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Quantum random numbers have an incomparable advantage over pseudo-random numbers since randomness
originates from intrinsic property of quantum mechanics. The generation rate and the security of quantum ran-
dom numbers are two significant indicators of a quantum random number generator (QRNG) for practical ap-
plications. Here we propose a mutually testing source-device-independent QRNG by simultaneously measuring a
pair of conjugate quadratures from two separate parts of an untrusted continuous-variable quantum state. The
amounts of randomness of the quadratures can be mutually estimated by each other via entropic uncertainty
principle. Instead of randomly toggling between the conjugate quadratures of one state for collecting different
types of data, two quadratures can generate check data and raw bits simultaneously and continuously in this
mutually testing manner, which enhances the equivalent generation rate of private random bits to around
6 Gbit/s with a 7.5 mW laser beam. Moreover, the overall security is also improved by adjusting the conditional
min-entropy in real time according to the continually monitored fluctuations of the local oscillator and the ran-
domly measured electronic noise of homodyne detectors. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.444853

1. INTRODUCTION

Simulation, computation, and number theory may have a de-
manding requirement for the generation rate of the exploited
random numbers following the right statistics, while other ap-
plications, such as the classical communications based on the
RSA cryptosystem, the current quantum key distribution [1,2],
signature schemes [3,4], and quantum secret sharing [5], place
greater demand on the security or privacy of random numbers.
It has been reported that thousands of servers are attacked by
inferior hackers for the lousy randomness of pseudo-random
numbers every year [6]. It can be argued that the private ran-
domness is a potential necessary condition of any secure and
secret communications. Even in daily life, the security and the
non-repeatability of random numbers can also be crucially sig-
nificant. Defective products can pass the quality inspection
exploiting random sampling just because the illegitimate manu-
facturer gets the random numbers for sampling and changes the
order of products beforehand. An illegal gambler may get a big-
ger bang for the buck by receiving partial random numbers and
adopting the best guessing strategy. A lottery draw may be rigged
by an unlawful manager, who obtains the side information of the
random number generator during routine maintenance.

Leaning toward the mainstream viewpoint, random num-
bers generated by classical systems are all pseudo-random
numbers, while only quantum theory can offer true random-
ness [7,8]. The earliest quantum random number generator
(QRNG) is based on radioactive decay [9], which generates
true random numbers with a low bit rate taking demanding
safety measures. Moreover, the source generating quantum ran-
dom numbers (i.e., entropy source) can be quantum tunneling
[10,11], Majorana fermions [12], quantum fluctuations of the
collective spin of an alkali-metal vapor [13], phase noise of a
single-mode laser [14], etc. However, there have been demon-
strations of random numbers generated on a mobile phone
[15], in which the random numbers are generated from resolv-
ing photon-number distribution of a camera. Most QRNGs are
currently based on quantum optics since different quantum
states with inherent randomness offer a rich choice of imple-
mentations and complete analytical methods [7,8,16–25]. The
polarization of single photons [26], temporal [27, 28] or spatial
mode [29,30] of photons can generate random bits; photon
counting [31], amplified spontaneous emission [32,33], and
stimulated Raman scattering [34] can also be the entropy
source. In recent years, there have been reports of a quantum
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random number generator with a photonic integrated chip [21]
and even a quantum random number cloud platform [35].
Among all quantum resources, measurement of the vacuum
noise via homodyne detection is one of the most efficient
and economical methods with high-speed and secure bits gen-
eration [36–38]. For a general entropy source, it is far from
trivial to estimate the min-entropy. Consequently, there have
been many QRNG protocols [7,8]. In practical terms the mea-
surement device can be characterized easily by the user at close
range, while the entropy source and local oscillator (LO) can be
distributed remotely for the convenience of users. Therefore,
the entropy source and LO are more vulnerable to attack.
Based on this consideration, the QRNG protocol with an un-
trusted source and indeterminate LO is needed, i.e., the source-
device-independent (SDI) QRNG. In the SDI QRNG, the
secure randomness needs to be estimated and quantified in the
presence of the eavesdropper attacking the source. Finally,
the private random bits can be extracted by the Toeplitz-matrix
hashing algorithm from the raw random numbers.

The entropic uncertainty principle (EUP) [39,40] gives a
lower bound on the conditional min-entropy that estimates
the amount of secure randomness in the presence of the eaves-
dropper and is used to calibrate the randomness extractor in the
SDI QRNG where the entropy source is completely untrusted
[41–43]. A pair of non-commutative operators P̂ and Q̂ are
normally seen as the data quadrature and check quadrature, re-
spectively. Estimating the conditional min-entropy of data quad-
rature is achieved by randomly switching conjugate quadratures
of one state for measuring. Up to now, QRNGs based on the
EUP have been realized in discrete-variable system [44,45] and
continuous-variable system [41]. Then an SDI QRNG based on
generic positive operator valued measurements with heterodyne
measurements has been proposed [42]. Very recently, the
squeezed state has been applied in the SDI QRNG [43].

