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Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they
arise as a consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems
that naturally emerge in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero
modes are no longer dark but feature π∕2 phase jumps between adjacent cavities. Here, we report on the direct
observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavities array containing quan-
tum wells. Unlike the Hermitian counterparts, the observation of non-Hermitian zero modes upon single pump
spot illumination requires vanishing sublattice detuning, and they can be identified through far-field imaging and
spectral filtering of the photoluminescence at selected pump locations. We explain the zero-mode coalescence as a
parity-time phase transition for small coupling. These zero modes are robust against coupling disorder and can be
used for laser mode engineering and photonic computing. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.440050

1. INTRODUCTION

Majorana zero modes, a captivating concept originally pro-
posed in the study of neutrinos, have intrigued physicists over
the past eighty years. Being their own anti-particles and hosting
non-Abelian braiding properties, their experimental demon-
stration is being actively pursued in high-energy physics and
condensed matter physics [1–5]. The existence of these
zero-energy excitations is warranted by particle-hole symmetry,
in the form where the (Hermitian) Hamiltonian anti-
commutes with an anti-linear operator [6].

Recently, there have been several proposals to realize
particle-hole symmetry in non-Hermitian (NH) systems [7],
especially on integrated photonic platforms, where the
spatial arrangement of optical gain and loss [8], as well as asym-
metric couplings between different elements [9], plays an im-
portant role. These findings are quite surprising because
photons are bosons and cannot form particle-hole pairs
in general. However, by realizing that these effective particles
and holes have complex energies in an NH system, they do not
need to adhere to Fermi–Dirac statistics as their condensed
matter counterparts do. To highlight this difference, we will
refer to such symmetries as NH particle-hole (NHPH)
symmetry.

Although the resulting zero modes of NHPH symmetry dif-
fer from Majorana zero modes in several key aspects, they have
two desirable properties in many photonic applications: their
symmetry protection not only exists at the origin of the com-
plex energy plane but also extends to the entire imaginary axis;
they can also be conveniently excited in standard arrays of op-
tical cavities or waveguides, without requiring the existence of
Hermitian counterparts when non-Hermiticity is removed.

Thanks to the flexibility of designing optical elements, these
properties of photonic zero modes can also be induced by
pseudo-anti-Hermiticity [10]: ηH †η−1 � −H , where H is
the Hamiltonian and η a linear operator. If we consider a system
consisting of two sublattices A and B, with K and L waveguides
or cavities, respectively, where couplings only take place be-
tween two entities belonging to different sublattices, pseudo-
anti-Hermiticity coincides with NHPH symmetry when H
is symmetric, but it is distinct otherwise, such as in a topologi-
cal insulator laser [11,12], where an effective gauge field is real-
ized by staggered couplings in a two-dimensional array.

Despite these theoretical advances in the NH domain, the
observations of photonic zero modes with the aforementioned
properties have been restricted to arrays that resemble their
Hermitian counterparts, such as the Su–Schrieffer–Heeger
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(SSH) lattice [13–16]. In contrast to topologically protected
edge states, the NH zero modes protected by NHPH sym-
metry, including the ones we study here, are not restricted
to interfaces and can be excited in different regions—both bulk
and edges—of a coupled photonic array [8]. Let us stress also its
simplicity from both the conceptual and technical points of
view: an arbitrary number of zero modes can be generated
in a large cavity array with arbitrary coupling coefficients by
just pumping different sites of an array.

Active photonic crystal (PhC) cavity arrays are outstanding
platforms to access the NH realm because they naturally enable
in-situ realization of gain/loss configurations and coupling en-
gineering [17,18]. A recent demonstration of laser mode
switching in a coupled PhC cavity could be explained on
the basis of Hermitian dark modes [19]. Remarkably, PhC plat-
forms recently led to the observation of exceptional points
(EPs) in two coupled nanocavities [20,21].

In order to show the potential of exciting and controlling a
photonic zero mode in a broader range of systems, especially
those without a topological origin [8,22], here we report on
its observation in a minimal system consisting of three coupled
PhC cavities with NHPH symmetry. We will show that the
observability of zero modes strongly depends on the frequency
detuning between the two extreme cavities (sublattice A) and
the central one (sublattice B) in a linear array—which we refer
to as sublattice detuning, Δω � ωB − ωA. In our coupled cav-
ity system, the intercavity coupling g is modified by design,
allowing us to feature both large (jgj ≳ jΔωj) and small
(jgj < jΔωj) coupling regimes. Hereby, we will show that,
when entering into the large detuning phase, the zero mode
first looses its properties because it is no longer NHPH sym-
metry protected and eventually coalesces with another lattice
mode through a parity-time (PT) phase transition.

This paper is organized as follows. In Section 2, we provide a
simple theoretical framework based on coupled mode theory
(CMT) to understand zero modes in gain/loss cavity arrays war-
ranted by NHPH symmetry. In Section 3, we describe our PhC
three-cavity array with controllable coupling by means of the
so-called barrier engineering technique. We also provide an ex-
perimental characterization of the linear Hermitian modes
through resonant scattering experiments. In Section 4, we move
into NH mode characterization by incoherently pumping the
system, and we report on the direct observation of the zero
mode in the small sublattice detuning regime. Such observation
is based on photoluminescence (PL) intensity maps under the
spatial scanning of the pump spot combined with a Fourier
imaging technique. Conclusions are given in Section 5.

2. THEORETICAL BACKGROUND: NON-
HERMITIAN ZERO MODES

A simple theoretical modal analysis of evanescently coupled
cavity lattices can be carried out in the framework of the
CMT formalism. In the case of N resonant optical cavity lat-
tices, the CMT is valid under the hypothesis of negligible cou-
pling between non-adjacent cavities and weak coupling overall.
It assumes that the system can be accurately described with
both the isolated (real) cavity frequencies ωn and the coupling
strength to their neighboring cavities. The resulting hybrid

mode frequencies and field distributions become the eigenval-
ues and eigenvectors of a Hamiltonian operator H̃, which does
not need to be Hermitian. This is naturally the case of optical
cavities in the presence of loss and/or gain [7]: a lattice can be
described in CMT by a Hamiltonian H̃ whose matrix elements
are H̃ nn � ω̃n and H̃ nm � gnm (n ≠ m), where ω̃n are the
complex frequencies of the isolated cavities, and gnm are the
nearest-neighbor intercavity coupling parameters. In a closed
Hermitian system, ω̃n � ωn are real, while in an NH gain/loss
optical system, ω̃n � ωn − i∕τn, where τn is the nth cavity life-
time, which can be negative for net gain. Also, gnm can become
complex in general in an NH framework [23]; here, we will
consider real gnm for simplicity, i.e., we will neglect mode-loss
splitting [17,24].

