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By taking advantage of the optical induction method, a non-Hermitian photonic graphene lattice is efficiently
established inside an atomic vapor cell under the condition of electromagnetically induced transparency. This
non-Hermitian structure is accomplished by simultaneously modulating both the real and imaginary components
of the refractive index into honeycomb profiles. The transmitted probe field can either exhibit a hexagonal or
honeycomb intensity profile when the degree of non-Hermiticity is effectively controlled by the ratio between
imaginary and real indices. The experimental realization of such an instantaneously tunable complex honeycomb
potential sets a new platform for future experimental exploration of non-Hermitian topological photonics. Also,
we demonstrate the Talbot effect of the transmitted probe patterns. Such a self-imaging effect based on a
non-Hermitian structure provides a promising route to potentially improve the related applications, such as
an all-optical-controllable Talbot–Lau interferometer. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.447404

1. INTRODUCTION

Non-Hermitian physics is a rapidly developing field combining
interesting fundamental concepts with important potential ap-
plications [1,2]. The research is particularly well advanced in
photonics [3], thanks to the well-developed optical techniques
of controlling the effective (both real and imaginary) potentials
and of the measurements of the wave functions. The key step
was the discovery of the parity-time (PT)-symmetry-breaking
transition for the eigenstates occurring at exceptional points
of non-Hermitian Hamiltonians [4]. Such a transition makes
the system chiral, allowing the nonreciprocal optical transport
without external magnetic field [5,6] useful for realizing
optical isolation [7,8]. The PT-symmetric transition occurs
at an exceptional point, where the matrix representing the non-
Hermitian Hamiltonian becomes defective, and its eigenvectors
coalesce. The most well-known example of such a transition is
the damped harmonic oscillator, whose frequency becomes
strictly zero above critical damping (overdamped regime).

After several initial attempts [9–11], a lattice with a non-
Hermitian PT-symmetric potential was considered in a seminal

work [12] that has demonstrated the modification of the
dispersion of the lattice modes, with the formation of nondis-
persive (flat) regions bounded by exceptional points, for a suf-
ficiently large degree of non-Hermiticity. This work has
spawned an important activity focused on the studies of various
lattices in both one- (1D) and two-dimensional (2D) cases,
mostly within the tight-binding approximation (with non-
Hermitian on-site potentials or coupling terms), in photonics
[13] and other systems [14]. These studies often analyzed the
interplay of non-Hermiticity with topology [15–18] or inter-
actions [19,20]. In those works, the consideration was usually
restricted to a single band (or a pair of branches, as in the case of
the Dirac Hamiltonian), and thus usually a single region with
PT-symmetry breaking was observed. However, it turns out
that such a restricted consideration is not always correct, so
going beyond the tight-binding limit (as in the original case
of Ref. [12]) or considering several branches becomes some-
times necessary.

One of the tools for the experimental studies of periodic
potentials is the Talbot effect [21,22], known as a self-imaging

958 Vol. 10, No. 4 / April 2022 / Photonics Research Research Article

2327-9125/22/040958-07 Journal © 2022 Chinese Laser Press

https://orcid.org/0000-0002-2506-759X
https://orcid.org/0000-0002-2506-759X
https://orcid.org/0000-0002-2506-759X
https://orcid.org/0000-0002-0954-7681
https://orcid.org/0000-0002-0954-7681
https://orcid.org/0000-0002-0954-7681
https://orcid.org/0000-0002-0718-9518
https://orcid.org/0000-0002-0718-9518
https://orcid.org/0000-0002-0718-9518
mailto:zhyzhang@xjtu.edu.cn
mailto:zhyzhang@xjtu.edu.cn
mailto:zhyzhang@xjtu.edu.cn
mailto:dmitry.solnyshkov@uca.fr
mailto:dmitry.solnyshkov@uca.fr
mailto:dmitry.solnyshkov@uca.fr
https://doi.org/10.1364/PRJ.447404


process. To date, the non-Hermitian Talbot effect was consid-
ered only theoretically in 1D photonic lattices [23–25]. As to
2D photonic lattices, such as hexagonal lattices, the Talbot ef-
fect was mostly accomplished based on the real part of the index
[26,27], that is, in a Hermitian configuration.

