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Phase calibration for optical phased arrays (OPAs) is a key process to compensate for the phase deviation and
retrieve the initial working state. Conventional calibration approaches based on iterative optimization algorithms
are tedious and time-consuming. The essential difficulty of such a problem is to inversely solve for the phase error
distribution among OPA elements from the far-field pattern of an OPA. Deep-learning-based technology might
offer an alternative approach without explicitly knowing the inverse solution. However, we find that the phase
ambiguities, including conjugate ambiguity and periodic ambiguity, severely deter the accuracy and efficacy of
deep-learning-based calibration. Device-physics-based analysis reveals the causes of the phase ambiguities, which
can be resolved by creating a tailored artificial neural network with phase-masked far-field patterns in a conjugate
pair and constructing a periodic continuity-preserving loss function. Through the ambiguity-resolved neural net-
work, we can extract phase error distribution in an OPA and calibrate the device in a rapid, noniterative manner
from the measured far-field patterns. The proposed approach is experimentally verified. Pure main-beam profiles
with >12 dB sidelobe suppression ratios are observed. This approach can help overcome a crucial bottleneck for
the further advance of OPAs in a variety of applications such as lidar. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.435766

1. INTRODUCTION

Integrated optical phased arrays (OPAs) can control the propa-
gating behavior of light in free space without bulky mechanical
components, showing great potential in applications such as
light detection and ranging (lidar), wireless optical communi-
cation, and image projection [1–24]. Owing to the comple-
mentary metal oxide semiconductor-compatible (CMOS)
processes, a large number of components can be readily inte-
grated on-chip, forming a compact phased array system. The
optical paths of the elements of an integrated OPA are generally
designed with fan-in waveguides to form an aligned wavefront
as an initial state [1–3]. However, the high index contrast of
silicon waveguides always results in substantial random phase
errors in the paths of the waveguides due to fabrication varia-
tion, which generates a distorted far-field pattern different from
the ideal initial state. These fabrication-induced phase errors are
generally compensated for by adding an extra phase shift
determined from optimal searching methods such as the par-
ticle swarm optimization (PSO) algorithm, gradient descent

algorithm, and genetic algorithm [12–23]. Such an iterative,
optimization-based calibration process is able to align the
wavefront and to achieve reasonably good results in practice.
However, the phase calibration process is always time-
consuming. Recently, encouraging improvements of the cali-
bration accuracy and efficiency have been demonstrated by
modifying the algorithm, using an on-chip monitor or interfer-
ence-assisted setup [24–27], although the core algorithms
remain based on an iterative search of the optimum in a
high-dimensional space. For a large number of OPA device
samples that are needed in real applications, the lengthy iter-
ation process needs to be repeated for each sample, which can
result in prohibitive time and cost for calibration [for an illus-
trative example, see Appendix D, Fig. 10(c)].

For an OPA, it would be desirable to identify the phase error
distribution among the OPA elements from the irregular far-
field pattern instantly and calibrate the device to an ideal initial
state without prolonged iterative processes. However, it is dif-
ficult to inversely solve the complex nonlinear relationship
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between the far-field pattern and near-field phase distribution
to find the phase errors in such a photonic system. Recently, the
artificial neural network (ANN) has provided new solutions for
many subjects such as nanophotonic designs [28], identifying
the different phases of matter [29], and solving ellipsometric
problems [30]. Its ability to deal with complex nonlinear map-
ping makes it an ideal building block of a framework to solve
the inverse problem for OPA calibration. In this work, we dem-
onstrate an ANN-assisted method to identify the phase error
distribution among OPA elements and calibrate an OPA. As
we shall see, phase ambiguity is a pivotal problem in the
OPA system that may prevent the efficacy of the ANN.
Device-physics analysis of the OPA can offer insight to over-
come ambiguity-induced problems. Combining the ANN and
OPA device-physics analysis, we experimentally demonstrate a
rapid, iteration-free calibration approach.

2. ANN FOR OPA CALIBRATION

The devices we propose to calibrate are designed and fabricated
on a silicon-on-insulator (SOI) wafer. Figure 1(a) schematically
shows the OPA consisting of a grating coupler for input cou-
pling, multimode interferences (MMIs) tree for power splitting,
thermo-optic phase shifters, and a dense output waveguide ar-
ray (see details in Appendix A). The operation wavelength is set
to be λ � 1550 nm. There are N − 1 phase shifters in this de-
vice to control the relative phase of elements #2–#N . The first
element is considered as a reference channel, to exploit the free-
dom of setting a reference phase. Hence, the output phase error
distribution of N elements is

φ � �φ1,φ2,φ3, ...,φN−1,φN �,
where φ1 ≡ 0.