A zero mode that can be realized in photonics is often the
result of the sublattice (or chiral) symmetry in Hermitian lat-
tices, where eigenvalues are real. Indeed, it can be shown that,
in Hermitian chiral arrays, the Hamiltonian anti-commutes
with a diagonal matrix C consisting of K ones followed by
L minus ones, i.e., fH̃ , Cg � 0. This property ensures
εk � −εj, and a zero mode with j � k verifies εj � 0. These
are known as dark modes, because the intensity in one of
the sublattices vanishes [8]. On the other hand, eigenvalues
are complex in general in NH arrays. While chiral symmetry
can still be realized in this case [6], a more prevailing
symmetry that leads to a zero mode in an NH lattice is
NHPH symmetry. While sharing key features with their
Hermitian counterparts such as the immunity to coupling dis-
order, they possess an important property: they can exist along
the entire imaginary axis. This is warranted provided that
fH̃ , CT g � 0, with T being the time-reversal operator, i.
e., the system features NHPH symmetry. Zero modes in this
framework (εk � −ε�j ) are not restricted to interfaces and can
be excited in different regions—both bulk and edges—of a
coupled photonic array. Table 1 summarizes similarities and
differences between Hermitian and NH zero modes.

Although our analysis can be extended to large cavity net-
works, in this work, we will focus on a small array of three
coupled cavities as the minimal system containing a zero mode.
Figure 1 illustrates a simple case where three cavities are aligned
along the x direction, while the resonant intracavity field oscil-
lates back and forth in the y direction [see schematics in
Fig. 1(c)]. We assume they all have the same resonant fre-
quency ω0 chosen as the reference frequency, nearest-neighbor
coupling gnm � g , and intrinsic field decay time τ0 due to op-
tical losses. Let us point out that the zero mode has the same
frequency as a standalone cavity. One of the extreme cavities,
say the top one, is incoherently pumped, therefore introducing
a variable gain γ; see Fig. 1(a). The complex eigenvalues of H̃
and their evolution with increasing γ are depicted in Fig. 1(b).
The black symbols correspond to the eigenvalues εj
(j � 1, 2, 3) evolving as the pump is increased from γ � 0

(red square at the starting point) to γ � 9.3 (black cross at
the end point). We call M1 and M3 the lowest and highest
frequency modes, respectively, both having a nearly symmetric
field distribution, while M2 is the central mode featuring π∕2
phase jumps between adjacent cavities [Fig. 1(b), inset].
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A zero mode (j � k), which always exists in the case of an
odd number of cavities, leads to Re�εj� � 0. This is the case of
M2, whose frequency does not depend on γ because of the
NHPH symmetry protection, while M1 and M3 frequencies
do. It is worthwhile noting that such a frequency change for
M1 and M3 is a pure MH effect, not related to any nonlinear
refractive index effect.

Unlike the Hermitian counterparts, the zero mode is no
longer a dark one under single cavity pumping; see Table 1
and Fig. 1(b): no light extinction occurs in the central cavity.
However, the exact π∕2 phase shift between adjacent cavities
distinguishes the wave function of a zero mode from all other
modes and dramatically impacts the PL far-field imaging in ex-
periments, as will be shown later on.

Here, we will restrict our analysis to the spontaneous emis-
sion regime—i.e., below laser threshold and neglecting ampli-
fication—in which a linear NH CMT is valid. We assume a
(Gaussian) pump spot profile P�x;X � centered at a given X
position; therefore, γn�X � � P�xn;X �, where xn are the central
positions of the cavities. As a result, εj depends not only on the
pump power but also on the pump position, εj � εj�X �. The
spontaneous emission in the cavities is jf i (f n ∝ γn), and the

modal excitation amplitudes f j�X � � hΦjjf i, with jΦji being
the left eigenvectors of H̃ . In this spontaneous emission regime,
the total emitted spectral intensity can be calculated as the
incoherent superposition of the N mode intensities, each one
contributing with a Lorentzian peak of amplitude f j�X �, res-
onant frequency Re�εj�X ��, and width Im�εj�X ��:

I�ω;X � �
����X

j

f j�X �
fω − Re�εj�X ��gi � Im�εj�X ��

����2, (1)

I�ω;X �≃
X
j

jf j�X �j2
fω − Re�εj�X ��g2 � fIm�εj�X ��g2

: (2)

Figure 1(c) shows the spectral intensity map I�ω;X � under
spatial scanning of a Gaussian pump spot, computed from
Eq. (2). The signatures of the zero mode are the two central
lobes corresponding to M2 in Fig. 1(c). Such an intensity
map, together with systematic far-field measurements, consti-
tutes a tool to experimentally investigate zero-mode radiation in
the active cavity array.

NH zero modes warranted by NHPH symmetry have the
freedom to evolve along the Im�ε� axis. In particular, at

Fig. 1. NH zero mode in a three coupled cavities array: CMT model. (a) NH Hamiltonian. (b) Black symbols and lines: eigenvalues in the CMT
model with τ0 � 0.2 and g � 12.3 (inset: intensity and phase spatial distribution atM2 laser threshold). Red symbols and lines: eigenvalues in the
CD-CMT model, for increasing carrier density N with a Gaussian profile N �x; x1� � exp�−�x − x1�2∕σ2�N centered at cavity 1 (τc � 7 ps,
x1 � 60, σ � 50, αH � 2; other parameters can be found in Appendix A). (c) Logarithmic spectral intensity as a function of the center of a
Gaussian pump spot, computed from Eq. (2) in the text. The pump spot profile is P�x;X � � exp�−�x − X �2∕σ2�, and γn�X � � P�xn;X �, with
σ � 50 and γ � 6, i.e., below laser threshold. Solid lines correspond to Re�εj� for j � 1 (M1, blue), j � 2 (M2, burgundy), and j � 3 (M3,
orange).

Table 1. Comparative Table with the Salient Properties of Hermitian and Non-Hermitian Photonic Zero Modes

Hermitian Non-Hermitian

Definition εj � 0 Re�εj� � 0
Symmetry of the entire spectrum Chiral (εk � −εj� Non-Hermitian particle-hole (εk � −ε�j )
Dimension of existence in the complex plane 0D (at the origin) 1D (along the imaginary axis)
Wavefunction Dark on one sublattice π∕2 phase shift between sublattices
Excitation method Resonant excitation (fluorescence) Resonant excitation or incoherent pumping