In fact, the check quadrature Q̂ that estimates the ran-
domness of the data quadrature P̂ also contains the secure
randomness estimated by the data quadrature P̂. In contrast,

the mutually testing QRNG does not require random switch-
ing and can further increase the generation rate of private bits.
A comparison between mutual testing and random switching
can be found in Appendix A.

The implementation of our protocol is shown in Fig. 1.
An untrusted coherent state (CS) is divided into two identical
parts (CS1 and CS2 with equal power and fluctuation) in
which quadrature Q̂ and quadrature P̂ are severally measured.
The entropy source has not been characterized while the equi-
partition process must be completely trusted. The eavesdropper
may replace the untrusted coherent state by other states (for
instance, a submode of a two-mode squeezed state) for side in-
formation, which results in an inevitable increase of insecure
quantum noise on the probably impure CS1 and CS2. The
attack on the source can be eliminated via the EUP with a
trusted division process. The quadratures are measured using
balanced homodyne detectors (BHDs) and all data are collected
by an oscilloscope (OSC). The details about the measurement
of quadratures can be found in Appendix B. The data of quad-
rature Q̂ measured on CS1 are used as the check data to esti-
mate the data of quadrature P̂ measured on CS2, and the
quadrature P̂ measured on CS2 in turn is used to estimate
quadrature Q̂ measured on CS1. The data of both quadrature
Q̂ measured on CS1 and P̂ measured on CS2 are used to gen-
erate the raw random bits. Eventually the secure random bits
are obtained by applying randomness extractors to the raw data,
where the extractors are constructed with two Toeplitz matrices
calibrated by the quantum conditional min-entropy. It should
be noted that the quadrature Q̂ of one quantum state generally
cannot be used to estimate the quadrature P̂ of the others.
It is not in accordance with the EUP. However, for a pair of
continuous-variable quantum states with equal power and fluc-
tuation, the distributions of corresponding quadratures should
be the same, which can be achieved by setting a trusted equi-
partition process to the unknown source. Therefore, the quad-
rature of one state can be used to test the conjugate quadrature
of the other state and the relation is mutual. All the data of the

Fig. 1. Flow diagram of the experimental structure. An untrusted coherent state (CS) is divided into two identical and probably impure parts, CS1
for measuring quadrature Q̂ and CS2 for quadrature P̂. The collected data of one quadrature are chosen as the check quadrature to estimate the
conditional min-entropy of the conjugate quadrature of the other state since the dividing process is completely trusted and the distributions of two
parts are identical. After two randomness extractors, the secure random bits are obtained. CS, coherent state; OSC, oscilloscope.
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pair of quadratures can generate random numbers with mutual
testing and estimating in real time.

When an untrusted state is used as the entropy source, the
amount of private random bits based on the EUP is given by
[40,41,46–51]

Hmin�PδpjE� ≥ −log2c�δq, δp� −Hmax�Qδq�
� H low�PδpjE�, (1)

c�δq, δp� � 1

2π
δqδpS�1�0

�
1,

δqδp
4

�
2

, (2)

where Hmin�PδpjE� is the quantum conditional min-entropy
of quadrature P̂. The term c�δq, δp� denotes “incompatibility”
of quadratures P̂ and Q̂ , and Hmax�Qδq� is the max-entropy

expressing the user’s lack of knowledge about quadrature Q̂ .
H low�PδpjE� is the lower bound on the conditional min-entropy,
which bounds the amount of secure and private random num-
bers. Both the δp and δq mean the measurement accuracy of
quadratures P̂ and Q̂ , and S�1�0 �1, δqδp

4 �2 is the 0th radial prolate
spheroidal wave function of the first kind [40,41,52]. Similarly,
quadrature Q̂ can be estimated by quadrature P̂.

In fact, the coherent state before division is an uncharacter-
ized state in our mutually testing QRNG protocol. Therefore,
the total amount of extractable randomness of two separated im-
pure states (CS1 and CS2, in Fig. 1) can be represented as

H �T �
min�Q �1�

δq ∪P
�2�
δp jE� � H �1�

min�Q �1�
δq jE� �H �2�

min�P�2�
δp jE�

≥ − 2log2c�δq, δp�
−H �1�

max�P�1�
δp � −H �2�

max�Q �2�
δq �, (3)

where H �T �
min�Q �1�

δq ∪P
�2�
δp jE� is the total amount of extract-

able randomness, and H �i�
min�K �i�

δk jE� and H �i�
max�K �i�

δk � are
the conditional min-entropy and max-entropy of quadrature
K̂ (K̂ � P̂, Q̂) of the ith (i � 1, 2) coherent state,
respectively.