In this work, we experimentally demonstrate the dynamic
behaviors of a wave packet in a non-Hermitian photonic gra-
phene structure realized in a three-level Λ-type atomic vapor
configuration. The observed PT-symmetry-like phase transi-
tion in the current 2D honeycomb optical lattice is achieved
with uniform imaginary part on lattice sites, which is extremely
different from previously demonstrated non-Hermitian dy-
namic behaviors in 1D optical lattices relying on gain and loss
in atomic systems [28,29]. Also, we observed the Talbot effect
of the discretized probe field at certain propagation distances
outside the cell. Different from previous works, here we dem-
onstrate the Talbot effect of a 2D hexagonal lattice resulting
from a non-Hermitian configuration with both nR and nI
modulated into honeycomb profiles. We show that the non-
Hermitian character of the lattice allows switching the lattice
symmetry between the honeycomb and simple hexagonal
(“inverted-honeycomb”) lattices. This occurs thanks to the
PT-symmetry breaking in the p-band, giving rise to the lowest
decay of the corresponding modes. Thus, the degree of non-
Hermiticity of the established complex honeycomb photonic
lattice becomes a new “control knob.” This can be promisingly
exploited to develop an all-optical-controllable Talbot–Lau
interferometer [30] and improve the related applications, such
as imaging cold atoms [31,32] and atom lithography [33].

2. EXPERIMENTAL SCHEME

Figure 1 shows the scheme for experimentally demonstrating
the evolution dynamics of the probe wave packet passing
through the laser-induced complex photonic lattice. The probe
field E1 (wavelength λ1 � 780.2 nm, frequency ω1, Rabi fre-
quency Ω1) and the coupling field E c with a spatially periodic
intensity profile propagate along the same z direction to drive a

three-level Λ-type 85Rb atomic system [Fig. 1(b)]. Three cou-
pling beams E2, E 0

2, and E
″
2 (λ2 � 780.2 nm, ω2,Ω2, Ω 0

2, and
Ω″

2, respectively) from the same single-mode tunable external
cavity diode laser (ECDL2) are symmetrically arranged with
respect to the z axis [see Fig. 1(c)]. They intersect at the cen-
ter of the atomic vapor cell (with a temperature of 120°C) to
construct a hexagonal lattice with a period of d ≈ 111.8 μm in
the x−y plane. Here Δi � ωi − ωij is the detuning between the
resonant transition frequency ωij and the frequency ωi of field
E i �i � 1, 2�, and Rabi frequency is defined as Ωi � μijE i∕h,
where μij (i, j � 1, 2, 3) is the dipole momentum between
transition jii↔jji and Ei is the amplitude of the electric field
corresponding to E i. A near-parallel probe beam E1 with a
Gaussian intensity profile from another ECDL1 is injected into
the medium to cover the induced 2D lattice. With the laser
frequencies tuned close to the two-photon resonance condi-
tion Δ1 − Δ2 � 0, an electromagnetically induced transpar-
ency (EIT) window can be effectively generated to “write” a
spatially periodic refractive index felt by the probe field. EIT
refers to a phenomenon in which the resonant absorption of
the atomic gas experienced by the probe field is significantly
suppressed within a certain frequency width under the action
of a strong coupling field [34]. When the probe detuning Δ1 is
set as −100 MHz, a discretized probe pattern can be observed
at the output plane of cell around the EIT window. The output
probe beam is imaged onto a charge-coupled device (CCD)
camera [Fig. 1(a)] via an imaging lens.