The relative phase error distributions are ubiquitous and
unpredictable on different devices fabricated in a batch. For
the integrated waveguides, fabrication-induced phase errors
(e.g., due to random fluctuations of the waveguide widths
and hence propagation constants) accumulate along the propa-
gation lengths of waveguides, which is unavoidable. Other pos-
sible contributions to phase errors are discussed in Appendix A.
The total phase errors need to be treated. Note that the far-field
beam profile remains unchanged for any phase φm to change by
a multiple of 2π. Hence, we only need to consider the phase
error of each element in the range of [0, 2π). To align the wave-
front for all elements, we first build an ANN model to identify
the phase errors from the unordered far-field patterns directly.
We generate the data set according to the phased array theory
[31]. The normalized far-field intensity pattern I�φ, θ� of the

N -element phased array can be calculated using the following
equations:

I�φ, θ� � NorfS�θ�jE�φ, θ�j2g, (1)

E�φ, θ� �
XN
m�1

am exp�−j�σm � φm��, (2)

σm � −2πdm sin θ∕λ, (3)

where E�φ, θ� indicates the array-dependent far-field wave am-
plitude variation at far-field angle θ, which depends on phase
error distribution φ. Norf·g indicates the normalization oper-
ation for unity peak intensity, am is the emitting amplitude of
the mth element, σm indicates the phase offset depending on
radiation direction, and dm is the position of the center of the
element #m in reference to the center of the emitter array. S�θ�
is the far-field envelope, where θ is the far-field angle ranging
from −90° to 90°. As elements of OPA usually carry equal op-
tical power, we can let am � a1 (which can conveniently be set
to unity). Figure 2(a) shows an example of random phase error
distribution among different waveguides (the red lines in the
waveguides indicate locations where phase equals 2mπ), and
the generated far-field profile.

Then we build the Net 1, as shown in Fig. 2(c). The sizes of
the input and output layers are N θ and N − 1, respectively,
corresponding to the number of points in the far-field patterns
and the relative phase errors of elements #2−#N , as shown in
Fig. 2(a). The input layer withN θ neurons and h hidden layers,
each with M 1,M 2,…, Mh neurons, are connected with a sig-
moid activation function to build a forward-propagated neural
network. Here h represents the total number of the hidden
layers. We also use a sigmoid function to normalize the output
in range of [0, 1]. The predicted phase errors can be recovered
by multiplying the output by 2π. A loss function of mean
square error (MSE) between the predicted phase errors and
the real phase errors is selected to train the model, which is
defined as

loss�MSE� �
XN
m�2

�φm − φ̃m�2∕�N − 1�, (4)

where φm and φ̃m are, respectively, the predicted phase error
and the real phase error of element #m. The network is imple-
mented with the Google TensorFlow 2.0 platform using a sin-
gle NVIDIA GeForce GTX 1050 GPU with 4 GB RAM. For a
proof-of-concept demonstration, we set N θ,M 1,M 2,M 3, and
N − 1 as 361, 1000, 800, 200, and 15 (three hidden layersM 1,
M 2,M 3 are used,N θ corresponds to the input layer, andN − 1
corresponds to the output layer). The principle demonstrated
here is applicable to an OPA of any size. For this case, we gen-
erate 10,000 far-field patterns labeled with the corresponding
phase errors to train the Net 1. Adam optimizer with an initial
learning rate of 0.001 is used to update the weight and bias for
the total neurons during backpropagation. During training, the
generated data set is divided into the training set and the val-
idation set in an 85%/15% ratio. A checkpoint for the best
parameter recording and halved learning rate is used for every
500 epochs.

Fig. 1. Schematic view of an integrated OPA, along with the
far-field pattern.
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3. RESOLVE AMBIGUITY IN THE ANN MODEL
OF AN OPA

Training loss and validation loss of the Net 1 cannot achieve
convergence to a small value after 2500 epochs, as shown in
Fig. 3(a). OPA-oriented device-physics analysis shows that this
is caused by the phase ambiguity in the OPA cast into the ANN
model. The ANN model is trained to build a functional
relationship between the input and output layers, which in
principle requires a one-to-one mapping. As presented by

Eqs. (1)–(4), the far-field pattern of the OPA mainly depends
on the phase error distribution of φ. However, considering
another conjugate phase error distribution of φ 0 �
−�φN ,…,φ2,φ1�, the corresponding E�φ 0, θ� is given by

E�φ 0, θ� �
XN
m�1

exp�−j�σm − φN−m�1��: (5)

Due to the symmetric position dm of the waveguide-based
emitters (dm � −dN−m�1), σm equals −σN−m�1, based on
Eq. (3). Hence E�φ 0, θ� can be written as

E�φ 0, θ� �
XN
m�1

exp�j�σm � φm��: (6)