Taking into account the finite-size effects and the security of
the extractor during the randomness extraction, the bound on
the conditional min-entropy should be further lowered as

H ϵ
min�PδpjE� ≥ H low�PδpjE�

−
4ffiffiffiffiffinpp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2

�
2

ϵ2

�s
log2

�
21�

Hmax�Qδq �
2 � 1

�
, (4)

where H ϵ
min�PδpjE� is the smooth quantum conditional min-

entropy, np is the number of measurements for the quadrature
P̂, and ϵ is the security parameter.

It is a remarkable fact that the electronic noise may be con-
trolled by the eavesdropper, so it needs to be measured at ran-
dom times. Moreover, the fluctuations of the LO need to be
monitored since the fluctuations can add insecure noise to
the measured noise of the quadratures via an imperfect homo-
dyne detector from the eavesdropper [53]. The collected data
consist of the vacuum noise, extra noise introduced by LO fluc-
tuations, and electronic noise of the detection system:

σ2T � σ2V � σ2LO � σ2E , (5)

where σ2T is the total noise contained in the measured data. The
electronic noise σ2E can be measured by randomly blocking all
the light paths of the detectors according to the random seed.
The extra noise σ2LO can be estimated by analyzing the LO fluc-
tuations in real time. The extra noise and electronic noise are
eventually regarded as impurity of the vacuum noise.

2. PRINCIPLE AND EXPERIMENTAL SETUP

The schematic of the experimental setup of the mutually testing
SDI QRNG is illustrated in Fig. 2. A laser beam at the
wavelength of 1342 nm from the Nd:YVO4 laser (Yuguang
Company) passes through a mode-cleaner with a finesse of
300 for spatiotemporal filtering and intensity stability. The
output beam is divided into the signal beam and LO via a
beam splitter (BS) with reflectivity of about 98%. The intensity
of the signal beam is decreased further, and about 2% of the
LO is used to monitor the power and fluctuations to resist the
attacks from the eavesdropper. The signal beam and LO then
are split into two identical parts respectively for data collection
via a pair of identical BHDs. The BHD1 (BHD2) was used
to measure quadrature Q̂ (P̂) with the relative phase 0 (π∕2)
between the coherent state and the LO. The interference sig-
nals are detected by the broadband BHDs (PDB480C-AC,
Thorlabs) with two photodiodes FD150 (Fermionics Opto-
Technology). The LO power and measurement bandwidth
for each of the two BHDs are set as 7.5 mW and 1 GHz (from
3 MHz to about 1 GHz), respectively, since the signal-to-noise
ratio of the homodyne detector should be maximized and the
response is close to uniform in a bandwidth of at least 1 GHz.
Then the signals are filtered, amplified, and collected by two
1.9 MHz low-pass filters, two broadband amplifiers, and an
OSC. After the min-entropy of the quadrature Q̂ (P̂) of one
coherent state is mutually estimated by the quadrature P̂ (Q̂)
of the other coherent state, the two sets of data are put into the
extractor for terminal uniform-distribution random bits.
Finally, few random bits are injected into the chopper to mea-
sure the electronic noise of the measurement device randomly.

3. RESULTS

In our experiment, the electronic noise is basically maintained
because there is no interference in the surroundings of the de-
tectors from the eavesdropper. The measured shot noises of two
BHDs severally contain (5.8� 0.1)% and (5.9� 0.1)% of
electronic noise and less than 10−4% of the extra noise caused
by the power fluctuations of the LO. The measuring time of
electronic noise needs to be randomly chosen; the average du-
ration we set is equal to 1/20 total measuring time. The nomi-
nal resolution of the OSC is 10 bits. Taking into account the
high-speed dual-channel sampling, we use a conservative bit
depth of 6 bits. In a round of our experimental process, we
measure the data of P̂ and Q̂ quadratures, each with 1 million
samples obtained. The smooth conditional min-entropies of
quadratures are both estimated as 3.13� 0.05 bits; more de-
tails can be found in Appendix C. The randomness extractor is
applied to extract terminal random bits from the raw data.
Eventually, the equivalent generation rate of private random
bits is around 6 Gbit/s.
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We perform autocorrelation analysis on raw bits, the down-
sampled bits, and the extracted bits from the same raw dataset,
as shown in Fig. 3. The raw random bits show a stronger au-
tocorrelation than the extracted bits between multiples of about
10 lags, due to the continuous high-speed sampling via the
OSC. The effective bit depth of 6 bits is exploited and we per-
form a downsampling on the raw data, and the autocorrelation
is removed. After applying a Toeplitz-hashing extractor, there is
no obvious autocorrelation in the extracted bits. To test the
statistical randomness of the terminal random bits, we test
them with the NIST suite [54]. The results of the randomly
selected run of the NIST test are reported in Table 1. In the
case of multiple tests in a category, the smallest has been

reported. Eventually, the private bits pass all the NIST statis-
tical tests.

