γ is guaranteed by the synthetic
Kramers pairs (A � KUC3) rather than the C6 rotation sym-
metry in breathing honeycomb lattice [39] (see more details
in Appendix B).

To clarify the topological properties associated with each
bandgap, we calculate the time-averaged Poynting vectors at
K point and the eigenfield Re�Ez� at Γ point by COMSOL
Multiphysics [47]. The results are shown in Fig. 2(d)
(d � 1.8 mm and θ � π∕6) and Fig. 2(f ) (d � 1.8 mm

and θ � 7π∕6). The time-averaged Poynting vectors and ei-
genfield patterns are respectively switched in these two cases,
indicating the distinct topological properties. Note that, at Γ
point, if the lattice has C6 rotation symmetry, the 2D repre-
sentations E1 and E2 are isomorphic to the px∕py orbitals
and dx2−y2∕dxy orbitals [26]. However, here in our considered
distorted Kekulé lattice, since the inversion symmetry of the
unit cell is broken, these two kinds of eigenstates are mixed
with each other and are labeled as jψω1

i, jψω2
i, jψω3

i, and
jψω4

i, respectively.

Fig. 2. Geometry, band dispersion, and mode patterns of the Kekulé photonic crystal. (a) Unit cell of the structure where a is the lattice constant,
r and h are the radius and height of the metallic rods, l is the length of the triangle patches, and wi �i � 1, 2, 3� are the widths of the connecting
strips. (b) Band structure for d � 0 mm (equivalent connecting strips) and a � 21 mm, r � 1.2 mm, h � 3.2 mm, l � 6.5 mm. (c) Band struc-
ture when changing d � 1.8 mm and θ � π∕6 for the geometry in (a). Yellow and green shaded areas represent the bandgaps that support valley
and pseudo-spin edge states, respectively. (d) Time-averaged Poynting vectors at K valley (red and blue dots) and eigenfields distribution at Γ point
(purple and orange dots). (e), (f ) The same as in (c) and (d), but with d � 1.8 mm and θ � 7π∕6.

Research Article Vol. 10, No. 4 / April 2022 / Photonics Research 1001



To explore the VESs numerically, we construct the supercell
[shown in the center panel in Fig. 3(a)] composed of the two
typical structures with d � 1.8 mm, θ � θ0 at the upper part
and d � 1.8 mm, θ � θ0 � π at the lower part. Figure 3(a)
shows the projected band for the periodic structure made of
this supercell when θ0 � π∕6. It is seen that a VES (marked
by the black curve) lies in the first bandgap. It is expected that
VESs at different valleys (K∕K 0) shall go in the opposite propa-
gation direction, exhibiting the valley-locked chirality (see more
details in Appendix C) [45]. Here, without loss of generality, we
have focused on the VES projected at the K valley. The simu-
lated Ez component of the edge state is shown in the panel right
to Fig. 3(a). It is seen that the electromagnetic field is well con-
fined around the interface and strongly decays into the bulk in
the transverse direction.

To justify the robustness of the VES, we designed two sam-
ples with a typical domain wall routing scheme, e.g., the
straight [Fig. 3(c)] and the z-shaped [Fig. 3(e)] edge channels.
Figures 3(d) and 3(f ) illustrate the simulated electric field dis-
tributions of the VESs propagating along the straight and the
z-shaped interfaces at f � 2.9 GHz. As can be seen, waves are
well confined around the interface channel and propagate
smoothly despite encountering two sharp bending corners,

which demonstrates the highly suppressed backscattering
and nearly reflectionless propagation. Furthermore, the unidi-
rectional transportation of the TES is shown in Appendix D.

To quantitatively analyze the transmission property of the
VES, we fabricated the two samples with printed circuit board
technology and experimentally measured the normalized trans-
mission for straight interface (blue curve), z-shaped interface
(red curve), and bulk modes (black curve). The results are plot-
ted in Fig. 3(b) which shows that the normalized transmission
of the z-shaped interface is close to that of the straight interface,
indicating the robust propagation against the sharp bending of
the domain wall channel. The gray area in Fig. 3(b) represents
the frequency range of the VESs. Slight difference with respect
to the simulation results in Fig. 3(a) (black curve covered fre-
quency range) is ascribed to possible fabrication inaccuracy.