(lasing zero mode)
Robustness against Coupling disorder Coupling disorder and/or gain/loss disorder
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γ � 9.3, Im�ε2� � 0 so that the gain compensates the losses.
Thus, the linear CMTmodel predicts zero-mode lasing in three
coupled cavities systems as one of the extreme cavities is
pumped [8]. When dealing with active semiconductor me-
dia—such as InP membranes with quantum wells (QWs), as
in our experiments—an important deviation from this simple
CMT model is the absorption saturation and carrier-induced
refractive index changes below the laser threshold, leading to
frequency blue shifts of the cavity mode. We have incorporated
those effects in the CMTmodel, which we call hereafter carrier-
dependent CMT (CD-CMT) equations, derived in
Appendix A. In essence, these are based on a logarithmic model
for the absorption and the refractive index as a function of the
charge carrier density in the QWs. The eigenvalues as a func-
tion of the carrier are superimposed to the linear CMT eigen-
values in Fig. 1(b) (red symbols and lines). It can be observed
that it is now the highest energy eigenvalueM3 that reaches the
threshold before the middle one M2. Qualitatively, lasing phe-
nomena require a good spectral and spatial overlap between the
gain and the optical mode. Since the pump-induced refractive
index effect blue shifts the optical mode of the pumped cavity,
it is likely that the closest hybrid mode to the blue-detuned
pumped cavity will be more efficiently excited. This qualitative
argument is translated in the evolution of the eigenvalues, as
evidenced in Fig. 1(b).

3. THREE COUPLED PHOTONIC CRYSTAL
CAVITIES: DESIGN AND CHARACTERIZATION
OF HERMITIAN MODES

PhC cavities with embedded QWs are a suitable platform to
experimentally investigate zero-mode photonics. This is due

to the multiple degrees of freedom provided by the design
parameters, as well as the intrinsic and controllable gain/absop-
tion features.

Three coupled PhC L3 cavities [three missing holes in the
ΓK direction of a triangular air hole lattice, see Fig. 2(a)] are
separated by three rows of holes in the ΓM direction, leading to
evanescent coupling. The two extreme cavities of the linear ar-
ray couple to the middle cavity through a coupling coefficient
g . In order to control g , we implement the so-called barrier
engineering technique, by virtue of which the coupling strength
(and even its sign) can be changed, modifying the middle row
separating two adjacent cavities [17,18]. We have designed the
central hole row in the barriers with radius r3 � r0�1� h�,
with r0 being the hole radius of the underlying PhC lattice.
We call the parameter h the barrier perturbation. Importantly,
h has a strong impact on the cavity frequencies due to its in-
fluence on the effective refractive index surrounding the
cavities. Since the barrier induces a frequency detuning Δω�h�
in a contiguous nanocavity, a good approximation is to consider
the two extreme cavities as having the same frequency
ω0 � Δω�h� and ω0 � 2Δω�h� for the central cavity [see sche-
matics in Fig. 2(a), bottom and Appendix C for further details].
Therefore, the sublattice detuning is Δω � ωB − ωA ≈ Δω�h�.

In order to predict the influence of the barrier parameter in
the coupled mode structure, we have carried out 3D finite
difference time domain (FDTD) simulations. First, g�h� and
Δω�h� have been obtained by polynomial fitting datasets of
a two coupled cavity system separated by a barrier with
perturbation h (see Fig. 5 in Appendix B). Importantly, two
regions of h can be distinguished: the large detuning region,
jΔω�h�j > jg�h�j for h ≤ −5% or h ≥ 10%, and the small

Fig. 2. Three coupled PhC cavities. (a) Artist view of the system, featuring controllable coupling by means of the two barriers (highlighted with
dashed boxes) in which holes are modified. Two sublattices A and B can be defined, where couplings only take place between cavities belonging to
different sublattices. Bottom: schematic representation showing how the presence of the barriers modifies the cavity detuning. The sublattice de-
tuning is then Δω. (b) The 3D-FDTD simulation results of three coupled PhC cavities showing the evolution of the mode resonant wavelengths
(symbols, left axis) as a function of the barrier parameter. Solid lines (right axis) are CMT predictions using polynomial approximations of g�h� and
Δ�h� obtained from two coupled cavity FDTD simulations (see Appendix B). Two regions can be distinguished: the low (light green, jg j ≳ jΔωj)
and high sublattice detuning regions (light blue, jgj < jΔωj); the near-zero coupling region is highlighted with a striped background. (c) SEM image
of a sample of three coupled L3 InP-based PhC cavities. Inset: QW PL. (d) Normalized reflectivity spectra as a function of the barrier parameter from
resonant scattering experiments. These results can be interpreted as the optical response of the coupled cavity system in the Hermitian limit.
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detuning region, jΔω�h�j < jg�h�j for −5% ≲ h ≲ 10%.
Subsequently, 3D-FDTD simulations with three cavities have
been carried out. The mode frequencies as a function of h are
depicted in Fig. 2(b), together with the Hermitian CMT pre-
dictions using the fitted parameters Δω�h� and g�h�
(Appendix C), showing very good agreement.

We have fabricated the PhC cavity array of Fig. 2(a) in a
suspended InP membrane of 280 nm thickness containing four
InGa0.17As0.76P QWs, featuring a PL peak at λ ≈ 1514 nm
[Fig. 2(c)]. The details on the fabrication can be found in
Ref. [17]. The hole radius is r0 � 0.266a, and a, the period
of the triangular lattice, lies in the range of 400–420 nm.
The two holes limiting each cavity have a reduced radius of
r1 � r0 − 0.06a and are displaced away by s � 0.16a, in order
to increase the Q-factor [25]. Also, holes around the cavities are
modified with a period 2a by r2 � r0 � 0.05a in order to im-
prove the beaming quality of the emitted light and hence the
collection efficiency [26]; consequently, beaming holes inside
the barrier have radius r4 � r2�1� h�. Only samples with
h ≤ 0 have been realized, which suffices to largely tune the in-
tercavity coupling strength g . The resonance wavelengths of the
samples range from 1500 to 1600 nm depending on the lattice
period. The Q-factor of the cavity resonances is Q ∼ 4000 at
λ � 1580 nm, i.e., far from the QW absorption.

Two kinds of experimental characterizations have been carried
out: reflectivity spectra and PL experiments, both with controlled
spatial positions of the illumination spots. For the reflectivity
spectra, a single mode tunable laser is used, where the reflected
signal is coupled into a single mode optical fiber and sent to a
femtowatt photodetector; the background reflectivity is highly
suppressed using polarization optics (see Appendix D). In these
experiments, the cavity wavelengths, lying in the range of 1560–
1600 nm, are red-detuned from the QW absorption, and the
illumination power is low enough to be considered as linear re-
flectivity experiments. Hence, these can be interpreted as optical
characterizations of linear Hermitian modes [Fig. 2(d)]. Unlike
standard resonant scattering experiments leading to Fano reso-
nances, the reflectivity background suppression allows us to
clearly identify modes as Lorentzian-like peaks.