4. CONCLUSION

In summary, we experimentally demonstrate a mutually testing
SDI QRNG based on an untrusted source and a trusted equi-
partition process. The lower bounds on the amount of secure
randomness of a pair of conjugate quadratures of two identical
states are mutually estimated with the simultaneously measured
data of the two quadratures; thus, it is convenient for users to
avoid switching the measurement types of quadrature compo-
nents. An SDI QRNG protocol based on the EUP is exploited
to make the terminal random bits secure from the eavesdrop-
per’s attacks on the entropy source. Moreover, the electronic

Fig. 3. Red, blue, and black curves show the autocorrelations cal-
culated from the raw bits, the downsampled bits, and the extracted
bits, respectively. The three data streams have the same length of
5 × 107.

Fig. 2. Experimental schematic configuration for mutually testing SDI QRNG. The pink area is a private space that no eavesdropper has access
to. The black and blue curves represent the electric and data cables, respectively. The coherent state is generated via a laser and MC. The laser beam is
divided into the signal beam and LO via a 98:2 BS. Both the signal beam and the LO are split in half via two 50:50 BSs. Two BHDs are used to
measure the quadrature P̂ and Q̂ of the two coherent states with the phase differences (0 and π∕2) between the signal beam and LO, respectively.
All data are recorded by an OSC, and the post-processing is achieved via a PC. Laser, Nd:YVO4; MC, mode-cleaner; 98:2, 98:2 beam splitter;
50:50, 50:50 beam splitter; LO, local oscillator; BHD, balanced homodyne detector; HR, mirror with high reflectivity; OSC, oscilloscope;
PC, personal computer.

Table 1. Results of NIST Test Suite on the Extracted
Random Bitsa

Test P-Value Result

Block frequency 0.133214 Pass
Cumulative sums 0.449712 Pass
Runs 0.698439 Pass
Longest run 0.015302 Pass
Rank 0.988609 Pass
DFT 0.762020 Pass
Non-overlapping template 0.065286 Pass
Overlapping template 0.854193 Pass
Universal 0.728325 Pass
Approximate entropy 0.029844 Pass
Random excursions 0.218360 Pass
Random excursions variant 0.045362 Pass
Serial 0.869390 Pass
Linear complexity 0.562328 Pass

aIn the case of multiple tests in a category, the smallest have been reported.
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noise of the homodyne detection system and the fluctuations of
the LO are monitored to eliminate the interference around the
detectors and resist the attacks on the LO to improve the total
security. A coherent state is divided into two identical parts in
which the quadrature P̂ on one part and the quadrature Q̂ on
the other part can be measured simultaneously. It is noteworthy
that the EUP cannot be applied to two quadratures from two
different states in principle [40,41]. However, taking into ac-
count a trusted equipartition process operated on an untrusted
state, for instance, by exploiting a completely trusted beam
splitter, two identical impure coherent states are split from the
untrusted state, then the distributions of corresponding quad-
ratures of different states should be the same. Consequently,
the max-entropy of a quadrature of one state is equal to that
of the same quadrature of the other one. Accordingly, the
conjugate quadratures from two states can be mutual check
quadratures for each other. Eventually, measuring a pair of
quadratures of a coherent state (two separate coherent states,
actually) simultaneously can double the generation rate of
the SDI QRNG based on the vacuum. It allows us to construct
a certified SDI QRNG with a generation rate greater than
7.5 Tbit/s via a 20 W laser beam and 1250 integrated boxes
containing all stuff in the private space in Fig. 2 with an ex-
ternal data-collecting and data-processing system.

APPENDIX A: BETWEEN MUTUAL TESTING AND
RANDOM TOGGLING

As mentioned above, the mutually testing SDI QRNG can
generate private random numbers with a higher bit rate than
randomly toggling QRNG. This point can be seen intuitively

from the data acquisition and appropriate time sequences. The
data acquisitions and appropriate time sequences for the mu-
tually testing and randomly toggling QRNGs are shown sche-
matically in Fig. 4, in which the time of measuring electronic
noise and check quadrature accounts for 5% of the total mea-
surement time, respectively. For the mutually testing QRNG,
both quadratures P̂ and Q̂ can generate random bits, as shown
in Figs. 4(a) and 4(b). However, in a randomly toggling man-
ner, only one quadrature Q̂ is used to generate random bits and
the switching time for the check quadrature P̂ needs to be de-
ducted, as shown in Fig. 4(c). The time sequences for mutually
testing and randomly toggling QRNGs are shown in Fig. 4(d).
The high levels in the time sequences are determined by private
random seed. Therefore, the mutually testing manner enhances
the generation rate of the SDI QRNG with an untrusted en-
tropy source.