The complex refractive index in an atomic EIT configura-
tion is expressed as n � �1� χ�1∕2 ≈ 1� χ∕2, where
χ � χ 0 � iχ 0 0 is the susceptibility for describing the optical re-
sponse of the probe field. The susceptibility of the system at
probe frequency is [35]

χ � iN jμ31j2
ℏε0

×
�
�Γ31 � iΔ1� �

jΩc j2
Γ32 � i�Δ1 − Δ2�

�
−1

: (1)

In the above expressions, Γij is the decay rate between states
jii and jji related to the longitudinal and reversible transverse

Fig. 1. (a) Experimental setup. Three coupling beams, E 2, E 0
2, and E 0 0

2 , from the same laser source intersect inside the vapor cell to establish a
hexagonal interference pattern acting as the coupling field E c . The angle between any two of the coupling beams is 2 θ ≈ 0.4 deg. The focal length
of the imaging lens is 200 mm, and the distance between the lens and the CCD camera is 400 mm. (b) The energy-level configuration driven by the
probe and coupling fields; (c) projection of the four beams (before entering the cell) on the x−y plane; calculated susceptibility at (d), (e)
Δ1 � −60 MHz and (f ), (g) Δ1 � −110 MHz with Δ2 � −100 MHz, respectively.
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relaxation times of each state, jΩc j2 � jΩ2 � Ω 0
2 �Ω 0 0

2 j2 rep-
resents the Rabi frequency for the transition |2i↔j3i driven by
the hexagonal coupling field, and N is the atomic density.
The calculated χ is shown as in Figs. 1(d)–1(g), where both
χ 0 and χ 0 0 exhibit honeycomb distributions. As a result, the
non-Hermitian photonic graphene is achieved, and the ratio
χ 0∕χ 0 0 determining the degree of non-Hermiticity can be ma-
nipulated by controlling the laser detunings.

3. MODEL

The interaction of the probe beam with the induced refractive
index pattern is described within the paraxial approximation,
mapping the Helmholtz equation to the Schrödinger equation
for the field’s amplitude [36,37]. The susceptibility determines
an effective potential in this equation, with real and imaginary
parts proportional to each other, but with opposite signs.
Strictly speaking, the system is not PT-symmetric, contrary to
the previous works [12], but it still exhibits a similar non-
Hermitian transition while being easier to implement. The
transition is determined by

∇Γ
∇U

� ℏ2∕2ml2

ΔΓ
, (2)

where U is the potential of the formed system and l is a char-
acteristic scale (lattice parameter). The ratio of the gradients of
the imaginary and real parts of the potential is equal to the ratio
of the confinement energy to the maximal difference in decay
ΔΓ � l∇Γ (between the minimum and the maximum). If ∇Γ
is increased beyond the value given by this expression, the sys-
tem exhibits a non-Hermitian behavior (localization at the min-
ima of the decay forming a hexagonal lattice). On the contrary,
if ∇U is increased, the system recovers the Hermitian behavior
(localization at the minima of the potential, forming a honey-
comb lattice). This allows one to control the effective symmetry
of the lattice in experiments via the degree of non-Hermiticity
χ 0∕χ 0 0 � U∕Γ, thanks to the direct correspondence between
the susceptibility and the effective potential in the paraxial
approximation.

To demonstrate this transition, we need to start by studying
a quantum particle in an arbitrary complex potential (not peri-
odic). The spatial dynamics of a wave packet in a complex
potential can be described using the Schrödinger equation,

iℏ
∂ψ
∂t

� −
ℏ2

2m
Δψ � �U − iΓ�ψ , (3)

where ψ�x, y� is the wave function corresponding to the am-
plitude of the electric field, m is the particle mass, U �x, y� is
the real part of the potential, and Γ�x, y� is the imaginary part
of the potential (we also define the decay rate in units of inverse
time γ � Γ∕ℏ for convenience).

At a small scale (for example, smaller than the period of the
lattice), we can apply the Taylor expansion to the potential.
The gradient of the real part of the potential acts as a force
F � −∇U . This force can accelerate the wave packet in the
direction opposite to the gradient, with the acceleration given
by aH � F∕m (the subscript H stands for “Hermitian”).