To examine the PESs, we focus on the second bandgap. The
supercell structure is basically the same as that in Fig. 3(a), but
with θ0 varying from 0 to π. The corresponding bulk bands and
edge states at kx � 0 are shown in Fig. 4(a). The red and blue
dashed lines represent the PESs of the even and odd symmetry
with respect to the y axis [field distributions for the case of
θ0 � π∕2 are shown in the inset of Fig. 4(a)]. Note that
these two PESs (spin-up and spin-down) are degenerated at

Fig. 3. Projected band structure and the valley edge state transportation. (a) Projected band structure of the supercell composed of two structures
with different topological phases splice up (d � 1.8 mm, θ � π∕6) and down (d � 1.8 mm, θ � 7π∕6). Right panel: the supercell structure and
the eigenfield of valley edge states. (b) Measured normalized transmission spectra for edge states propagation for the straight/z-shaped interface (blue
and red curves) and bulk region (black curve). The gray area corresponds to the frequency range of edge state. (c), (e) Schemes of straight and
z-shaped interface domain walls. The excitation source is placed on the left as the input. (d), (f ) Simulated electric fields distribution for straight
and z-shaped interface domain walls at f � 2.9 GHz.
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θ0 � π∕9 (marked by the yellow dot), which is not observed in
previously studied photonic topological insulators with C6

rotation symmetry due to the absence of half-integer total
spin [39].

Figure 4(b) shows the band structures for the case of
θ0 � π∕9. Two PESs of spin-up (marked by the red curve)
and spin-down (marked by the blue curve) modes are present
within the bandgap from f � 4.4 GHz to f � 6.26 GHz. To
demonstrate the strongly suppressed backscattering in the sharp
bending case, we numerically simulated the electric fields and
experimentally measured the corresponding transmission. The
finite structures with straight and z-shaped interfaces are the
same as in Figs. 3(c) and 3(e), but the operating frequency here
is switched to f � 4.8 GHz. Figure 4(c) illustrates the field
distributions. Similar to the VESs, the two sharp bends have
almost negligible effect on the propagation of the PESs.
Figure 4(d) shows the measured transmission spectra of the
straight/z-shaped interface and bulk modes. The transmissions
of the straight and the z-shaped interface channels are almost
coincided, as expected.

4. REFRACTION OF VALLEY AND PSEUDO-SPIN
TOPOLOGICAL EDGE STATES

So far, we have shown that the VESs and PESs exhibit topo-
logically protected transportation properties (e.g., being almost

unidirectional and backscattering immune) along the topologi-
cal interface. It is difficult to distinguish the edge states only by
comparing the transmission efficiency and electric field distri-
bution. Here we show that the two types of edge modes have
remarkably different end-scattering into free space due to the
distinct topological origins. Figure 5 shows both the numerical
and experimental results for end-scattering in a finite structure
with a straight interface channel composed of Kekulé lattice
with θ � π∕6 (upper part) and θ � 7π∕6 (lower part). We
emphasize that the VES in this structure is at extremely low
frequencies (around f � 2.9 GHz). At this frequency,
the Bloch wave vector at K∕K 0 point is kΓ−K � 4π∕3a �
199.5 m−1 while that in air is k0 � 2πf ∕c � 60.7 m−1.
Apparently, the VESs cannot be scattered into the free space
due to the strong wave vector mismatch (k0 ≪ kΓ−K).

Figure 5(a) shows the full-wave simulation results for a slop-
ing termination boundary between the finite structure and free
space. Specifically, a point source with frequency f � 2.9 GHz
is located at the left side of the channel to excite the VESs. As
can be seen, a small amount of energy can be scattered into the
free space when the propagating edge mode encounters the
termination boundary. Note that partially scattered waves
propagate along the interface between θ � π∕6 and free space,
mainly due to the existence of the chiral edge state guaranteed
by distinct valley Chern numbers, Kekulé-distorted lattice

Fig. 4. Projected band structure and pseudo-spin edge state transportation. (a) Projected band structure as a function of θ0 at kx � 0. The even
and odd symmetry modes of pseudo-spin edge states at θ0 � π∕2 are shown in the inset, and respectively marked by the red and blue solid lines. The
gray shaded regions correspond to bulk modes. Yellow dot represents the degenerate point of edge states with even and odd modes. (b) Projected
band structure of supercell comprising structures with θ0 � π∕9. Spin-up and spin-down edge states are marked in red and blue dashed lines,
respectively. (c) Simulated electric fields distribution for straight and z-shaped interface domain walls at f � 4.8 GHz. (d) Measured normalized
transmission spectra for edge states propagation for the straight/z-shaped interface (blue and red curves) and bulk region (black curve) when placing a
point source at left and a receiver at right. The highlight gray region represents the edge states frequencies.
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(CK
v � 1∕2), and free space (CK

v � 0) [48,49]. Moreover, the
boundary states are highly related to the shape of the termina-
tions [50].