APPENDIX B: MEASUREMENT OF
QUADRATURES WITH HOMODYNE DETECTION

A schematic of the balanced homodyne detection is shown in
Fig. 5. Mode s is the signal field and L is the strong classical LO
that can be taken as a coherent state of amplitude L. Mode s and
L are combined on a 50:50 beam splitter with a relative phase
ϕ, and then two output fields (â, b̂) and input field are related
according to

â � 1ffiffiffi
2

p �ŝ � eiϕL̂�, (B1)

b̂ � 1ffiffiffi
2

p �ŝ − eiϕL̂�: (B2)

The output current of the detector is proportional to the num-
ber of detected photons. The currents can be expressed by

ia � â†â � 1

2
�ŝ† ŝ � eiϕ ŝ†L̂� e−iϕL̂† ŝ � L̂†L̂�, (B3)

Fig. 4. Comparison of the data acquisitions and appropriate time
sequences of mutually testing and randomly toggling manners. The
red and blue points represent the measured data of quadratures P̂
and Q̂ , respectively. (a), (b) The data acquisitions on the conjugate
quadratures P̂ and Q̂ in mutually testing manner. (c) The data acquis-
itions for raw random numbers on the quadratures Q̂ in randomly
toggling manner. The data of quadratures P̂ are used to estimate the
randomness of quadratures Q̂ and never generate random numbers.
(d) Time sequences. Black and red curves represent the time se-
quences for randomly measuring electronic noise and check quadra-
ture, respectively.

Fig. 5. Schematic of the balanced homodyne detection. The differ-
ence current is converted into an amplified voltage signal by a tran-
simpedance amplifier.
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ib � b̂†b̂ � 1

2
�ŝ† ŝ − eiϕ ŝ†L̂ − e−iϕL̂† ŝ � L̂†L̂�: (B4)

The difference current is

i � ia − ib � eiϕ ŝ†L̂� e−iϕL̂† ŝ: (B5)

Assuming the LO to be strong enough and in the coherent
state, the LO can be regarded as a classical field with a mean
value L. Finally,

hii � jLjheiϕ ŝ† � e−iϕ ŝi, (B6)

where we set K̂ �ϕ� � �eiϕ ŝ† � e−iϕ ŝ�∕2. The phase difference
of the signal beam and LO is locked to 0 and π∕2. The quad-
ratures Q̂ � �ŝ† � ŝ�∕2 and P̂ � i�ŝ† − ŝ�∕2 can be measured
respectively.

APPENDIX C: SUPPLEMENT TO ENTROPIC
UNCERTAINTY PRINCIPLE AND ESTIMATION
OF GENERATION RATE

For the measured noise of quadratures Q̂ , assume its distribu-
tion is Gaussian with variance σ2. Exploiting frequentist esti-
mator, the measurement results are assigned to 2n separated
bins fqkg, in which n is the resolution of the OSC. The prob-
ability that one measured result falls on a certain bin qk is

p�qk� ≃
δqe−

�δqk�2
σ2

σ
ffiffiffi
π

p : (C1)

Then the lower bound on the conditional min-entropy is
given by

H low�PδpjE� � −log2c�δq, δp� − 2log2
ffiffiffiffiffiffiffiffiffiffi
δq

σ
ffiffiffi
π

p
s

ϑ3
�
0, e−

�δp�2
2σ2

�
,

(C2)

where ϑ3�z, q� is the Jacobi theta function. The H low�QδqjE�
can be estimated in the same manner. Let σ2V [σ2T in Eq. (5)] be
the pure (impure) vacuum noise, and then the loss of security
bits introduced by electronic noise and LO fluctuations can be
calculated from Eq. (C2).

In addition, the measurement accuracies δp and δq in phase
space need to be determined in the experiment. First, the mea-
surement accuracy of voltage signals can be estimated readily
from the measured signals once the voltage range of the OSC
is set. Then the vacuum noise of 1/2 in phase space corresponds
to the calculated variance from the measured vacuum signal.
Based on this, the accuracy in phase space can be estimated.

The effective sampling rate of raw data is 1 GS/s, and the
security parameter is set as 10−12. According to Eqs. (4), (5),
and (C2), the smooth conditional min-entropies of quadratures
can be estimated.

Funding. National Natural Science Foundation of China
(61925503, 62122044, 11904218, 12147215, 11834010);
Program for the Innovative Talents of Higher Education
Institutions of Shanxi; Program for the Outstanding
Innovative Teams of Higher Learning Institutions of Shanxi;
Program for Sanjin Scholars of Shanxi Province; Fund for
Shanxi “1331 Project” Key Subjects Construction.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented
in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

†These authors contributed equally to this work.