However, the dynamics of the wave packet is also affected
by the gradient of the imaginary part −∇Γ. The center of mass
of the wave packet can be found as

rc �
Z

rf �r� exp�γ�r�t �dr, (4)

where f �r� � jψ�r�j2 is the probability distribution of the
wave packet. For sufficiently small times, we can apply series
expansion both to the exponent and to the decay rate, which
gives

rc ≈
Z

rf �r��1� γ�r0�t � ∇γ�r − r0� · rt�dr, (5)

where r0 is the initial position of the wave packet center of
mass. The first term in the brackets gives just rc � r0. The
second term also gives rc � r0, but it changes the normaliza-
tion of the wave function appearing because of the overall gain
or decay of the wave packet and is of no interest for us. The last
term is responsible for the displacement of the wave packet
center of mass due to the change of the shape of the wave
packet: the regions with higher decay are losing particles faster
than the regions with smaller decay. For a wave packet with
initial Gaussian distribution with a width σ, one finds the fol-
lowing displacement rc ≈ r0 � ∇γσ2t. It means that the
center-of-mass velocity (the “non-Hermitian velocity”) arising
due to the gradient of the imaginary part of the potential is
vNH � ∇γσ2. In a system where both gradients (of the real
and imaginary parts of the potential) are present, the velocity
changes over time as vc � vNH � aH t . If the two gradients
have opposite directions, the wave packet first moves in the
direction of the non-Hermitian velocity, then stops and starts
to move in the direction of Hermitian acceleration. This occurs
at any ratio of ∇Γ and ∇U , but the critical time tc , given by
vNH � aH tc (when the Hermitian behavior starts to domi-
nate), can be different.

Now we come back to a periodic lattice, with the minima of
the real potential corresponding to the maxima of the decay.
This system does exhibit a transition between the Hermitian
and non-Hermitian regimes, appearing thanks to the presence
of a characteristic length l (the lattice parameter). The required
time for the wave packet to collapse at the nearest decay mini-
mum is T 0 � l∕2vNH. We therefore have the following equal-
ity for the critical behavior of the system, corresponding to the
equilibrium between the Hermitian and non-Hermitian con-
tributions,

vNH � aH l∕2vNH: (6)

Replacing the variables in this expression by their defini-
tions, we finally obtain the qualitative transition threshold
given by Eq. (2).

In the case of a honeycomb lattice with a non-Hermitian
part of the potential, this effect leads to the “inversion” of the
lattice: from a honeycomb lattice defined by the real potential,
the system switches to a simple hexagonal (“triangular”) lattice,
with particles localized at the centers of the hexagons of the
honeycomb lattice, where the decay is the smallest. To under-
stand this behavior better, we have performed numerical sim-
ulations of a 2D honeycomb lattice first with a purely real, and
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then with a complex potential as described above. We solve the
Schrödinger equation, Eq. (3), numerically, using a narrow
Gaussian wave packet as an initial condition [38].

The dispersion for the Hermitian case is shown in Fig. 2(a),
with the energy plotted in the unit of t, the effective tight-bind-
ing hopping parameter of the s-band. The band structure is
obtained by Fourier transforming the solution of Eq. (3),
and the false color map corresponds to its intensity (squared
absolute value of the wave function). The dispersion exhibits
an s-band and a p-band (with an admixture of the higher bands,
because the effective potential is not deep enough to provide a
strong localization of the upper on-site levels). Figure 2(b)
shows the simulated dispersion in the presence of a sufficiently
strong non-Hermiticity, above the critical value given by
Eq. (6): a strong signal from the Γ point of the p-band means
that this point has the longest lifetime (smallest decay rate). The
real-space images of the eigenstates corresponding to the Γ
points of the s- and p-bands are shown in Figs. 2(c) and 2(d),
respectively. These images are obtained by plotting the spatial
distribution of the solution at selected energies. They confirm
that switching between these two points indeed corresponds to
the inversion of the lattice (from honeycomb to hexagonal).
Taking multiple bands into consideration is essential in our
configuration because the lowest energy and the longest-living
states belong to two different bands.