Comparing Eqs. (2) and (6), magnitudes of jE�φ�j and
jE�φ 0�j are totally identical at the far field, since
E�φ� � E�φ 0��. Consequently, the Net 1 cannot find the
right direction between two conjugate cases to minimize the
loss, and then build an inaccurate mapping from far-field pat-
terns to the phase labels in the data set during training. In this
case, the ANN output phase error distribution will be some sort
of “intermediate state” between two conjugate distributions. As
these two conjugate cases (φ and φ 0) reverse their spatial orders
of error sequence and change the signs, their distance in the
N -dimensional phase error distribution space is usually fairly
large. Thus, the “intermediate state” given by the ANN output
(the “interpretation” of “intermediate” is network-dependent)
is likely far from either φ or φ 0. One can readily see from
Eqs. (1)–(3) that the OPA beam profiles calibrated by φ,

Fig. 3. Loss of (a) Net 1, (b) Net 2, (c) Net 3, and (d) Net 4 with
the architecture in Figs. 2(c)–2(f ) evolving with training epochs. Red
curves indicate loss of the training set, and blue curves indicate loss of
the validation set.

Fig. 2. Example of the far-field patterns for feeding the neural network, I�φ, θ� and I�φ� ϕ, θ�, generated by the OPAwith (a) phase error of φ
and (b) additional phase mask of ϕ. (c)–(f ) Build ANNs with different architectures. The green and purple arrows indicate the backpropagation of
the ANNs using a loss function of MSE or CMSE. The red arrows indicate the configurations of the data for input [using pattern 1, I�φ, θ�, withN θ

data points or the combination of pattern 1 and pattern 2, I�φ, θ�, I�φ� ϕ, θ�, with 2N θ data points].
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φ 0, or their intermediate state will generally differ drasti-
cally also.

In order to resolve ambiguity caused by the conjugate phase
distribution, we introduce an additive pattern 2, I�φ� ϕ, θ�,
by tuning the phase shifters of element with a virtual phase
mask of ϕ � �−π, 0, 0,…, 0, 0� on top of the intrinsic relative
random phase error distribution, as shown in Fig. 2(b). The
additive pattern, I�φ� ϕ, θ�, can be calculated by

I�φ� ϕ, θ� � NorfS�θ�jE�φ� ϕ, θ�j2g, (7)

where E�φ� ϕ, θ� is given by

E�φ� ϕ, θ� � exp�−j�σ1 � φ1 − π�� � exp�−j�σN � φN ��

�
XN−1

m�2

exp�−j�σm � φm��: (8)

For the conjugate phase error distribution, E�φ 0 � ϕ, θ� in
Eq. (8) is given by

E�φ 0 � ϕ, θ� � exp�j�σ1 � φ1�� � exp�j�σN � φN � π��

�
XN−1

m�2

exp�j�σm � φm��: (9)

Comparing Eqs. (8) and (9), E�φ� ϕ� and E�φ 0 � ϕ�
are evidently different. Based on the analysis above, the
combined far-field intensity patterns in a conjugate pair,
�I�φ, θ�, I�φ� ϕ, θ��, provide more features for the ANN
to resolve the corresponding phase label, φ, from the ambigu-
ous label φ 0. Note that there is no phase shifter in element #1
for which we use an equivalent phase mask as
ϕ � �0, π, π,…, π, π� to achieve the same effect. Figure 2(b)
shows a sample of input data generated by using the phase mask
ϕ with N θ data points.

Meanwhile, the output for such an optical system is a peri-
odic function of phase, which is intractable for a standard
neural network with a fixed output range, e.g., [0, 2π). For
instance, consider whether one of the actual phase errors φm
is 2π − 0.001. Within the computing/training accuracy, the
network may find both φm,0 � 2π − 0.001 and φ 0

m,0 � 0 cor-
respond to roughly the same beam pattern according to
Eqs. (1)–(3). However, φm,0 and φ 0

m,0 are very far on the φm
axis, and the network believes that they must belong to two
different states, which results in confusion. Fundamentally,
the intrinsic continuity of the mapping function at the two
ends of this interval [0, 2π) is lost, which can baffle the other-
wise obvious convergence. To resolve such periodic ambiguity
while retaining the intrinsic continuity, we transform the real
phase errors, φm, and the predicted errors, φ̃m, into the complex
domain by defining

zm � exp�jφm�, z̄m � exp�jφ̃m�: (10)

Then the continuity-preserving loss function (via a certain
form of complex mean square error, or CMSE) is written as

loss�CMSE� �
PN

m�2�Re�zm − z̃m�2 � Im�zm − z̃m�2�
N − 1

,

(11)

where Re and Im are the real and imaginary parts of the com-
plex, respectively.