REFERENCES
1. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key dis-

tribution over arbitrarily long distances,” Science 283, 2050–2056
(1999).

2. S.-K. Liao, W.-K. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q.
Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C.
Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L.
Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B.
Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and
J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature
549, 43–47 (2017).

3. P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and
G. S. Buller, “Experimental demonstration of quantum digital signa-
tures using phase-encoded coherent states of light,” Nat. Commun.
3, 1174 (2012).

4. R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E.
Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital
signatures without the requirement of quantum memory,” Phys. Rev.
Lett. 113, 040502 (2014).

5. Y. Zhou, J. Yu, Z. Yan, X. Jia, J. Zhang, C. Xie, and K. Peng,
“Quantum secret sharing among four players using multipartite bound
entanglement of an optical field,” Phys. Rev. Lett. 121, 150502 (2018).

6. N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your Ps and Qs: detection of widespread weak keys in network devi-
ces,” in Proceeding of the 21st USENIX Security Symposium (2012),
pp. 205–220.

7. X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, “Quantum random num-
ber generation,” npj Quantum Inf. 2, 16021 (2016).

8. M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random
number generators,” Rev. Mod. Phys. 89, 015004 (2017).

9. M. Isida and H. Ikeda, “Random number generator,” Ann. Inst. Stat.
Math. 8, 119–126 (1956).

10. D. Vartsky, D. Bar, P. Gilad, and A. Schon, “High-speed, true random-
number generator,” U.S. patent 7,930,333B2 (19 April 2011).

11. K. Aungskunsiri, R. Amarit, and K. Wongpanya, “Random number
generation from a quantum tunneling diode,” Appl. Phys. Lett. 119,
074002 (2021).

12. D.-L. Deng and L.-M. Duan, “Fault-tolerant quantum random-number
generator certified by Majorana fermions,” Phys. Rev. A 88, 012323
(2013).

13. G. E. Katsoprinakis, M. Polis, A. Tavernarakis, A. T. Dellis, and I. K.
Kominis, “Quantum random number generator based on spin noise,”
Phys. Rev. A 77, 054101 (2008).

14. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random
number generation by measuring phase noise of a single-mode laser,”
Opt. Lett. 35, 312–314 (2010).

15. B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin, “Quantum random
number generation on a mobile phone,” Phys. Rev. X 4, 031056
(2014).

16. J. Yang, J. Liu, Q. Su, Z. Li, F. Fan, B. Xu, and H. Guo, “5.4 Gbps real
time quantum random number generator with simple implementation,”
Opt. Express 24, 27475–27481 (2016).

17. Y.-H. Li, X. Han, Y. Cao, X. Yuan, Z.-P. Li, J.-Y. Guan, J. Yin, Q.
Zhang, X. Ma, C.-Z. Peng, and J.-W. Pan, “Quantum random number
generation with uncharacterized laser and sunlight,” njp Quantum Inf.
5, 97 (2019).

18. Y.-Q. Nie, L. Huang, Y. Liu, F. Payne, J. Zhang, and J.-W. Pan,
“68 Gbps quantum random number generation by measuring laser
phase fluctuations,” Rev. Sci. Instrum. 86, 063105 (2015).

Research Article Vol. 10, No. 3 / March 2022 / Photonics Research 651

https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/ncomms2172
https://doi.org/10.1038/ncomms2172
https://doi.org/10.1103/PhysRevLett.113.040502
https://doi.org/10.1103/PhysRevLett.113.040502
https://doi.org/10.1103/PhysRevLett.121.150502
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1007/BF02863577
https://doi.org/10.1007/BF02863577
https://doi.org/10.1063/5.0055955
https://doi.org/10.1063/5.0055955
https://doi.org/10.1103/PhysRevA.88.012323
https://doi.org/10.1103/PhysRevA.88.012323
https://doi.org/10.1103/PhysRevA.77.054101
https://doi.org/10.1364/OL.35.000312
https://doi.org/10.1103/PhysRevX.4.031056
https://doi.org/10.1103/PhysRevX.4.031056
https://doi.org/10.1364/OE.24.027475
https://doi.org/10.1038/s41534-019-0208-1
https://doi.org/10.1038/s41534-019-0208-1
https://doi.org/10.1063/1.4922417


19. S.-H. Sun and F. Xu, “Experimental study of a quantum random-
number generator based on two independent lasers,” Phys. Rev. A
96, 062314 (2017).

20. Q. Zhang, D. Kong, Y. Wang, H. Zou, and H. Chang, “Dual-entropy-
source quantum random number generation based on spontaneous
emission,” Opt. Lett. 45, 304–307 (2020).