4. RESULTS AND DISCUSSION

Figure 3 shows the transmitted probe field through the cou-
pling lattice [Fig. 3(a)] at different Δ1 around the EIT window,
where both χ 0 and χ 0 0 are honeycomb lattices. For Δ1 � −60
and −90 MHz, the observed output probe exhibits honeycomb
intensity patterns [Figs. 3(b1) and 3(b2)]. According to the
calculated index distribution, the ratio χ 0∕χ 0 0 gets over 10, in-
dicating that the real part dominates; the wave packet is local-
ized at the minima (the sites of honeycomb lattice) of the real
potential U ∼ χ 0, which is verified by the numerical simulation
given in Figs. 3(c1) and 3(c2). Also, the output intensity at
Δ1 � −90 MHz is stronger than that at Δ1 � −60 MHz,
since the single-photon absorption at Δ1 � −90MHz (closer
to the two-photon resonance Δ1 − Δ2 � 0) can be better sup-
pressed, which is one key function of EIT. With Δ1 tuned very

close to the EIT resonance, both χ 0 and χ 0 0 are nearly zero [28],
which indicates that the lattice potential can be very weak, and
the output probe cannot demonstrate a clear discretization,
which is experimentally verified by Fig. 3(b3).

When Δ1 is further decreased to Δ1 � −110 MHz and
−115 MHz, χ 0 and χ 0 0 also exhibit a honeycomb profile [as
shown in Figs. 1(g) and 1(f )], but with a very different ratio,
χ 0∕χ 0 0, compared to Δ1 − Δ2 > 0. The ratio χ 0∕χ 0 0 at Δ1 �
−110 MHz is about 0.5 and the imaginary part dominates;
the wave packet is localized at the minima of the decay
Γ ∼ χ 0 0, inheriting from them an inverted-honeycomb (that is,
hexagonal) output distribution. Both the observed [Fig. 3(b4)]
and simulated [Fig. 3(c3)] hexagonal output patterns consis-
tently support our analysis. Here Figs. 3(b4) and 3(b5) dem-
onstrate the output hexagonal intensity patterns of the probe
beam traveling through the non-Hermitian photonic lattice
with a honeycomb susceptibility distribution. The output
probe at Δ1 � −115 MHz possesses a similar hexagonal pat-
tern to Δ1 � −110 MHz, but with a weaker intensity due
to being far from the two-photon resonance.

When the discretized probe images are efficiently obtained
at the output plane of the cell (z � 0), we monitor the propa-
gation characteristics of the output field in free space at certain
ratios of χ 0∕χ 0 0 by simultaneously moving the CCD camera
and the imaging lens far away from the cell along z. Here,
detunings Δ1 � −90 MHz and −110 MHz are two typical
points where the Hermitian and non-Hermitian properties
emerge. The captured probe images at different z planes are
shown in Fig. 4. The revival effect of honeycomb pattern ob-
tained from a weak non-Hermitian case is shown in Fig. 4(a).
For planes (z � ZT ∕2 mm) corresponding to the half-integer
(fractional) Talbot effect, the inversion between hexagonal and

Fig. 2. Numerical simulations of a complex honeycomb photonic
lattice. (a) Dispersion in the Hermitian case showing the lowest bands
(s and mixed p∕d band); (b) dispersion in the non-Hermitian case with
the maximal intensity coming from the lowest-decay state at the Γ
point of the p∕d band; (c), (d) spatial profiles of the Γ states of
the s and p∕d bands, responsible for the lattice switching. Here, a
and a� are the direct and reciprocal lattice constants.