The spectral position of the measured resonances is in very
good agreement with the FDTD calculations of Fig. 2(b).
Noticiably, three modes are clearly distinguished for h � 0%
and h � −5%, corresponding to the low sublattice detuning re-
gion, while the middle peak is not apparent for −25% ≤
h ≤ −10%. This interval is within a crossover region where g
is small and changes signs [−25% ≤ h ≤ −5% corresponding
to −2.17 THz ≤ g ≤ 1.26 THz, dashed region in Fig. 2(b)],
with a crossing point (g � 0) at h ≈ −15%. As a consequence,
M2 andM3 frequencies are slightly split in this region. Finally,
M2 resonances re-emerge for h ≤ −30%. Note that although the
system is no longer chiral for Δω ≠ 0,M2 remains a zero mode
due to geometric frustration, where the couplings from cavities 1
and 3 are canceled in cavity 2 (see Appendix E).

4. DIRECT OBSERVATION OF THE
NON-HERMITIAN ZERO MODE

In addition to the reflectivity spectra of the previous section,
which characterize Hermitian modes, we have also performed

PL experiments, where the pump laser wavelength is now
λ � 800 nm: the laser beam is mainly absorbed in the quan-
tum barriers, and thus it can be considered as an incoherent
pump. We use a pulsed laser (100 ps duration and 1 MHz rep-
etition rate) in order to reduce thermal effects. As in the reflec-
tivity experiments, the pump spot is focused down to nearly the
diffraction limit so as to achieve a pump configuration with a
localized gain profile across the cavity array, meaning that es-
sentially one cavity is pumped when aligning the pump beam at
its center. The radiated PL is collected in the free space and
spectrally resolved with a spectrometer coupled to an InGaAs
one-dimensional (1D) detector array. A piezo-electric-driven
stage holding the sample allows us to externally control the
sample position with respect to the pump spot with sub-micron
resolution. The results are shown in Figs. 3 and 4.

The spectral intensity as a function of the sample position
reveals two distinct typical patterns depending on the value of
the barrier parameter h. For h < −5%, the detuning jΔω�h�j is
larger than the coupling strength jg�h�j; we can then expect
that the two extreme cavities become effectively decoupled
from the central one, especially for h ≤ −20%. The spectral
map of Fig. 3(a) (h � −20%) is consistent with this prediction:
as long as the pump excites the QWs in one of the extreme
cavities, a resonant mode is observed at λ0 ≈ 1558.2 nm, and,
when pumping the middle cavity, a mode red shifted by

Fig. 3. Spatially resolved PL measurements in the large detuning
regime. (a) Experimental results showing spectral intensity maps upon
spatial scanning of a pump spot for a � 416 nm and h � −20%,
Ppump � 0.8 μW. The position of the sample is changed by means
of the piezo-electric voltage. (b) CD-CMT predictions (σ � 40,
N � 0.22, αH � 3). Near-field [(a)-i to (a)-v, (b)-i to (b)-iii] and
far-field [(a)-vi to (a)-x, (b)-iv to (b)-vi] images are displayed at the
selected pump spot positions marked with horizontal dashed lines.
Vertical white dashed lines in the near field indicate the position of
the cavities, and kx � 0 in the far field.
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Δλ ≈ 7.7 nm ∼ 6 THz comes out, consistent with the
jΔω�h � −20%�j ≈ 7 THz detuning obtained from the
numerical simulations. The near-field images [Figs. 3(a)-i
to 3(a)-v] show that the emission essentially comes from the
pumped cavity provided only one mode is excited. Note that
two near-field lobes can be observed for intermediate positions,
where two resonances are simultaneously present in the
spectrum [Figs. 3(a)-ii and 3(a)-iv]. The far-field images
[Figs. 3(a)-vi to 3(a)-x] confirm this observation of always
revealing only one central lobe, consistent with a localized cavity
mode. It is even the case for two near-field lobes, for which the
radiation pattern becomes the incoherent superposition of two
centered single cavity far-field lobes [Figs. 3(a)-vii and 3(a)-ix].

This analysis allows us to conclude that the two external
cavities are decoupled from the central one for large sublattice
detuning. The experimental results are in very good agreement
with CD-CMT calculations that blue shift the cavity resonance
as a function of the pump power.

Interestingly, although the zero mode would still exist in the
case of large Δω in Hermitian systems, it is no longer observ-
able in our NH system with detuning using a single localized
pump spot. As pointed out before, this is because Hermitian
zero modes are dark ones; therefore, they remain unaffected if

the detuning takes place only in the cavities where the ampli-
tude of the zero modes is zero. On the other hand, the NH zero
modes are not dark ones in general. Here, in our NH system, a
single localized pump spot results in an imaginary detuning
that acts together with the real (frequency) detuning to elimi-
nate the NHPH symmetry and its zero modes (see
Appendix E). Therefore, within this large sublattice detuning
regime, the NH zero mode is destroyed when pumping on one
extreme cavity.

To experimentally address a zero mode, we change the
barrier parameter to enter into the low detuning regime,
h ∼ 0%. Within this regime, the spectral intensity pattern to-
tally differs from the large detuning case where localized modes
prevailed [Fig. 3(a)]. For −5% ≲ h ≲ 10%, jΔω�h�j < jg�h�j
[Fig. 2(b)] and the three coupled cavities effectively behave
as a whole. In the spectral intensity map [Fig. 4(a),
h � 0%], we can observe a pattern with the mode of highest
energyM3 being excited independently of the sample position;
it has a higher intensity compared to the two other modes. The
central mode M2, on the other hand, attains two maxima in
between the extreme cavities and the central one. The lowest
energy mode M1 is the weakest one, and it is only observed
when pumping near the central cavity, a feature that was already
present in the simplified calculation of Fig. 1(c).

In these conditions, we have measured the near-field and
far-field patterns, setting the pump spot positions at the local
maxima of the modes and using pass-band filters to filter out all
other spectral components. From the near and far-field images
of the highest [M3, Figs. 4(a)-ii and 4(a)-vi] and lowest [M1,
Figs. 4(a)-iii and 4(a)-vii] energy modes, we conclude that those
are approximately symmetric modes, with M1 being the fun-
damental one, which is in agreement with the CMT and
FDTD calculations. In particular, the near-field images
[Figs. 4(a)-ii and 4(a)-iii] show that the emission of those
two modes comes from all three cavities, with a higher intensity
in the middle for M3 and in the extreme ones for M1. The
central mode, on the other hand, features a far-field intensity
node at the center [M2, Figs. 4(a)-v and 4(a)-viii]; its near field
is more intense in the two extreme cavities [Figs. 4(a)-i and
4(a)-iv], while the intensity is below our detection limit in
the central cavity region. These observations are compatible
with the NH zero mode M2 of Section 2. In particular, the
π∕2 phase jump between adjacent cavities predicted for an
NH zero mode is translated into a π phase difference between
the two extreme cavities, giving rise to an anti-symmetric-like
far-field profile, as it has already been observed for two coupled
cavities [27].