To understand the end-scattering phenomenon, the corre-
sponding Fourier transform of VESs field pattern [region
framed by the yellow rectangle in Fig. 5(a)] and the k-space
analysis of out-coupling at the sloping termination are shown
in Fig. 5(b). In the spatial Fourier spectra, only three corners of
the BZ are dominantly bright, corresponding to one specific
valley (K). In contrast, the three dark corners of the BZ indi-
cate that the opposite valley (K 0) components are heavily
suppressed, which suggests that only the edge state associated
with K valley is excited. In the k-space analysis superimposed in
Fig. 5(b), the green hexagonal boxes, yellow dashed circle, and
green dashed line represent the BZ of the sample lattice, the
2.9 GHz air dispersion circle, and the termination boundary
of the sample, respectively. The gray dashed lines perpendicular
to the boundary interface mark the possible scattering channels
for Bloch harmonics that may conserve the parallel momen-
tum. However, due to the mismatch (no-intersection) between

the gray dashed lines and the yellow dashed circle in the BZ
center, VESs cannot be refracted directly from the interface ter-
mination into free space. We note that when considering
different lattice constant “a” by expanding (shrinking) the lat-
tice which, however, also decreases (increases) the operating
frequency while shrinking (expanding) the BZ of the lattice,
there is still no-intersection between the allowed scattering
channels among the VES Bloch harmonics and the air
dispersion. Figure 5(c) shows the fabricated sample and mea-
sured electric fields corresponding to Fig. 5(a). The topological
interface channel is marked by the red dashed line and the
measured region is marked by the red dashed box. As can
be seen, little energy can be scattered from the sloping termina-
tion boundary into free space, which is coincident with
Fig. 5(a).

Figure 5(d) shows the refraction situation of the PESs at
f � 5.5 GHz. Compared with the VESs [as shown in
Fig. 5(a)], waves propagate along the normal direction (blue
arrow) of the boundary upon escaping from the interface guid-
ing channel. Again, we calculate the Fourier transform of

Fig. 5. Field distributions, Fourier spectra, and k-space out-coupling of edge states into free space. (a) Field distributions of the valley edge state
scattered into the free space at f � 2.9 GHz. The interface channel consists of the Kekulé lattice with θ � π∕6 and θ � 7π∕6. The dashed red box
depicts the measured region in the experiment. (b) Fourier spectra of valley edge states [yellow region in (a)] and k-space analysis of the out-coupling
of the valley edge states. (c) The experiment sample and field distributions of the end-scattering of valley edge states at f � 2.9 GHz, corresponding
to (a). (d) Field distributions of the pseudo-spin edge state scattered into the free space at f � 5.5 GHz. The blue arrow represents the scattering
direction. (e) Fourier spectra of pseudo-spin edge states [yellow region in (d)] and k-space analysis at the termination boundary of pseudo-spin edge
state. (f ) Experimentally measured field distributions of the end-scattering of pseudo-spin edge states at f � 5.5 GHz.
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the PES field [yellow region in Fig. 5(d)], and the parallel-
momentum-matching condition at the sloping termination
is shown in Fig. 5(e). We can see that the spatial Fourier spectra
are bright at the centers of BZ, indicating the PES excitation is
mainly dominated by the Γ point modes. In this way, the gray
dashed line connecting two Γ points represents the parallel
wave vector conservation condition (in this case k∥ � 0).
The corresponding refraction direction is marked by the blue
arrow for the normal of the termination (green dashed line).
We remark that in this case the refraction direction of PES
is independent of the operating frequency due to the fact
that at each operating frequency, the PES wave vector always
intersects with the air equal-frequency contour (see more
details in Appendix E) [51]. Figure 5(f ) shows the measured

end-scattering fields at 5.5 GHz. Clearly, the end-scattering di-
rection (marked by the blue arrow) is perpendicular to the slop-
ing termination, which is in good agreement with Fig. 5(d).

5. CONCLUSION

In summary, we theoretically, numerically, and experimentally
investigate the coexistence of topological VESs and PESs in a
microwave substrate-integrated distorted Kekulé metastructure.
By comparing the full-wave simulations and the experimental
measurements, both the VESs and PESs in the system are veri-
fied robust to sharp bends. In addition, to observably distin-
guish VESs and PESs, we measure the scattered electric
fields of the edge states into free space and present out-coupling
mechanism analysis based on the corresponding Fourier

spectra. The microwave distorted Kekulé lattice might be ex-
tended to optical frequencies based on the dielectric slab sys-
tem. To confine the waves at the interface channel with little
radiation, one may optimize appreciable nontrivial bandgaps
that fall below the light cone. Our work provides a way
to design topological devices for multi-band and multi-model
distinguished topological waveguides within one specific
system.

