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We develop and apply an optimization method to design unidirectional invisibility cloaks. Our method is based
on minimizing the forward scattering amplitude of the cloaked object which, by the optical theorem, is equivalent
to the total cross section. The use of the optical theorem circumvents the need to evaluate and integrate the
scattering amplitude over an angle at each iteration, and thus provides a simpler, more computationally efficient
objective function to optimize structures. We implement the approach using gradient descent optimization and
present several gradient-permittivity unidirectional cloaks that reduce scattering by metallic targets of different
sizes and shapes. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.450937

1. INTRODUCTION

The development of invisibility cloaks is a longstanding goal in
electromagnetics [1–7]. An object that is invisible to electro-
magnetic waves would have widespread application in both
military and commercial systems. At radio frequencies, cloaked
objects have a zero radar cross section [8,9], while optical dis-
plays with low scattering and reflection provide an improved
viewing experience [10,11]. It has also been proposed that
cloaked sensors may provide enhanced sensitivity because of
a reduced interaction with the environment [12–16].

More recently, the development of metamaterials and meta-
surfaces has expanded the design space to include materials with
negative refractive indices and plasmonic properties [17].
Materials with negative indices can be used with transformation
optics to design electromagnetic cloaks [18–20], and several
implementations have been demonstrated [21–23].
Transformation optics has the considerable advantage of im-
posing no limitations on the size and shape of the object.
However, the designs often require complex anisotropic mate-
rials with negative refractive indices, which inevitably suffer
from large absorption losses and dispersion [24]. Carpet cloaks
can be designed using materials with positive isotropic indices
[22,25], but they do not provide invisibility.

Scattering cancellation is an alternative method to achieve
invisibility [26]. Of course, antireflection coatings are used
throughout industry to reduce reflection by planar surfaces
[10,11]. For nonplanar structures, such as spheres and cylin-
ders, multilayered designs involving dielectric [27,28] and plas-
monic materials [29,30] have been proposed. However, these
designs are either limited to simple shapes or suffer from large
absorption losses [24]. Metasurfaces with tailored surface

impedance or mantle cloaks have been proposed as an alterna-
tive to thicker, multilayer designs [31–34]. However, their ap-
plication is limited to subwavelength objects. Therefore, a more
generalized design approach applicable to objects of any size
and shape that does not involve plasmonics or materials with
negative indices would be a significant advance.

In recent years, inverse methods have become the predomi-
nant approach in photonic design [35–43]. Broadly described,
inverse design is the optimization of an objective function with
respect to the structure or material properties. Inverse design
has been used to optimize photonic circuits [35–37] and nano-
photonic resonant structures [38–42]. The key to developing
an effective inverse design algorithm lies in the definition of the
objective function. For instance, to design highly scattering
structures, a suitable objective function is the determinant of
the wave operator defining the poles of the scattering matrix
[40]. On the other hand, nonscattering structures can be de-
signed by minimizing the scattering cross section [44,45].
However, the need to calculate the cross section from the scat-
tered field for all angles at each step in the optimization poses a
computational challenge, and also limits the scale and type of
objects that can be optimized.

In this paper, we develop a more efficient optimization
method to design unidirectional invisibility cloaks. Our inverse
design approach is based on minimizing the forward scattering
amplitude, which by the optical theorem is equal to the total
cross section [46,47]. The use of the optical theorem circum-
vents the need to integrate the scattered fields over an angle by
evaluating the cross section from the forward scattering ampli-
tude alone, thus providing a simpler, more computationally ef-
ficient algorithm. Our method is completely general and makes
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no assumptions about the size, shape, or composition of the
object, though large objects still present a computational chal-
lenge. For demonstration, we apply it to design unidirectional
gradient-permittivity cloaks to minimize scattering from met-
allic targets of different sizes and shapes. We show that orders of
magnitude reductions in the cross section are achievable with
subwavelength coatings. The ease and effectiveness of our ap-
proach enables the optimization of large-scale nonscattering
structures and invisibility cloaks.