Fig. 3. Output probe patterns at different probe detunings.
(a) Experimentally established coupling field; (b) observed discretized
probe beam at different Δ1 with a fixed Δ2 � −100 MHz. The cor-
responding simulations are shown in (c).
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honeycomb lattices occurs. The inversion between hexagonal
and honeycomb patterns due to the fractional Talbot effect
is similar to the half-Talbot effect in a 1D photonic lattice
[27], where the output discrete pattern at z � ZT ∕2 can
exhibit a half-period shift (along the transverse direction) com-
pared to that at z � 0, indicating the interchange of positions
of bright and dark fringes. Here the observed inversion between
hexagonal and honeycomb profiles also shows the interchange
of the bright and dark sites on the pattern. Figure 4(b) dem-
onstrates the Talbot effect of the output patterns under a strong
non-Hermitian condition. Theoretically, the Talbot length
for a hexagonal lattice [39] in a Hermitian case is ZT �
m × 3d 2∕�2λ1� ≈ m × 32 mm, where d and λ1 are defined
as the period of the photonic lattice and wavelength of the in-
cident field, respectively. Also, the honeycomb and inverted
honeycomb lattices with the same spatial period can possess
equal Talbot length [40]. The measured Talbot length for
both cases is ∼30 mm, which basically agrees with the
calculation.

In order to quantitatively demonstrate the occurrence of the
PT-symmetric-like transition, we plot the symmetry parameter
obtained from the intensities at two different points associated
with each of the two lattices: I 1 (honeycomb) and I2 (hexago-
nal). The symmetry parameter written as s � I1∕�I 1 � I 2�
gives s � 1 for a purely honeycomb lattice and s � 0 for a
purely hexagonal one. Since the intensity scales as a square
of the wave function, and the effective damping of a mode de-
pends on its overlap with the imaginary part of the potential,
which also scales as a square of the honeycomb wave function,
one can expect the fourth root of the symmetry parameter to
exhibit the typical square root scaling with the damping.

Figure 5 shows fourth root of the symmetry parameter s1∕4

as a function of relative non-Hermiticity, which is experimen-
tally controlled by the detuningΔ1. We present both the results
of numerical simulations (black dots) and experimental mea-
surements (red dots with error bars, extracted from the data
of Fig. 3 and similar), together with the analytical curve cor-
responding to the expected square root scaling. The position
of the transition point (≈0.4) depends on the properties of
the particular potential, and on the effective mass of the par-
ticles involved; it is the only fitting parameter of the theo-
retical model. The good agreement between the two sets of
data and the analytical scaling confirms our interpretation

of the switching of the lattice symmetry as an example of
the PT-symmetric-like transition.

In summary, we have demonstrated how instantaneously
tunable and reconfigurable non-Hermitian photonic graphene
is experimentally constructed relying on EIT in a coherent
multilevel atomic medium. Such complex photonic graphene
can be used as an ideal platform to demonstrate the underlying
intriguing non-Hermitian, nonlinear, and quantum beam
dynamical features (for example, topologic properties in a
non-Hermitian system) in Dirac band structure geometry by
exploiting the easy controllability of the dispersion properties
and the Kerr nonlinearity in an EIT window [36,37,41]. We
show a lattice symmetry switching from honeycomb to hexago-
nal due to the non-Hermitian transition. Contrary to previous
works, this transition involves two different energy bands.

The non-Hermitian transition in this 2D artificial complex
periodic structure is further evidenced by the Talbot effect. The
observed complex Talbot effect can be promisingly used to de-
sign an all-optical controllable Talbot–Lau interferometer.
What is more, this configuration can be easily extended to ul-
tracold atomic samples and potentially serve as an imaging tech-
nique to exhibit the distribution of ultracold atomic gas with a

Fig. 4. Observed self-imaging effect of the output probe beam at different probe detunings. (a) Δ1 � −90 MHz and (b) Δ1 � −110 MHz.

Fig. 5. PT-symmetric-like transition measured by the symmetry
factor as a function of the relative non-Hermiticity controlled by the
detuning; black solid line, square root scaling; black dots, numerical
simulations; red dots, experiment (error bars indicate the uncertainty).
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better resolution due to the more intensive spots (compared
with the 1D Talbot effect).
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