Figure 4(b) shows the CD-CMT calculations. The carrier-
induced refractive index effects have an important impact on
the PL map, as compared to Fig. 1(c). Although the main quali-
tative features are already captured by a linear NH CMT, in the
CD-CMT, the blue-detuned mode M3 strongly dominates
over the other two modes. As discussed before, this can be ex-
plained as a consequence of the frequency blue shift of a cavity
resonance under optical pumping: we can therefore expect that
the blue most detuned hybrid mode will be more efficiently
excited, since its spectral overlap with the pumped cavity
resonance increases. This explains the enhancement of the

Fig. 4. Observation of the zero mode in the low detuning regime.
(a) Experimental results showing spectral intensity maps upon
spatial scanning of a pump spot for a � 408 nm and h � 0%,
Ppump � 0.8 μW. The position of the sample is changed by means of
the piezo-electric voltage. (b) CD-CMT predictions (σ � 40,
N � 0.27, αH � 3). Near-field [(a)-i to (a)-iv, (b)-i to (b)-iii] and
far-field [(a)-v to (a)-viii, (b)-iv to (b)-vi] images are displayed at
the selected pump spot positions marked with horizontal dashed lines.
Spectral filters are used in order to remove contributions from other
modes, the spectral bandwidth being represented by the horizontal
extension of dashed boxes. Vertical white dashed lines in the near field
indicate the position of the cavities, and kx � 0 in the far field.
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high-energy mode M3 in this low sublattice detuning regime,
even though the zero mode is clearly observable. Compared to
the experimental result of Fig. 4(a), the two M2 lobes are less
visible; this might be due to the simplification of our CD-CMT
model that neglects dissipative coupling and amplification.
Importantly, the zero mode might be brought to laser operation
as long as a two spot pumping scheme is implemented (see
Appendix E), as will be reported elsewhere. In addition, in
our carrier-dependent model, we observe that the intercavity
phase jumps in M2 become quite sensitive to frequency shifts;
in the CD-CMT calculation of Fig. 1(b), theM2 cavity phases
for N � 0.3 are �0.85π; 0; 1:85π�, thus deviating from the ex-
pected π∕2. Such sensitivity is a further example of how active
semiconductor media, featuring a carrier-induced refractive
index, may have a significant impact in the NH realm. For in-
stance, in PT-symmetry breaking experiments using semicon-
ductor microcavities, PT symmetry gets explicitly broken in the
sense that the real part of the permittivity is no longer symmet-
ric under asymmetric pumping.

Let us now address the question of the extinction of the NH
zero mode in this system for decreasing the h parameter. First, we
notice that for very small jgj PT-symmetry breaking is predicted
as one extreme cavity is pumped. Within this broken PT-
symmetry phase (−18% < h < −11%), the central cavity
(sublattice B)—already effectively decoupled from the two ex-
treme ones—does not play an important role; at the same time,
the two extreme ones (sublattice A) weakly interact with each
other, such that a gain imbalance may undergo an EP. This
is depicted in Figs. 7(l) and 7(m) of Appendix F: the real parts
of the eigenvalues of modes M2 and M3 undergo EPs when
pumping in the proximity of an extreme cavity. Within a
pumped cavity of sublattice A, as it is apparent in the inset
of Fig. 7(l), the real parts of the eigenvalues of M2 andM3 coa-
lesce in a single branch; there, only one mode is observable—the
one with higher gain—and it is localized in the pumped cavity.
The otherwise EP bifurcation results in an imperfect symmetry
breaking [Figs. 7(g) and 7(h)] [28], enhancing light localization
in the pumped cavity. Therefore, within this broken PT-
symmetry region, light localization in the real device is a combi-
nation of underlying PT-symmetry breaking and pump-induced
frequency shift effects, while outside this region [Figs. 7(a), 7(f)
and 7(k)] localization in one extreme cavity arises because of pure
carrier-induced refractive index effects.

5. CONCLUSION

We have reported on the direct observation of NH zero modes
warranted by NHPH symmetry in a minimal cavity array: three
coupled PhC nanocavities in a gain/loss configuration under
spatially localized optical pumping. Because the number of
cavities is odd, Lieb’s theorem ensures the existence of a zero
mode in the Hermitian limit, which evolves continuously into
an NH zero mode. Therefore, there is no need to generate it
through, for instance, NHPH spontaneous symmetry restora-
tion. These two types of zero modes do not transform into each
other in general (except at a higher-order EP [29]) and can
hence be regarded as topologically distinct.

The nature and properties of these NH zero modes differ
from their chiral Hermitian counterparts in two main aspects.

First, unlike Hermitian zero modes, NH ones are more robust
in the sense that they are not restricted to the origin of the
complex plane, but they may exist along the imaginary axis,
still benefiting from symmetry protection. More specifically,
and analogously to chiral modes, they are immune to random
coupling perturbations in the cavity array. Second, although
NH zero modes are not dark ones in general, in the sense that
there is no light extinction in one of the sublattices, these zero
modes feature π∕2 phase jumps between adjacent cavities.
These constitute unambiguous physical signatures that distin-
guish their wavefunctions from any other ones in the array and
enable experimental protocols to detect them. Here, we have
shown that a PL intensity map under spatial scanning of the
pump spot provides a clear fingerprint of zero modes in the
form of PL maxima in between cavities. At those PL maxima,
a Fourier imaging technique allows us to identify nodes at the
far-field center (k � 0) due to a π-phase difference between
the extreme cavities, compatible with the predicted π∕2 phase
jumps.

We have identified different regimes that arise as the cou-
pling barrier of the photonic molecule is systematically modi-
fied through the perturbation parameter h that varies the hole
radius of a row within the photonic barrier. Such a barrier
modification simultaneously changes the coupling g and the
sublattice detuning Δω, giving rise to two important regimes:
jΔωj > jgj leading to sublattice localization and jΔωj < jgj
leading to sublattice delocalization and zero modes.
Remarkably, we have identified the transition from zero-mode
observation to its extinction as h is decreased as a combination
of underlying PT-symmetry breaking and carrier-induced
blue shift effects, which strongly localize the PL in a single
cavity.

In spite of the tremendous theoretical advances in the NH
domain, observations of photonic zero modes have been re-
stricted so far to waveguide or cavity arrays that resemble their
Hermitian counterparts, such as the SSH lattice. Although
experimental demonstrations of NH phenomena such as
PT-symmetry breaking and EPs are coming to maturity, with
special focus in two resonator systems, the physical realization
of NH symmetries beyond PT such as NHPH in large cavity
arrays—a unique playground for NH photonics—is still in its
infancy. We believe that further developments in this direction
would enable promising applications of NH symmetry pro-
tected modes, ranging from laser array mode engineering, op-
tical communications, and photonic computing [30]. For
instance, one can imagine expanding the number of optical
communication channels without requiring additional band-
width, using instead the different spatial profiles of these modes
as an additional degree of freedom. This approach provides an
alternative or complement to encoding optical signals using
beams with different orbital angular momentum [31], which
has gained fast-growing interest in the past decade.