2. APPROACH

Consider an object in free space with isotropic relative permit-
tivity ϵr�r�. The electric field scattered by the object is obtained
by solving the time-harmonic Maxwell’s equation with the
Silver–Müller radiation boundary condition. The solution
for the scattered field is [2,48–50]

Es�r� �
Z

G�r − r 0�F�r 0�E�r 0�d3r 0, (1)

where F�r� � k2�ϵr�r� − 14�∕�4π� and G�r − r 0� is the dyadic
Green’s function given by

G�r − r 0� �
�
I� 1

k2
∇∇

�
eikjr−r 0j

jr − r 0j : (2)

The total field E�r� is given by the sum of the scattered field
and the incident field Ei�r�, which we assume is a plane wave of
the form êieiki ·r. In the far-field approximation (jrj ≫ jr 0j), the
dyadic Green’s function reduces to [49,50]

G�r − r 0� ≃ �I − k̂ k̂� e
ikr

r
e−ik·r 0 , (3)

where r � jrj and k � kr∕r is the scattered wavevector. The
scattered field then takes the form

Es�r� ≃
eikr

r
f �k, ki�êi, (4)

where f �k, ki� is the scattering amplitude dyadic [49,50].
Normally, the scattering cross section is evaluated by integrat-
ing the square modulus of the scattering amplitude over a solid
angle. This expression can be used as the objective function to
design nonscattering structures [44,45]. However, the need to
evaluate and integrate the scattering amplitude over an angle
leads to a significant computational expense. A much simpler
method is to apply the optical theorem [46,47,49], which re-
lates the total cross section to the imaginary part of the scatter-
ing amplitude evaluated in the forward (k � ki) direction as

σ � 4π

k
Im�f �ki, ki��: (5)

The optical theorem implies that the scattering amplitude
evaluated in just one direction can be used as the objective
for a minimization function. However, to evaluate the scatter-
ing amplitude in Eq. (5), we must express the total field in
terms of the incident field. This can be accomplished by dis-
cretizing space into N grid points of length h as r�j� � jh,
where j is a positive integer (j ∈ N). In discrete form,
Eq. (1) can be written as [40,51,52]

Es,n�jh� �
X
i,m

h3Gmn�jh − ih�F �ih�Em�ih�,

i ∈ N, m � 1, 2, 3, (6)

or in matrix-vector form

Es � GFE, (7)

where F and G are both 3N × 3N matrices, F is a diagonal
matrix, and h3 has been absorbed into the definition of G.
This matrix equation can be solved to obtain the total field
as [40,51,52]

E � �I − GF �−1Ei : (8)

Substituting this expression into the discrete form of Eq. (5),
we obtain

σ � 4π

k
�I − k̂ k̂�Im�E�

i F �I − GF �−1Ei �: (9)

Equation (9) forms the objective function of our inverse design
optimization algorithm. For a particular incident direction, we
optimize nonscattering structures by minimizing σ with respect
to the permittivity values using a nonlinear least squares algo-
rithm. Note that in the continuum limit h → 0, Eq. (9) is an
exact expression for the cross section, accounting for all multi-
ple scattering and resonance effects.

The most computationally intensive calculation in Eq. (9) is
the matrix inversion, and the desire is to minimize the number
of matrix inversions required to minimize the scattering cross
section. Unfortunately, integral equations give rise to dense ma-
trices, so sparse matrix techniques such as a conjugate gradient
and its derivatives cannot be directly applied without introduc-
ing sparsifying approximations [51,52]. Proceeding with a
conventional gradient descent, we must evaluate the derivative
of the objective with respect to F �r�, which involves a numeri-
cal evaluation of the Jacobian and an additional matrix
inversion. Fortunately, since the objective function has an ana-
lytical form, we can obtain a closed-form expression for the
Jacobian as

δ

δF
F �I − GF �−1Ei � �I � F �I − GF �−1G��I − GF �−1Ei :

(10)

This expression provides a rapid determination of the
Jacobian matrix at each step in the gradient descent and, more
importantly, only requires the same matrix inversion already
performed to calculate the cross section. This removes extrane-
ous matrix inversions at each step in the gradient descent and
greatly speeds up the nonlinear least squares algorithm.