21. B. Bai, J. Huang, G.-R. Qiao, Y.-Q. Nie, W. Tang, T. Chu, J. Zhang,
and J.-W. Pan, “18.8 Gbps real-time quantum random number gen-
erator with a photonic integrated chip,” Appl. Phys. Lett. 118, 264001
(2021).

22. M. Ren, E. Wu, and Y. Liang, “Quantum random-number generator
based on a photon-number-resolving detector,” Phys. Rev. A 83,
023820 (2011).

23. Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Frohlich, A. Plews, and A. J.
Shields, “Robust random number generation using steady-state emis-
sion of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112
(2014).

24. C. Abellan, W. Amaya, D. Domenech, P. Munoz, J. Capmany, S.
Longhi, M. W. Mitchell, and V. Pruneri, “Quantum entropy source
on an InP photonic integrated circuit for random number generation,”
Optica 3, 989–994 (2016).

25. Q. Zhou, R. Valivarthi, C. John, and W. Tittel, “Practical quantum ran-
dom-number generation based on sampling vacuum fluctuations,”
Quantum Eng. 1, e8 (2019).

26. P. X. Wang, G. Longo, and Y. S. Li, “Scheme for a quantum random
number generator,” J. Appl. Phys. 100, 056107 (2006).

27. Y.-Q. Nie, H.-F. Zhang, Z. Zhang, J. Wang, X. Ma, J. Zhang, and J.-W.
Pan, “Practical and fast quantum random number generation based
on photon arrival time relative to external reference,” App. Phys. Lett.
104, 051110 (2014).

28. H.-Q. Ma, Y. Xie, and L.-A. Wu, “Random number generation based
on the time of arrival of single photons,” Appl. Opt. 44, 7760–7763
(2005).

29. Q. Luo, Z. Cheng, J. Fan, L. Tan, H. Song, G. Deng, Y. Wang, and Q.
Zhou, “Quantum random number generator based on single-photon
emitter in gallium nitride,” Opt. Lett. 45, 4224–4227 (2020).

30. Q. Yan, B. Zhao, Q. Liao, and N. Zhou, “Multi-bit quantum random
number generation by measuring positions of arrival photons,” Rev.
Sci. Instrum. 85, 103116 (2014).

31. E. de Jesus Lopes Soares, F. A. Mendonça, and R. V. Ramos,
“Quantum random number generator using only one single photon
detector,” IEEE Photonics Technol. Lett. 26, 851–853 (2014).

32. L. Li, A. Wang, P. Li, H. Xu, L. Wang, and Y. Wang, “Random bit gen-
erator using delayed self-difference of filtered amplified spontaneous
emission,” IEEE Photonics J. 6, 7500109 (2014).

33. C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. Murphy, “Fast
physical random number generator using amplified spontaneous
emission,” Opt. Express 18, 23584–23597 (2010).

34. P. J. Bustard, D. G. England, J. Nunn, D. Moffatt, M. Spanner, R.
Lausten, and B. J. Sussman, “Quantum random bit generation using
energy fluctuations in stimulated Raman scattering,” Opt. Express 21,
29350–29357 (2013).

35. L. Huang, H. Zhou, K. Feng, and C. Xie, “Quantum random number
cloud platform,” npj Quantum Inf. 7, 107 (2021).

36. J. Ma, A. Hakande, X. Yuan, and X. Ma, “Coherence as a resource
for source-independent quantum random-number generation,” Phys.
Rev. A 99, 022328 (2019).

37. Z. Zheng, Y. Zhang, W. Huang, S. Yu, and H. Guo, “6 Gbps real-time
optical quantum random number generator based on vacuum fluc-
tuation,” Rev. Sci. Instrum. 90, 043105 (2019).

38. M. Huang, Z. Chen, Y. Zhang, and H. Guo, “A Gaussian-distributed
quantum random number generator using vacuum shot noise,”
Entropy 22, 618 (2020).

39. C.-F. Li, J.-S. Xu, X.-Y. Xu, K. Li, and G.-C. Guo, “Experimental inves-
tigation of the entanglement-assisted entropic uncertainty principle,”
Nat. Phys. 7, 752–756 (2011).

40. F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Christandl,
“Position-momentum uncertainty relations in the presence of quantum
memory,” J. Math. Phys. 55, 122205 (2014).

41. D. G. Marangon, G. Vallone, and P. Villoresi, “Source-device-
independent ultra-fast quantum random number generation,” Phys.
Rev. Lett. 118, 060503 (2017).

42. M. Avesani, D. G. Marangon, G. Vallone, and P. Villoresi, “Source-
device-independent heterodyne-based quantum random number
generator at 17 Gbps,” Nat. Commun. 9, 5365 (2018).

43. T. Michel, J. Y. Haw, D. G. Marangon, O. Thearle, G. Vallone, P.
Villoresi, P. K. Lam, and S. M. Assad, “Real-time source independent
quantum random number generator with squeezed states,” Phys.
Rev. Appl. 12, 034017 (2019).