APPENDIX A: CARRIER-DEPENDENT CMT
MODEL

We will consider CMT of an optical cavity filled with a QW
material as a more realistic model of our experiments as com-
pared to a linear NH CMTmodel. As a matter of fact, optically
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pumping a PhC membrane containing QWs produces not only
absorption saturation and gain—nonlinear with the pump in-
tensity, but also blue shift of the resonant mode due to carrier-
induced refractive index effects. For a single active cavity, we
use a standard CMT equation describing the temporal
dynamics of the field amplitude a:

da
dt

� −a
�
1

τc
� 1

τa�N �

�
� ia�ωc � ΔωQW�N ��, (A1)

with τc (ωc) the photon lifetime (resonant frequency) of the
bare cavity, τa the absorption lifetime (τa < 0 in the presence
of gain), ΔωQW the QW carrier-induced frequency shift, and
N the carrier density. Using perturbation theory, it is possible to
relate both the absorption and frequency shift to the imaginary
and real parts of the QW electrical susceptibility χQW�N �, re-
spectively, in the following way:

1

τa�N � �
vg0ωcΓ
2cnr

Δχ 0 0
QW�N �,

ΔωQW�N � � −
ωcΓ
2n2r

Δχ 0
QW�N �, (A2)

where vg0 is the group velocity of the uniform slab, Γ is the
optical confinement factor of the cavity (here, Γ � 0.2), and
nr is the effective refractive index of the slab (here, nr � 3).

Noting that the imaginary part of the QW susceptibility can
be related to the QW absorption α�N � through α�N � �
�ωc∕cnr�Δχ 0 0

QW�N � and approximating

Δχ 0
QW�N �

Δχ 0 0
QW�N � ≈

∂χ 0
QW∕∂N jN 0

∂χ 0 0
QW∕∂N jN 0

≡ αH �N 0�,

where N 0 is the carrier density at QW transparency, and αH is
the so-called Henry factor of the semiconductor laser—also
known as the linewidth enhancement factor, Eq. (A2) can
be written as

1

τa�N � �
vg0Γ
2

α�N �,

ΔωQW�N � � −
vg0Γ
2

α�N �αH �N 0�:
The QW absorption can be approximated by the following

phenomenological logarithmic function of N :

α�N � � −
ωc

nr c
ln

�
N � A
N 0 � A

�
, (A3)

where N 0 is the carrier density at QW transparency, and A is a
phenomenological parameter. These have been obtained by fit-
ting experimental data of linewidth as a function of the pump
power below laser threshold (not shown) and giving N 0 � 0.2
and A � 2.5 in normalized units. In addition, measurements
of the spectral shift as a function of the pump power led to
αH �N 0� ≡ αH ∼ 2.5−3, approximately independent of the
pump power and, hence, of the carrier density.

APPENDIX B: 3D-FDTD SIMULATIONS

3D-FDTD simulations have been performed using Lumerical-
FDTD Solutions software package. We first simulated the case
of two coupled cavities in order to predict the dependence of

the coupling on the barrier perturbation h. The simulated
structure consists of a 280-nm-thick PhC membrane with a
refractive index of n � 3.17. The period and hole radius of
the lattice are a � 414 nm and r0 � 0.266a, respectively. The
two end holes of the cavities are separated by s � 0.16a, and
their radius is reduced to r1 � r0 − 0.06a. For accurate results,
two parameters should be taken into account: the mesh size and
the simulation time. Concerning the former, we have verified
that a spatial step size of a∕20 in the x and y directions and
a∕10 in the z direction lead to accurate results. As far as the
simulation time is concerned, the results converge with
T � 10 ps.

We have introduced perfectly matched absorbing layers
(PMLs) to overcome the problem of parasitic reflections that
can occur in the vicinity of the studied structure. In addition,
symmetry boundary conditions are used whenever the electro-
magnetic fields have a plane of symmetry through the middle of
the simulation region. By taking advantage of this symmetry,
the simulation volume and time can be reduced. In our sim-
ulations, the boundary conditions are PMLs in the x and y di-
rections and symmetric along the z axis.

In order to excite the modes of the coupled system, we have
randomly distributed eight magnetic dipoles along each cavity,
and the resonant modes are extracted using two types of mon-
itors. For extracting resonant modes, time monitors are placed
inside the cavities. These monitors provide time series of field

Fig. 5. Two coupled PhC cavities’ 3D FDTD numerical simula-
tions as a function of the barrier perturbation parameter h (see main
text). (a) Hybrid mode frequencies. (b) Coupling and cavity detuning
extracted from the hybrid mode frequency splitting and average, re-
spectively. Solid lines are third-order polynomial fittings, which are
subsequently used for CMT calculation with three coupled cavities
in the main text.
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components throughout the simulation, and, subsequently, the
resonance spectrum of the system is obtained through Fourier
analysis. In addition to the spectra, the electromagnetic field
spatial distribution for each resonance has also been recorded
thanks to frequency-domain field monitors, allowing us to dis-
tinguish the modes according to their field distributions.

The barrier parameter h has been varied from −0.35 to 0.35.
Figure 5(a) illustrates the evolution of the two modes with h.
For h � 0 (without changing the hole radius of the central
row), the anti-symmetric mode is the mode with smaller energy
(anti-symmetric ground state), and the situation is reversed for
h < −15%, with a mode crossing point at h ≈ −15%.

APPENDIX C: POLYNOMIAL FITTING AND
LINEAR COUPLED MODE THEORY

As discussed in the main text, the changing of h affects not only
the coupling strength g but also the coupled cavity resonant
frequencies, which exhibit an offset with that of a single cavity
(ω0 � 1.2391 × 1015 Hz) by an amount Δω. In order to find
approximated expressions of Δω�h� and g�h� to be eventually
used in our CMT formalism for three coupled cavities, we first
consider the following CMT Hamiltonian as a model for the
two coupled cavity system simulated in the previous section:

H �
�
ωc −

i
τ g

g ωc −
i
τ

�
,

where g ,ωc , and τ ∈ R. Note that we assume the cavities to be
identical and the coupling to be lossless. We calculate analyti-
cally det�H

↔
− ωΠ

↔
� � 0 to get the system eigenvalues:

ω	 � ωc 	 g − i
1

τ
,

where ω	 corresponds to the symmetric (anti-symmetric)
modes. The mode frequencies are given by Re�ω	� � ωc 	 g.
We define the resonant cavity frequency ωc as the frequency of
an isolated cavity (ω0) plus a detuning Δω, so that the eigen-
frequencies become