We tested this methodology using MATLAB on a standard
PC, and the memory limitations provided a practical limitation
on the size of the matrix that could be inverted, thus limiting
the size of the scattering object compared to the wavelength. To
relax this size limitation, we tested the methodology using a 2D
object and transverse electric field. In this case, Eq. (1) reduces
to a scalar equation for the transverse component, where the
integral is over two dimensions and Green’s function is the sca-
lar 2D Helmholtz kernel [3,51]

G2D�r − r 0� �
i
4
H �1�

0 �kjr − r 0j�, (11)
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whereH �1�
0 �x� is a Hankel function of the first kind. While this

form of Green’s function is used in Eq. (8), the far-field form
replacing Eq. (3) is

G2D�r − r 0� ≃
ffiffiffiffiffiffiffiffiffiffi
i

8πkr

r
eikre−ik·r 0 : (12)

Rederiving the optical theorem in 2D results in an expression
for the cross section similar to Eq. (9), absent the dyadic pre-
factor and with volume elements replaced by area ele-
ments [46,47].

3. RESULTS

To test this methodology to design unidirectional nonscatter-
ing objects, we considered various cases of an optimized cloak
applied to a metal rod. The model was parameterized with the
dimensions of the metal rod, cloak, and grid elements all de-
fined relative to a wavelength λ. The permittivity of the metal
rod was chosen to be 1� i1010, corresponding to a highly con-
ductive metal. Although we quickly found that neither the re-
sulting cloak design nor the scattering cross-section reduction
was highly dependent on the exact permittivity of the rod as
long as it was sufficiently conductive, we did find that using
realistic metal permittivity values at optical wavelengths re-
sulted in significant absorption cross section values that put
a lower bound on the total cross-section reduction. Using a
highly conductive rod minimizes absorption in the rod so
the scattering cross-section reduction is equivalent to the total
cross-section reduction as computed using the optical theorem.
Figure 1 shows the model setup, which in this case included the
highly conductive metal cylinder with a 0.5λ radius, a 0.5λ
thick cloak, and a grid size of 0.0417λ (λ∕24), resulting in
1804 grid elements across the rod and cloak. The plane wave

was incident in the �x̂ direction with a polarization parallel to
the length of the rod. The top row of plots [Fig. 1(a)] shows the
permittivity distribution with no cloak as well as the real part of
the scattered and total field inside and outside the rod calcu-
lated using the discrete integral form of Eqs. (7) and (8). The
total cross section of the uncloaked rod calculated using Eq. (9)
is 2.4λ. As expected, the rod strongly scatters the incident wave,
creating interference patterns throughout the region around
the rod.

The second and third rows [Figs. 1(b) and 1(c)] show the
results of optimizing the cloak using the fmincon function in
Matlab. The fmincon function was used to vary the permittiv-
ity at each grid element in the cloak to minimize the cross sec-
tion as calculated using Eq. (9). The optimization was run with
an allowed permittivity range of 1–16, the upper bound cor-
responding to germanium, and the gradient of the cross section
was supplied to minimize the computational time required;
otherwise, fmincon used the default algorithm and convergence
criteria. Because optimization algorithms such as fmincon re-
quire an initial seed value for the optimization, we defined the
initial shell permittivity to be a uniform value throughout the
cloak. The results in the second row were for a uniform seed
value of 3, and the optimized cloak permittivity distribution
ranges from 1 to 8.7 with an expected mirror symmetry around
the x axis that was not imposed in the optimization algorithm.
This design shows extremely small, scattered field intensities
around the cloak, resulting in a total field nearly identical to
the incident plane wave. Calculating the scattering cross section
with the cloak using Eq. (9) gives a value of 6.04 × 10−4λ, a
reduction factor of approximately 4,000, or 36.0 dB. This
strong reduction in the scattering amplitude is shown in the
final column of Fig. 1(b). These results confirm the effective-
ness of this methodology and were generated in only a few
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Fig. 1. Relative permittivity, scattered fields, total fields, and scattered intensity for a 0.5λ radius metal rod with (a) no cloak, (b) optimized 0.5λ
thick cloak for an initial seed of ϵshell � 3, and (c) optimized 0.5λ thick cloak for an initial seed of ϵshell � 5.
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minutes of computational time. The results in the third row
[Fig. 1(c)] used the same algorithm but with an initial seed per-
mittivity of 5. With this higher seed value, the maximum per-
mittivity in the cloak increases to 13.5 and the permittivity has
sharper gradients within the cloak. Despite the very different
design, the cross section reduction is just as effective as the pre-
vious design, with a total cross section of 4.86 × 10−4λ, a reduc-
tion factor of 37.0 dB. Comparing these results to those in
Fig. 1(b) shows the importance of the initial seed in the opti-
mization and points to the need for global optimization algo-
rithms in future work.