APPENDIX A: TIGHT-BINDING MODEL OF THE
KEKULÉ LATTICE

The corresponding Hamiltonian of the Kekulé tight-binding
model in Fig. 1(a) reads

H �

0
BBBBBBBB@

0 t2 0 t3e−i�
kx
2�

ffiffi
3

p
ky
2 � 0 t1

t2 0 t1 0 t3e−ikx 0

0 t1 0 t2 0 t3ei�−
kx
2�

ffiffi
3

p
ky
2 �

t3ei�
kx
2�

ffiffi
3

p
ky
2 � 0 t2 0 t1 0

0 t3eikx 0 t1 0 t2
t1 0 t3ei�

kx
2 −

ffiffi
3

p
ky
2 � 0 t2 0

1
CCCCCCCCA
, (A1)

where t1 � t0 � δt cos�θ�, t2 � t0 � δt cos�θ� 2π∕3�, and
t3 � t0 � δt cos�θ� 4π∕3�. To understand the topological
properties of the first bandgap, the Berry curvature around
the K valley can be calculated directly by using the discrete
method. Figure 6 shows the discretization of the BZ. The
Berry curvature of each plaquette is given by [52]

Ω�k� � ln

�huk1 juk2ihuk2 juk3i
huk4 juk3ihuk1 juk4i

�
, (A2)

where juk1i � juki, juk2i � juk�δk1i, juk3i � juk�δk1�δk2i,
and juk4i � juk�δk2i are the periodic wave functions. Then
the valley Chern number can be calculated as

Fig. 6. Discretization of the BZ. Inset: zoom-in of the single plaquette.
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Cv �
Z
HBZ

Ω�k�dS, (A3)

where HBZ represents the half of the BZ.
As for the second bandgap, we need to derive the effective

Hamiltonian around Γ point. By reducing the six-dimensional
system [see Eq. (A1)] into four-dimensional subspace (�jψω1

i�
ijψω2

i, jψω3
i � ijψω4

i, jψω1
i − ijψω2

i, jψω3
i − ijψω4

i�T) and
dropping the second-order off-diagonal terms, one can write
the effective Hamiltonian similar to the Bernevig–Hughes–
Zhang model [53]:

H eff �
�
H��k� 0

0 H −�k�
�
: (A4)

For the case of δt � 0.8, θ � π∕6, we get

H��k�

�
�

−0.92 − 0.16�k2x � k2y � �−0.38� 0.32i��kx � iky�
�−0.38 − 0.32i��kx − iky� 0.92� 0.16�k2x � k2y �

�
,

(A5)

H −�k�

�
�

−0.92 − 0.16�k2x � k2y � �0.38� 0.32i��kx − iky�
�0.38 − 0.32i��kx � iky� 0.92� 0.16�k2x � k2y �

�
:

(A6)

Then the Berry curvatures around Γ are calculated and
shown in Figs. 7(a) and 7(b), which demonstrate the nontrivial

topological phase of the second bandgap. The spin Chern num-
ber can be calculated by integrating the Berry curvature over
the whole BZ, C�

s � �1 (� respectively represent the
spin-up and the spin-down).

As a comparison, we also considered the system with
δt � 0.8 and θ � 7π∕6. In this case,

H��k��H −�k�

�
�
−0.92−0.16�k2x �k2y � −0.77�0.19�k2x �k2y �
−0.77�0.19�k2x �k2y � 0.92�0.16�k2x �k2y �

�
,

(A7)

and the Berry curvatures are shown in Figs. 7(c) and 7(d). The
corresponding spin Chern numbers are C�

s � 0, which dem-
onstrate the trivial topological phase of the second bandgap.

APPENDIX B: SYNTHETIC KRAMERS PAIR

The double degeneracy at Γ point in the Kekulé-distorted 2D
lattice is guaranteed by the synthetic Kramers pair, A2 � −C2

3

�A � KUC3� [39]. Here, K and C3 are the complex conju-
gate and rotation operators, respectively, and

U �

0
B@

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

1
CA (B1)

is the unitary operator. First, we examine the four eigenstates
(structure with d � 1.8 mm, θ � 7π∕6) around Γ point
along the π∕6 azimuth angle (Γ −M direction with

Fig. 7. Berry curvature around Γ for topological pseudo-spin channels. (a), (b) Pseudo-spin-up and pseudo-spin-down Berry curvatures for the
case of δt � 0.8, θ � π∕6. (c), (d) The same as in (a) and (b) but with δt � 0.8, θ � 7π∕6.
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jkj � 0.06π∕
ffiffiffi
3

p
a) in momentum space; the corresponding

electric fields [Re�Ez�] are shown in the first column in
Fig. 8. Starting from the eigenstates in the first column, K op-
erator maps the wave function to their time-reversed counter-
part. U operator swaps the wave functions as jω1i → −jω2i,
jω2i → jω1i, jω3i → −jω4i, and jω4i → jω3i. C3 operator
rotates each wave function about 2π∕3 clockwise.
Comparing the first and the last columns in Fig. 8, one can
get A2jψi � −C2

3jψi.