Then, we construct the Net 2, Net 3, and Net 4 in
Figs. 2(d)–2(f ) with different network architectures or loss
functions to tackle the ambiguities. The architectures of Net 2
and Net 1 are identical, but we introduce the CMSE loss func-
tion for Net 2 to solve the periodic ambiguity only, as indicated
by the purple arrow in Fig. 2(e). The sizes of the hidden
layers and output layers of Net 3 and Net 4 are identical with
Net 1 and Net 2, respectively. The difference is that Net 3 and
Net 4 use the combination of pattern1 and pattern 2 in
Figs. 2(a) and 2(b) in conjugate pair to solve the conjugate am-
biguity. The sizes of the input layers for these two nets increase
to 2N θ, as illustrated with different colors in Figs. 2(d) and
2(f ). Hence, Net 4 using CMSE can solve both conjugate am-
biguity and periodic ambiguity. It should be noted that the data
set for ANN using the loss function, CMSE, is totally compat-
ible with the one for ANN using a loss function of MSE. So, we
train the Net 2 with the single-pattern data set the same as
Net 1 (input dimension: N θ � 361). Net 3 and Net 4 are
trained using same data set with an input dimension of 2N θ

and output dimension of N − 1.
After training, the validation loss of Net 1 and Net 2 (single

beam profile input) cannot achieve convergence. Meanwhile,
when comparing the red curves in Figs. 3(a) and 3(c), MSE
loss of Net 3 finally converges to a lower level (∼0.92) than
that of Net 1 using the loss function of MSE, indicating that
the negative effect of the conjugate ambiguity during the train-
ing process has been eliminated. From Figs. 3(c) and 3(d), the
periodic ambiguity is further removed. As shown in Fig. 3(d),
the validation loss of Net 4 decreases to 0.04 (from >4 in
Net 1), which indicates the high efficacy enabled by removing
the conjugate ambiguity and periodic ambiguity. Here, the
time for generating the two data sets (single-pattern and dual-
pattern) is all below ∼10 s. Additionally, due to the different
complexity of the input layer, it takes about 2.5 h for Net 1
and Net 2 and about 3 h for Net 3 and Net 4 to complete
the training process over 2500 epochs.

To further demonstrate the performance of the ANN mod-
els, we simulate far-field patterns before and after calibration
according to the phase error distributions predicted by Net 1
to Net 4, using four arbitrary samples in the testing data
set. Figures 4(a1)–4(a4) show the far-field patterns calculated
by the phase error data in the four samples. The irregular far-
field profiles in Figs. 4(b1)–4(b4) and 4(c1)–4(c4) illustrate
that Net 1 and Net 2 cannot output valid phase distributions,
due to the conjugate ambiguity. Meanwhile, the performance of
Net 3 is better than we have expected, even if the validation loss
after training is only around 0.9. It can still align the wavefront
for the testing samples of ii) and iii) and form perfect beams
pointed to 0° with side lobe suppression ratio (SLSR) of
12.29 dB and 12.75 dB, as shown in Figs. 4(d2) and 4(d3).
However, the poor SLSRs in Figs. 4(d1) and 4(d4), caused
by several incorrect elements, indicate the limited capability
of MSE-based ANN. By analyzing the residual phase error data
in the samples ii) and iii), Net 3 cannot accurately predict the
phase of the elements which is close to 0 or 2π, which is con-
sistent with our previous analysis on the periodic ambiguity.
Finally, Figs. 4(e1)–(e4) present the beams calibrated by
Net 4 with average SLSR of about 12.7 dB, showing the high
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accuracy of Net 4 (see more detail in Fig. 8 in Appendix C),
with both conjugate and periodic ambiguities resolved.

Hence, as we analyzed above, the enhanced training data set
using far-field patterns in a conjugate pair and continuity-
preserving loss function are indispensable elements for building
such an ANN for phase calibration. It is important to point out
that the elimination of symmetrical-array-induced conjugate
ambiguity is a crucial factor to construct the unique mapping
between the input layer and output layer. And the loss function
CMSE introduced here to deal with periodic ambiguity can
significantly improve the network performance as a supplemen-
tal approach.

4. EXPERIMENT

Figure 5 shows the experimental setup for automatic phase cal-
ibration based on the well-trained ANN. The optical signal

output from a 1550-nm laser is coupled to the grating coupler
in the device by a single-mode fiber via a polarization controller.
The far-field patterns are measured using a mechanically ro-
tated detector, 10 cm away from the end face of the chip.
During motion, the detector continuously samples the light in-
tensity from −90° to �90°, and a far-field pattern is obtained
and then transferred to the computer. A multichannel current
source controlled by the computer provides driving power for
the electrodes on the chip via 16 channel probes.

To verify the effectiveness of our approach, we arbitrarily
chose two OPA devices fabricated on the same wafer to cali-
brate the mismatched wavefront. First, we measure the far-field
pattern I�φ, θ� without applying electric power to the phase
shifters. Then we control the current source to uniformly apply
a driving power of Pπ to the phase shifters for the elements
#2–#16 and obtain the far-field pattern I�φ� ϕ, θ�.
Figure 7(b) in Appendix A shows the typical power-phase char-
acteristic of the phase shifter as we vary the heating power.
Once the far-field patterns in a conjugate pair are fed to the
trained ANN model, it will predict the phase errors for each
element. Then the computer automatically calculates the com-
plementary heating power for calibrating the devices and then
controls the electric source output driving current for each
phase shifter to automatically align the wavefront.