Having generated these promising results for a relatively
thick cloak, we then performed similar optimizations with half
the cloak thickness, or 0.25λ. While the structure size was re-
duced, we maintained a grid size of 0.0417λ to ensure an ac-
curate comparison with the results in Fig. 1. In this case, shown
in Fig. 2, we observed a much greater difference in the cross-
section reduction between the two optimization seeds. The
cross-section reduction for the ϵshell � 3 seed was only 11.5 dB,
whereas the reduction with the ϵshell � 5 seed was 36.6 dB,
which is comparable to the results with the thicker cloak.

Next, we performed an additional cloak design for a metal
rod with an elliptical cross section to show the applicability to
general shapes aside from an ideal cylinder. In this case, the
metal rod was an ellipse with a 0.8λ major axis length and a
0.4λ minor axis length, with the major axis rotated 45° off
the incident field. The cloak was 0.5λ thick around the elliptical
rod, and the grid size remained 0.0417λ. The optimization re-
sults in this case, shown in Figs. 3(b) and 3(c), gave cross-
section reduction factors of 35.8 dB for the ϵshell � 3 seed
and 28.0 dB for the ϵshell � 5 seeds.

Finally, we evaluated the sensitivity of an optimized cloak
to the wavelength and the angle of incidence. Since the

optimization was performed for a single angle of incidence
and wavelength, the design is expected to be sensitive to var-
iations in these parameters. Figures 4(a) and 4(b), respectively,
show the wavelength and angle of incidence dependence of the
uncloaked cylinder in Fig. 1(a) and the cloaked design in
Fig. 1(b). As expected, the cross section of the optimized cloak
is a minimum at the design wavelength (λ0) and an angle of
incidence of 0°. The scattering cross section of the cloaked
structure is reduced over a 12% spectral bandwidth and is
an order of magnitude lower over a 3.5% spectral bandwidth.
With respect to the angle of incidence, the cross section of the
cloak design is reduced over a 54° angular range and reduced by
an order of magnitude over 14°.

Overall, these cases all show that the optical theorem meth-
odology to design unidirectional invisibility cloaks is highly ef-
fective. In all cases examined here, the optimization of the cloak
resulted in cross sections that were a small fraction of the initial
metal rod, and the optimization was completed in 5 min or less
using a standard PC. Areas for future work include using a
global optimizer to get the best design possible for a given
set of permittivity constraints. This should be possible using
the global optimization functions in MATLAB. We also plan
to explore omnidirectional and broadband cloak designs using a
multiobjective optimization to simultaneously minimize the
cross section at several wavelengths and angles.

4. SUMMARY

We developed and applied an inverse optimization method to
design unidirectional invisibility cloaks. The method is based
on minimizing an objective function equal to the forward scat-
tering amplitude of the cloaked object, which by the optical
theorem is equivalent to the total cross section. The use of
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Fig. 2. Relative permittivity, scattered fields, total fields, and scattered intensity for a 0.5λ radius metal rod with (a) no cloak, (b) optimized 0.25λ
thick cloak for an initial seed of ϵshell � 3, and (c) optimized 0.25λ thick cloak for an initial seed of ϵshell � 5.
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the optical theorem greatly simplifies the optimization since
only the forward scattering amplitude must be calculated at
each iteration, in contrast to the traditional approach based
on integrating the amplitude over an angle. Using a nonlinear
least squares gradient descent, we applied the method to design
several unidirectional gradient-permittivity cloaks to reduce
scattering from metallic circular and elliptical cylinders. We be-
lieve our generalized approach provides a simple, effective de-
sign tool that enables the optimization of large-scale
nonscattering structures and invisibility cloaks.
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