APPENDIX C: VALLEY AND PSEUDO-SPIN
LOCKED EDGE STATES

The topological edge mode only travels along the interface with
the same valley or pseudo-spin degree of freedom. To show
that, we construct three types of finite structures with different
interface angles, as shown in Figs. 9(a)–9(c). A point source is
placed at the left side of the interface, and the full-wave
simulated electric fields at different frequencies are shown in
Figs. 9(d)–9(i). Apparently, the wave cannot go straightforward

Fig. 8. Evolution of operator A to the eigenstates at ∠k � π∕6 (jkj � 0.06π∕
ffiffiffi
3

p
a).

Fig. 9. Topological edge states propagate in multi-channel structures. (a)–(c) Schematic of finite structures with different interface channel angles.
The pink and green structures represent the distorted Kekulé lattice with θ � π∕6 and θ � 7π∕6, respectively. Interface channels are marked by
yellow regions. (d)–(f ) Electric field distributions of valley edge states at f � 2.9 GHz. (g)–(i) Electric field distributions of pseudo-spin edge states
at f � 4.8 GHz. The orange arrows represent the propagation direction.
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to the right-side output because of topological edge mode
mismatching.

APPENDIX D: UNIDIRECTIONAL
TRANSPORTATION OF VALLEY AND PSEUDO-
SPIN EDGE STATES

One of the most important properties of the topological edge
state (valley or pseudo-spin) is the unidirectional transporta-
tion. Figure 10 shows the electric field (jEz j) distributions

for the valley (f � 2.9 GHz) and pseudo-spin edge states
(f � 4.9 GHz) when the circularly polarized source (red
and yellow stars) is placed in the middle of the interface chan-
nel. The finite structure is the same as in Fig. 3(a). As can
be seen, waves almost propagate along a particular direction.
Little energy couples to the opposite direction due to the im-
perfection of the circularly polarized source composed of a
four-dipole source array with the phase varying clockwise (anti-
clockwise) by π∕4. The arrangement of the four-dipole source

Fig. 10. Field distributions of valley and pseudo-spin edge states. (a), (b) Propagation of valley edge states when a circularly polarized source with
the frequency of f � 2.9 GHz is placed in the middle of the interface channel. (c), (d) The same as in (a) and (b) but the operating frequency
is switched to f � 4.9 GHz. Inset: the arrangement of the four-dipole source array and the electric field of circularly polarized source, LCP in (a),
RCP in (b).

Fig. 11. Field distributions and k-space out-coupling of edge states into free space. (a), (b) Field distributions of the valley edge state in different
interface channels at f � 2.9 GHz. (c) k-space analysis of the out-coupling of the valley edge states. BZ, dispersion of air, and termination are
represented by the black hexagonal boxes, black circle, and green dashed line. (d), (e) Field distributions of the pseudo-spin edge state in different
channels at f � 5.5 GHz. The red arrow represents the scattering direction. (f ) k-space analysis at the termination boundary of the pseudo-spin
edge state.
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array and the corresponding electric fields are shown in the
inset of Figs. 10(a) and 10(b).

APPENDIX E: END-SCATTERING OF VALLEY
AND PSEUDO-SPIN EDGE STATES

We have demonstrated the refraction direction of both valley
and pseudo-spin edge states at the termination with a 120 deg
sloping angle in the main text. To further examine the end-
scattering properties, we construct two types of the infinite
structures with opposite geometrical configuration where a
60 deg sloping termination boundary is located at the right
side. Figures 11(a) and 11(b) show the valley edge states dis-
tribution at f � 2.9 GHz. Similar to Fig. 5(a), little energy
scatters into the free space due to the mismatch between the
interface channel and the free space. The corresponding k-space
analysis of the out-coupling is shown in Fig. 11(c). As for
pseudo-spin edge states, the electric field distributions at
f � 5.5 GHz are shown in Figs. 11(d) and 11(e). Two types
of the interface exhibit the same scattering direction (marked in
red arrow). Again, the k-space analysis of the out-coupling is
shown in Fig. 11(f ).
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