Re�ω	� � ω0 � Δω�h� 	 g�h�: (C1)

From Eq. (C1) and the data in Fig. 5(a), we calculated
Δω�h� and g�h�. The results are represented in Fig. 5(b)
together with the following third-order polynomial fits:

Δω�h� � 3.2252 × 1013 × h3 − 5.1235 × 1012 × h2

� 3.1162 × 1013 × h − 4.7566 × 1011,

g�h� � 3.3261 × 1013 × h3 − 1.8775 × 1013 × h2

� 8.9617 × 1012 × h� 1.7609 × 1012:

Armed with these expressions for Δω and g , we can now
predict the behavior of the modes in a system of three coupled
cavities as a function of the barrier parameter. First, we have
simulated one cavity in the presence of one barrier at a side
and two barriers [Fig. 6(a)]. We observe that, in the latter case,
the wavelength shift is twice that of the one with only one
barrier. In addition, the Q-factor also follows a similar rule
when adding a barrier at a side, implying the additional leakage
is doubled; however, the perturbation in the total Q-factor
being small (∼10%), we can neglect the effect in the losses.
Therefore, we will assume that, in the three-cavity system,

the frequency detuning of the middle cavity is twice the detun-
ing of the extreme ones, which leads to the real Hamiltonian of
Eq. (C2):

H �
0
@ω0 � Δω�h� g�h� 0

g�h� ω0 � 2 × Δω�h� g�h�
0 g�h� ω0 � Δω�h�

1
A:

(C2)

The eigenvalues of Eq. (C2) are shown in Fig. 2(b) of the
main text, together with 3D-FDTD numerical simulations of
three coupled cavities, where the latter have been obtained with
the same simulation parameters as the ones described in the
previous section.

APPENDIX D: LINEAR REFLECTIVITY
EXPERIMENTS

We characterize the behavior of the linear Hermitian modes in
our system by performing linear reflectivity experiments as
briefly described in the main text. The quasi-resonant injection
beam is obtained from a Tunics T100s-HP, and its polarization
is managed by means of a polarizing beam splitter combined to
a subsequent half-wave plate that ensures linear horizontal
polarization. The injection beam reaches the injection/
detection beam splitter (80% reflectivity) and a half-wave plate
and is finally injected through a 0.95 numerical aperture

Fig. 6. Single PhC cavity 3D FDTD numerical simulations in the
presence of one or two barriers at the sides.
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microscope objective (Olympus MPLAN 100× IR). The fast
axis of the half-wave plate is rotated at 22.5° from the injection
beam, allowing an injection at 45° from the cavity polarization
and an according polarization separation between the non-
injected and the injected beams. An additional lens with
100 cm focal length is located prior to injection so as to facili-
tate mode matching with the cavities. We then separate the
non-injected and injected beams after the injection/detection
beam splitter using a half-wave plate—in order to select the
detected polarization—and a polarizing beam splitter. We fi-
nally inject a monomode optical fiber with the three-cavity sys-
tems’ emission and detect the signal using a femtowatt
photoreceiver (New Focus 2153) connected to a 12 bits oscillo-
scope (Tektronix MSO64).

During a single realization of the experiment, the injection
beam is first centered onto the considered nanocavity array and
subsequently swept over either 20 or 40 nm with different start-
ing wavelengths [as presented in Fig. 2(d) of the main text],
depending on the barrier parameter.

APPENDIX E: CHIRAL AND NON-HERMITIAN
PARTICLE-HOLE SYMMETRY IN A THREE-
CAVITY ARRAY

Chiral symmetry in the context of our disucssion applies to a
system consisting of two sublattices A and B, where couplings
only take place between two cavities belonging to different sub-
lattices. As long as all the cavities have the same frequency ω̃0,
the Hamiltonian can be brought to the following form:

H̃ �
�

0 T
T † 0

�
� ω̃01, (E1)

where T is the coupling matrix, † denotes the Hermitian con-
jugate as usual, and 1 is the identity matrix. T can be complex
in general, and it is K × L in size, where K , L are the sizes of the
two sublattices. Note that ω̃0 does not need to be real, and it is
not real in general, due to the cavity decay and material absorp-
tion. Nevertheless, by choosing this complex ω̃0 � ω0 − i∕τ as
the reference frequency or origin of the complex plane, the
effective Hamiltonian of the system takes the form

H̃ �
�

0 T
T † 0

�
, (E2)

which is effectively Hermitian. It is straightforward to verify
that H̃ given by Eq. (E2) anti-commutes with a diagonal matrix
C consisting of K ones followed by L minus ones, which is
often referred as the chiral operator, and therefore the
Hamiltonian in Eq. (E2) has chiral symmetry, implying that
εk � −εj. Let us point out that chiral symmetry can also hold
when H̃ is NH, i.e., replacing T by T 1 and T † by T 2 in
Eq. (E2), with T 2 ≠ T †

1 [8].
In Fig. 1 of the main text, H is written by arranging the

three cavities sequentially. If one wishes to put it in the form
of Eq. (E1) in the absence of a pump, one just needs to perform
a basis transformation, i.e., exchanging the positions of the sec-
ond and third cavities:

H �
0
@ ω̃0 g 0

g ω̃0 g
0 g ω̃0

1
A → UHU −1

�
0
@ 0 0 g

0 0 g
g g 0

1
A� ω̃01,

U �
 
1 0 0
0 0 1
0 1 0

!
, T �

�
g
g

�
∈ R:

We also note that uniform pumping across the three cavities
only changes the value of ω̃0 from ω0 − i∕τ to ω0 − i�1∕τ − γ�,
and hence the system remains effectively Hermitian. Now, if
the cavities are pumped non-uniformly, as it is for the case
for a (localized) single pump spot, γ will no longer be equal
for all of the cavities. As a result, the otherwise chiral symmetry
of Eq. (E2) is no longer warranted; NHPH symmetry will hold
instead. In such a case, the Hamiltonian anti-commutes with
the operator CT , T being the time-reversal operator. In this
case, the eigenvalue spectrum of the Hamiltonian is symmetric
about the imaginary axis εk � −ε�j .