The normalized far-field patterns in blue lines with multiple
sidelobes in Figs. 6(a) and 6(d) are measured before calibration
for the two devices, reflecting significant wavefront mismatch
and variability in different dies. The red curves in Figs. 6(a) and
6(d) indicate the calculated beam profiles according to the
phase error output from the ANNmodel. For device i), profiles
of the highest and second-highest lobes in the measured far-
field pattern at 0° and 49° are showing excellent agreement with
the calculated pattern. Similar excellent agreement of the lobes

Fig. 4. Simulated performance of the ANNs using four randomly selected samples i) to iv) in testing set. Each sample is signified with a different
color. (a1)–(a4) Far-field profiles before calibration. Beam profiles after calibration from the output of (b1)–(b4) Net 1; (c1)–(c4) Net 2; (d1)–(d4)
Net 3; and (e1)–(e4) Net 4. The sidelobe levels of the formed beams are noted in (d1)–(d4) and (e1)–(e4). All figures share the same axis.

Fig. 5. Schematic of the experimental setup for automatic calibra-
tion via Net 4 (FPC, fiber polarization controller; SMF, single-mode
fiber).
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at −5°, 16°, and 39° can also be observed from far-field patterns
in device ii). In addition, positions of the measured lobes of
lower levels are also in good agreement with the calculated pat-
terns. Generally, this method ensures that the highest lobes
agree well; the fairly small deviations in the lower lobes are
due to potential small nonuniformities/noise (see discussion
in Appendix C). Figures 6(b) and 6(e) show the measured
beams of the two devices after calibration according to the
phase error output from the ANN model, along with 12.67
and 12.29 dB SLSR in the entire field of view (180°).
Figures 6(c) and 6(f ) present the beams of the two devices using
the PSO algorithm with 12.46 and 11.73 dB SLSR, which are
in reasonable agreement with the ANN results.

5. DISCUSSION AND CONCLUSION

In terms of the calibration results, the beam profiles after cal-
ibration by PSO and ANN-assisted methods both show reason-
able agreement with the simulation. But the ANN model is
significantly more efficient in time than an iterative optimiza-
tion approach such as the PSO. In this case, the PSO-based
calibration roughly needs ∼100 iterations in experiment to
achieve convergence with 200 far-field measurements per iter-
ation (for 200 swarm elements), which is ∼20,000 measure-
ments in total for one OPA device. Simulated statistics
over 500 OPA devices show that the PSO approach can

achieve a moderate root-mean-square phase error (RMSE)
∼0.21π with ∼107 far-field measurements (see more detail
in Appendix D). By comparison, this ANN-assisted method
can instantly recognize the phase error distributions and cali-
brate the devices to achieve a relatively smaller phase error,
RMSE < 0.04π (see Fig. 8 in Appendix C) in merely two
far-field measurements per device, which is several orders of
magnitude more efficient. Note that it is possible to reduce
the number of iterations for the iterative optimal search ap-
proaches at the cost of calibration accuracy (or using nonevo-
lutionary iterative search approaches at the cost of likelihood of
approaching the global optimum). However, for the compa-
rable calibration accuracy, this ANN-assisted approach is gen-
erally significantly more efficient. For a proof-of-principle
demonstration, we use a 16-element 1D OPA here due to fab-
rication and test-equipment cost concerns. The principle dem-
onstrated here can be readily applied to an OPA of any size,
including 2D cases (OPAs of 1D or 2D share the same working
principle). For a 2D OPA, one readily sees that both the con-
jugate ambiguity and periodic ambiguity occur similarly and
can be treated similarly using the approaches shown here.
For different OPA structures (or with a different number of
elements), the ANN should be trained again with regenerated
data sets. Note that while it takes some time to train the ANN,
the calibration time per device is extremely short after training,
and postcalibration performance variation is very small [see
Fig. 10(b) in Appendix D]. Hence the ANN-based calibration
is preferred in real-world applications where a large batch of
OPA devices with the same design can be calibrated almost
in real time with only one-time training of the ANN. For a
proof-of-principle demonstration, we only use a sigmoid func-
tion, which performs well with the current ANN. If other net-
work architectures (or different network depths) are used, other
activation functions such as the rectified linear unit (ReLU)
might be preferred [32]. As our ANN-assisted noniterative ap-
proach works for the full phase error range (0 − 2π), it may also
be potentially useful in solving similar problems in related
topics (e.g., Ref. [33]).