44. Z. Cao, H. Zhou, X. Yuan, and X. Ma, “Source-independent quantum
random number generation,” Phys. Rev. X 6, 011020 (2016).

45. G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, “Quantum
randomness certified by the uncertainty principle,” Phys. Rev. A 90,
052327 (2014).

46. W. Beckner, “Inequalities in Fourier analysis,” Ann. Math. 102, 159–
182 (1975).

47. I. Bialynicki-Birula and J. Mycielski, “Uncertainty relations for informa-
tion entropy in wave mechanics,” Comm. Math. Phys. 44, 129–132
(1975).

48. R. Konig, R. Renner, and C. Schaffner, “The operational meaning
of min- and max-entropy,” IEEE Trans. Inf. Theory 55, 4337–4347
(2009).

49. L. Rudnicki, S. P. Walborn, and F. Toscano, “Optimal uncertainty re-
lations for extremely coarse-grained measurements,” Phys. Rev. A
85, 042115 (2012).

50. F. Furrer, J. Aberg, and R. Renner, “Min- and max-entropy in infinite
dimensions,” Math. Phys. 306, 165–186 (2011).

51. T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel,
and R. F. Werner, “Gaussian entanglement for quantum key distribu-
tion from a single-mode squeezing source,” New J. Phys. 15, 053049
(2013).

52. H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty – ii,” Bell Syst. Tech. J. 40, 65–84
(1961).

53. W. Huang, Y.-C. Zhang, Z. Zheng, Y. Li, B. Xu, and S. Yu, “Practical
security analysis of a continuous-variable quantum random-number
generator with a noisy local oscillator,” Phys. Rev. A 102, 012422
(2020).

54. L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L.
Banks, “A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications,” https://www.nist.gov/
publications/statistical-test-suite-random-and-pseudorandom-number-
generators-cryptographic (2010).

652 Vol. 10, No. 3 / March 2022 / Photonics Research Research Article

https://doi.org/10.1103/PhysRevA.96.062314
https://doi.org/10.1103/PhysRevA.96.062314
https://doi.org/10.1364/OL.382067
https://doi.org/10.1063/5.0056027
https://doi.org/10.1063/5.0056027
https://doi.org/10.1103/PhysRevA.83.023820
https://doi.org/10.1103/PhysRevA.83.023820
https://doi.org/10.1063/1.4886761
https://doi.org/10.1063/1.4886761
https://doi.org/10.1364/OPTICA.3.000989
https://doi.org/10.1002/que2.8
https://doi.org/10.1063/1.2338830
https://doi.org/10.1063/1.4863224
https://doi.org/10.1063/1.4863224
https://doi.org/10.1364/AO.44.007760
https://doi.org/10.1364/AO.44.007760
https://doi.org/10.1364/OL.396561
https://doi.org/10.1063/1.4897485
https://doi.org/10.1063/1.4897485
https://doi.org/10.1109/LPT.2014.2302436
https://doi.org/10.1109/JPHOT.2014.2304555
https://doi.org/10.1364/OE.18.023584
https://doi.org/10.1364/OE.21.029350
https://doi.org/10.1364/OE.21.029350
https://doi.org/10.1038/s41534-021-00442-x
https://doi.org/10.1103/PhysRevA.99.022328
https://doi.org/10.1103/PhysRevA.99.022328
https://doi.org/10.1063/1.5078547
https://doi.org/10.3390/e22060618
https://doi.org/10.1038/nphys2047
https://doi.org/10.1063/1.4903989
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1103/PhysRevApplied.12.034017
https://doi.org/10.1103/PhysRevApplied.12.034017
https://doi.org/10.1103/PhysRevX.6.011020
https://doi.org/10.1103/PhysRevA.90.052327
https://doi.org/10.1103/PhysRevA.90.052327
https://doi.org/10.2307/1970980
https://doi.org/10.2307/1970980
https://doi.org/10.1007/BF01608825
https://doi.org/10.1007/BF01608825
https://doi.org/10.1109/TIT.2009.2025545
https://doi.org/10.1109/TIT.2009.2025545
https://doi.org/10.1103/PhysRevA.85.042115
https://doi.org/10.1103/PhysRevA.85.042115
https://doi.org/10.1007/s00220-011-1282-1
https://doi.org/10.1088/1367-2630/15/5/053049
https://doi.org/10.1088/1367-2630/15/5/053049
https://doi.org/10.1002/j.1538-7305.1961.tb03977.x
https://doi.org/10.1002/j.1538-7305.1961.tb03977.x
https://doi.org/10.1103/PhysRevA.102.012422
https://doi.org/10.1103/PhysRevA.102.012422
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic

	XML ID funding