As mentioned in the main text, both chiral and NHPH
symmetries warrant zero modes (when k � j), and therefore
they constitute sufficient conditions for their existence.
However, they are not necessary conditions. Indeed, a zero
mode can also exist in the absence of such symmetries. For ex-
ample, if only cavity 2 in Fig. 1 of the main text is detuned, the
Hamiltonian of the system can be written as

H̃ �
0
@ 0 0 g

0 0 g
g g Δ

1
A: (E3)

This Hamiltonian has neither chiral nor NHPH symmetry as
reflected by its eigenvalues,

ε1 � 0, ε2,3 �
Δ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � 8g2

p
2

,

which are no longer symmetric about the origin or the imagi-
nary axis of the complex plane, independent of whether Δ is
real or complex. The zero mode still exists due to “geometric
frustration,” where the couplings from cavities 1 and 3 are can-
celed in cavity 2, giving rise to a dark mode. This is particularly
the case in our Hermitian resonant scattering experiments
(Section 2), where Δ � Δ0 above is real. The zero mode then
survives. In the NH gain/loss experiments of Sections 3 and 4,
we also fulfill this condition when pumping on cavity 2, which
changes Δ0 to Δ0 � iγ. However, the pump has no spatial
overlap with the zero mode in this case, and hence the latter
cannot be excited or observed. Therefore, strictly speaking,
the NH zero mode cannot be linearly excited for nonzero sub-
lattice detuning (Δ0 ≠ 0) under a single pump spot.

An alternative configuration to excite the NH zero mode
with nonzero sublattice detuning Δ0 is to pump cavities 1
and 3 equally, i.e., under a two pump spots configuration,
with which Eq. (E3) becomes
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H̃ �
0
@ iγ 0 g

0 iγ g
g g Δ0

1
A �

0
@ 0 0 g

0 0 g
g g Δ0 − iγ

1
A� iγ1:

Because the term with the identity matrix simply causes a shift
of the reference frequency and does not affect the eigenstates of
the Hamiltonian, the zero mode survives with Δ now equal to
Δ0 − iγ. In this configuration, the pump overlaps perfectly with
the zero mode in space, and hence the latter could be excited
and observed, even for a large real detuning Δ0. Importantly,
such a two pump spots configuration could lead to zero lasing
mode in the three coupled PhC cavities system.

APPENDIX F: ZERO-MODE COALESCENCE AND
PHASE TRANSITIONS

In this appendix, we present the full experimental and numeri-
cal results as the barrier parameter h is decreased from h � 0%
to h � −25%, i.e., as the intercavity coupling jgj goes from
above to below the sublattice detuning jΔωj. Indeed, the NH
zero mode is only observed in the jΔωj ≲ jgj regime (Fig. 4),
while it is missing in the jΔωj > jgj regime (Fig. 3). First of all,
let us recall that, in the large sublattice detuning regime,
NHPH symmetry no longer warrants zero modes for single
cavity pumping. But, even ifM2 loses its symmetry protection,
the question arises whether M2 still exists but remains unde-
tectable, or it coalesces through a phase transition. Let us
also recall that, in the Hermitian limit, the zero mode is
observable for large sublattice detuning [Fig. 2(d), h �
−30%, and h � −35%].

The full picture of the different NH phases as a function of
the barrier parameter is represented in Fig. 7; this completes the

experimental PL maps for various h parameters [Figs. 7(a)–
7(e)] and depicts carrier-dependent [Figs. 7(f )–7(j)] as well
as linear [Figs. 7(k)–7(o)] CMT calculations. The experimental
cases already analyzed in the main text are reproduced in
Fig. 7(b) (h � −20%) and in Fig. 7(e) (h � 0%). We identify
two phases, corresponding to effective coupling/decoupling
of the central cavity with respect to the two extreme ones:
the sublattice delocalized phase corresponds to jΔωj ≲ jgj
(−5% ≲ h ≤ 0%), in which M2 is observable and becomes the
zero mode because of NHPH symmetry; conversely, the sub-
lattice localized phase corresponds to jΔωj > jgj (h ≤ −10%),
in which M2 is no longer observable. Interestingly, within this
sublattice localized phase, there is a sub-region corresponding
to the crossover of g, from positive to negative, vanishing at
h ≈ −15%. At such a crossover, M1 and M3 exchange sym-
metries, in the sense that M1 goes from a quasi-symmetric
mode with zero phase jumps between the cavities for g > 0 to
a quasi-symmetric mode with π phase flips between the cavities
for g < 0. Importantly, within the localized phase, we identify a
PT symmetry breaking phase for small jgj [Figs. 7(l) and 7(m)].
CMT calculations show that M2 and M3 merge together at
EPs for −18% ≤ h ≤ −11%. Such a broken PT-symmetry
phase is observable as long as jgj is smaller than ∼0.1Δω.
Let us also point out that, within this very small jgj region,
a CMT model with only first neighbor coupling might break
down, and second neighbor coupling might be necessary to be
taken into account.

We note that in a large array (with more than three cavities),
it is possible to induce multiple NH zero modes. The mecha-
nism at work here is the following: the first pair of modes
that coalesce at an EP on the imaginary axis and subsequently
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Fig. 7. Phase diagram underlying the transition from sublattice delocalization and zero modes to sublattice localization and mode coalescence.
(a)–(e) Experimental PL intensity maps under pump spot position scanning across the coupled cavity system. (a)–(c) a � 416 nm,
Ppump � 0.8 μW; (d), (e) a � 408 nm, Ppump � 1.1 μW. (f )–(j) CD-CMT and (k)–(o) linear CMT calculations with parameters αH � 3,
σ � 40. (f )–(h) N � 0.23, (i) N � 0.24, and (j) N � 0.27; (k)–(m) γ � 1, (n) γ � 1.1, and (o) γ � 1.3.
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evolve into two zero modes depends on the spatial profile of the
gain, including both its central position and spatial extension.
Therefore, by tailing the spatial profile of the gain (or, more
practically, the pump), we can coerce different pairs of modes
to emerge as NH zero modes on the imaginary axis, with dis-
tinct spatial profiles that are correlated with that of the gain.

Finally, notice that the “middle eigenmode” in a linear
coupled cavity array is not necessarily a zero mode, for instance,
in the case of arbitrarily detuned cavities. The middle eigen-
mode energy will be mostly localized in a single cavity, whereas
the zero mode is delocalized in a sublattice—in the three-cavity
example, given by the two extreme cavities. We have observed
this situation in many samples, especially for large sublattice
detuning, where the two extreme cavities become essentially
decoupled from the middle one; furthermore, additional
disorder-induced detuning of the two extreme cavities leads
to the results depicted in Fig. 8. Here, the barrier parameter is
h � −20%, ensuring large sublattice detuning (Δω �
−7 THz), and an additional detuning of about 1 nm is
observed between the two leftmost intensity maxima in
Fig. 8(a), most likely corresponding to a fabrication-induced

perturbation. In the model CD-CMT calculations of Fig. 8,
this corresponds to a detuning of Δω13 � 6τ−1 between the
two extreme cavities; as a result, the three cavities become es-
sentially decoupled. Although at around a pump spot position
of 12 V in Fig. 8(a), three modes can be observed in the spec-
trum, and the middle one is not a zero mode. Note that the
model predicts (real part of ) eigenvalue crossing because of
the carrier-induced blue shift in Fig. 8(b); therefore, the modes
behave as if they are not seeing each other.
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