Note that many phase-retrieval techniques [34–36] have
been developed with great success by considering the relation
between the diffraction plane and image plane with spatial res-
olution of phase variation usually much larger than the wave-
length. For the half-wavelength pitch OPA studied here, the
spatial resolution of phase variation is a half-wavelength, and
the corresponding radiation angles are far off the optical axis
(up to 90°), which represents a regime seldom studied before
in phase retrieval. Furthermore, OPA applications require a
phase calibration metric of SLSR over the full field of 180°,
which is seldom considered in phase retrieval. Also, in
Eqs. (1)–(3), we have used a formalism not based on Fourier
transform to deal with the special needs (far off-axis radiation)
in our OPA calibration, whereas conventional phase retrieval
usually uses Fourier transform. The phase diversity technique
in phase retrieval uses a phase distortion to generate a second
image for use together with the original image, for purposes
such as combating image blurring [37,38]. Our approach to
resolving the conjugate ambiguity appears similar to that
technique in the aspect of taking more than one “imaging”

Fig. 6. Calibration for two arbitrarily selected devices i) and ii); ex-
perimentally measured far-field pattern before calibration (blue line)
and calculated far-field pattern (red line) using the ANN-predicted
phase error for (a) device i) and (d) device ii); measured beam profile
after calibration using ANN for (b) device i) and (e) device ii); con-
densed beam profile after calibration using PSO for (c) device i) and
(f ) device ii).
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measurement (note: an “imaging” measurement is just a far-
field measurement here). However, we theoretically reveal
the exact need of one extra measurement for a different
application—OPAs. For anOPAwith radiation angles up to 90°
(a regime seldom studied in phase retrieval), we have presented
conjugate ambiguity analysis: proving the conjugate ambiguity
resolution inOPAs needs exactly two imagingmeasurements. In
contrast, three or more imaging measurements [38] may be
needed in conventional phase retrieval for different reasons.

Deep learning (or neural networks) has also been introduced
into phase retrieval and has shown great promise [39–41].
However, it has not altered the aspects of low spatial resolution
of phase variation and small off-axis angles of conventional
methods. Note that many common assumptions for routine
phase retrieval need to be revised for subwavelength spatial res-
olution (or high spatial frequency, or far off-axis cases).
Considering the nonlinearity in the problem, nontrivial efforts
are needed to adapt conventional phase-retrieval methods to
achieve the same efficiency and accuracy (judged by the
SLSR metric for OPAs) in the regime of subwavelength spatial
resolution. Note that many things that can be easily done at
large scales can be extremely difficult at subwavelength scales.

In summary, we have demonstrated a noniterative phase cal-
ibration approach based on machine-learning technology for
integrated OPAs. Thanks to device-physics-based analysis that
helps resolve conjugate ambiguity and periodic ambiguity in
phase, the well-trained ANNmodel is able to identify the phase
error distributions and retrieve initial working state for the
OPAs from merely two measurements of the far-field patterns.
Compared with the iterative calibration methods, our neural-
network-assisted approach is highly efficient, noniterative, and
suitable for calibration of a massive set of device samples. As
myriads of lidars are envisioned to be needed in future wide-
spread deployment of self-driving cars, this work may poten-
tially provide a key foundation for rapid, massive calibration
of OPA devices with high-quality beam characteristics for wide-
spread use of lidars.

APPENDIX A: DEVICE STRUCTURE,
FABRICATION, AND TESTING

The OPA is fabricated on SOI wafers with 2 μm buried oxide
and a 220 nm top silicon layer. Three steps of etching are uti-
lized to fabricate the grating coupler, MMIs, and waveguides.
The etched structure is then covered by a 3-μm-thick SiO2

layer for surface protection and for isolating the optical wave-
guide from metal layers. A waveguide superlattice with an in-
terwaveguide pitch of 0.8 μm is arranged periodically to form
the emitters at the end face of the chip with cross talk below
−20 dB [23]. A thin TiN layer is used to form the heaters in
thermo-optical phase shifters. The TiN-based thermo-optic
phase shifters are separated with a pitch of 50 μm to avoid ther-
mal cross talk. Aluminum metal wires, via holes and electrode
pads, are fabricated to conduct electric current to the phase
shifters. The testing setup, including the laser, a multichannel
electric current source, a detector, alignment stages, and other
components, is carefully inspected and adjusted to ensure its
proper functionality before phase calibration. Note that differ-
ent waveguides in the OPA travel along paths with somewhat

different lengths to produce phase offsets between signals in
different waveguides. In addition, the different widths of the
waveguide superlattice not only suppress cross talk, but also
produce phase offsets between different OPA elements due
to their different propagation constants. Overall, these two ef-
fects produce deterministic phase errors (in contrast to random
phase errors due to fabrication variation). The approach in this
work is applicable to the total phase errors of any combination
(random or deterministic) regardless of their origins. Note that
the waveguide superlattice-induced effect in far-field beam
characteristics has been minimized so that the beam can be
treated nearly as from a uniform OPA. Small residual effects
due to the superlattice in the context of calibration are dis-
cussed in subsequent Appendix C. Due to the subwavelength
pitch of this OPA, direct measurement of the near-field phase
variation with half-wavelength resolution is difficult. The near-
field (phase) imaging techniques used in the case of large pitch
OPAs (e.g., Refs. [27,42]) cannot offer subwavelength resolu-
tions due to insufficient numerical apertures of lenses.

Note that OPAs with an emitter pitch larger than a half-
wavelength (e.g., some OPAs with grating emitters) will gen-
erate strong grating lobes at the far field. In practice, such OPAs
generally work only in the range of − arcsin�λ∕2d � and
arcsin�λ∕2d �, where the strong grating lobes are absent. As
the input angular pattern to the ANN is limited to this range
with no strong grating lobes, our approach can be readily
adapted to such OPAs in practice. It is well known the far-field
pattern outside this range can be deterministically related to the
pattern in this range; hence, the pattern in this range should
contain sufficient information to solve for the phase deviation.

APPENDIX B: SUPPORTING EXPERIMENTAL
DATA FOR SINGLE-CHANNEL PHASE
CHARACTERISTICS

Before calibration, we first measure resistance of the elements
#2–#16 through multipin probes for the tested device #1,
shown in Fig. 7(a). The resistance of the phase shifter slightly
fluctuates around 510 Ω, showing the good uniformity of the
heaters, which enables us to obtain the additive far-field pattern
by synchronously tuning the elements #2–#16 with π
phase shift.

Then, phase versus heating power relationship for the
thermo-optic phase shifter of the OPA is obtained by embed-
ding an identical phase shifter in one arm of an integrated
Mach–Zehnder interferometer (as in a thermo-optic switch)
fabricated together with the OPA. The output intensity versus

Fig. 7. (a) Measured resistances of the phase shifters in our
16-channel OPA; (b) measured (scatter) and fitted (line) heating
power versus output intensity for the phase shifter embedded in an
interferometer.
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heating power relation of the switch, along with the fitted
sinusoidal curve, as shown in Fig. 7(b), confirms a linear phase
shift versus a heating-power relation. Based on the linear func-
tional relationship between the applied electric power and
phase shift, the ANN-predicted phase errors can be converted
to compensating the electric power for each channel.

APPENDIX C: ACCURACY AND ROBUSTNESS
OF THE NETWORK

For the ANN we present in Fig. 2(f ), the continuity-preserving
loss function in Eq. (11) is used to solve the periodic ambiguity.
Based on this concept, we define the predicted accuracy for a
single sample in the testing set by

S � 1

N -1

XN
i�2

ψ i, (C1)

where N is the number of elements of the OPA, ψ i measures
the angular deviation of the element #i and is given by

ψ i�2 arcsin
jexp�jφi� − exp�jφ̃i�j

2
, (C2)

where φi and φ̃i are the real phase error and predicted phase
error of the element #i, respectively. In Fig. 8, we present the
distribution of calculated S, using M � 500 groups of testing
data. The RMSE is given by

RMSE�S� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
j�1

S2j ∕M

vuut : (C3)

The experimentally measured far-field patterns for ANN in-
put could slightly deviate from the theoretically generated data.
Such small deviations will affect the network performance in
practice. For our devices and experiment setup, there are three
effects that would cause such deviations. First, the small non-
uniformity of the phase shifter, as we discussed above, will
mainly affect the measured additive pattern (used for ANN in-
put). Second, due to the design of the waveguide superlattice,
propagation loss varies with the waveguide width and will
slightly affect the optical power uniformity of the emitters
[23]. And finally, the noise at the detector end also affects
the measured far-field patterns. Thus, we investigate the ro-
bustness of the ANN model based on the analysis above.

To simulate the phase-shifter nonuniformity at different lev-
els, the phase mask for generating the additive pattern,
ϕ � �0, π, π,…, π, π�, is multiplied by 1� αg1, where g1 is
the random number generated from a standard normal distri-
bution in the range of [−1, 1], and α is the nonuniformity level.
We simulate the optical power nonuniformity using nonuni-
formity level β. The optical power distribution is multiplied
by 1 − βg2, where g2 is the random number generated from
a standard normal distribution in the range of [0, 1].
Similarly, the generated far-field patterns in the test data are
multiplied by 1 − γg3 to simulate the noise at the detector
end. We consider the case of γ up to 0.1 here. Note that
the superlattice may induce very weak superlattice lobes with
small magnitude <0.01 (< −20 dB) [23], which can be effec-
tively counted into the noise at the detector end (i.e., contrib-
uting 0.01 into γ) and obviously has little effect on calibration
compared to other effects (total γ up to 0.1) we consider.

As we demonstrated in Fig. 9, the accuracy of the ANN is
more sensitive to the phase-shifter nonuniformity level α. In
our device, the fluctuation of the measured resistance of the
phase shifters is about 	2%, corresponding to the α � 0:02.
Packaged devices by wire bonding can suppress fluctuation to
	1% and will improve the calibration accuracy in practice [2].
Meanwhile, the nonuniformity in optical power distribution
and the noise at the detector end have relatively small impact
on performance. Such nonuniformity effects may occur syn-
chronously to affect accuracy; fine-tuning of each channel is
used at the end to check and minimize potential small deviation
of the calibrated beam from the intended optimal state caused
by the above nonuniformities. Note that the fine-tuning is also
needed at the end of the PSO-assisted calibration to check each
channel for eliminating the potential local optimum.

APPENDIX D: CALIBRATION EFFICIENCY OF
THE PSO AND ANN

In order to illustrate the time efficiency of our noniterative
method, we simulate the calibration process using PSO with
500 OPA devices in the test data set. Actually, the performance
of the PSO algorithm is mostly dependent on the swarm size
(number of elements in the swarm). Figure 10(a) presents the
calculated RMSE of the samples in the test set with different
swarm sizes after 100 iterations. It confirms that the PSO using
sufficiently large swarm sizes can escape local optimum and
converges to a good result [43]. However, as we plotted inFig. 8. Distribution of calculated S with 500 samples in testing set.

Fig. 9. Accuracy of the ANN versus α, β, and γ.
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Fig. 10(c), a large number of the swarm elements also require a
huge number of experimental evaluations for calibration. Note
that each experimental evaluation here requires one far-field
measurement (including the process of reconfiguring the
thermo-optic phase-shifters with a new set of driving cur-
rent/voltage values). As an example, a PSO with 200 swarm
elements needs 20,000 (200 × 100) evaluations for a single
sample. [If 500 device samples need calibration, 1 × 107 eval-
uations in total are needed (200 × 100 × 500).] In practice, due
to the large statistical variation of the PSO method (see error
bars in Fig. 10(b)], sometimes the outcome after 100 iterations
may be substantially below the expected value [i.e., below the
mean sidelobe suppression values in Fig. 10(b)]. This reflects a
local optimum quite far from the global optimum. Then one
may have to restart the PSO calibration with a new set of initial
“particles” for another round of 100 iterations or even more,
which will take even more time. Note that every evaluation
requires reconfiguring the thermo-optic phase-shifter arrays
and experimental measurement of the OPA far-field intensity
(both taking nonnegligible amount of time, typically on the
order of 0.1 s or above), such that the total time cost for
the large number of evaluations shown in Fig. 10(c) can be
unbearable. Note that simulations show that the number of
evaluations in an iterative calibration process can potentially be
reduced by 1 or 2 orders of magnitude with a smart optimizing

algorithm [25], but the path of further reducing the number of
evaluations significantly to the level achieved in this work
remains unclear.

For comparison, for our ANN-assisted calibration method,
the calibration accuracy (RMSE � 0.0394π) in Fig. 8 is better
than the average PSO result with up to 200 swarm elements
(RMSE � 0.21π) after 100 iterations. Meanwhile, our method
does not need 100 iterations for each device sample; the time
efficacy can be significantly improved by several orders of mag-
nitude. To compare the performance of PSO and ANN by the
sidelobe suppression ratio, we show the simulated statistics in
Fig. 10(b). Compared to the best PSO performance, the ANN
produces a comparable (slightly better) average sidelobe
suppression ratio and smaller standard deviations, which is
desirable.

APPENDIX E: BEAM CHARACTERISTIC OF THE
END-FIRE OPA

Note that the current OPA in an end-fire configuration forms
line-like beams extending vertically at the far field. Figure 11
shows the representative 2D profiles of the beams measured
using a commercial infrared camera. Figures 11(a)–11(c) cor-
respond to the beam profiles of the device i) in Fig. 6 before and
after calibration in 44° × 34° field of view (limited by measure-
ment equipment). One can see that the measured 2D beam
patterns extend uniformly in the vertical direction, as expected
for a line beam. In the horizontal direction, the precalibration
beam profile in Fig. 11(a) shows irregular intensity variation,
and the profiles in Figs. 11(b) and 11(c) after calibration with
ANN and PSO approaches show only a clean beam in the
middle. The horizontal profiles in Figs. 11(a)–11(c) are in good
agreement with the 1D beam profiles in Figs. 6(a)–6(c) in the
horizontal angular range of −22° to 22°.
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Fig. 10. Simulated PSO-based calibration statistics for 500 OPA
devices, compared with ANN-model test results. (a) Simulated accu-
racy of the test set using PSO algorithms with different swarm sizes
(the accuracy of ANN is marked for comparison); (b) simulated side-
lobe suppression ratio statistics (the average and very small standard
deviation of ANN are marked by a red line and a narrow shaded stripe,
respectively); (c) total number of experimental evaluations (equivalent
to the number of far-field measurements) required for this iterative
method for 500 OPA devices. Note that the y axis is plotted using
a logarithmic scale.

Fig. 11. Measured 2D beam profiles (a) before calibration, (b) after
calibration using ANN, and (c) after calibration using PSO for
device i) in Fig. 6.
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