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In this paper, we design and demonstrate a compact logic operator based on a single-layer metasurface at micro-
wave frequency. By mapping the nodes in the trained fully connected neural network (FCNN) to the specific unit
cells with phase control function of the metasurface, a logic operator with only one hidden layer is physically
realized. When the incident wave illuminates specific operating regions of the metasurface, corresponding unit
cells are activated and can scatter the incident wave to two designated zones containing logical information in the
output layer. The proposed metasurface logic operator is experimentally verified to achieve three basic logic
operations (NOT, OR, and AND) under different input signals. Our design shows great application potential
in compact optical systems, low-power consumption information transmission, and ultrafast wave-based full
signal processing. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.439036

1. INTRODUCTION

Compared to traditional electronic computing devices [1–3],
numerical computing based on optical devices shows the char-
acteristics of parallel processing, ultrahigh-speed, and low
power consumption [4–6], which has attracted enormous in-
terests in recent years. As the most basic computing operation,
optical logic operation plays a very important role in the field of
ultrahigh-speed information transmission and communications
[7]. The design and implementation of traditional optical logic
computing devices are mostly based on plasmas [8–11], silicon
micro-rings (“AND” and “NAND” operations) [12], and a
photonic crystal nanocavity [13]. By implementing interference
to the input signal, the output signal shows two states with a
large difference in intensity, which represent two kinds of logic
information: “0” and “1.” However, in previous studies on the
design of optical logic operation devices, it was necessary to
control the light source precisely (including the intensity
and phase difference) to obtain the desired outputs [7]. To gen-
erate the expected light source, these devices are often large in
size. In addition, due to the high sensitivity to external inter-
ference, it is difficult to obtain a significant signal intensity

difference that represents logic information in the experimental
scenarios [10].

Metasurface, as a new type of artificial electromagnetic
material, has simple structure and sub-wavelength thickness
[14–23], which avoids the problem of a large volume, which
is intrinsic to traditional lens-based optical computing devices
and provides the possibility to realize compact optical comput-
ing devices [24–30]. With the ability to manipulate the ampli-
tude and phase of the incident wave, the metasurface overcomes
the alignment and aberrations problems that result from the
features of lenses [26,31]. In previous reported works, metasur-
faces have been applied to a variety of optical computing sce-
narios, such as optical convolution and differentiation [32],
Laplacian operation [33], edge extraction [34], and equation
solvers [35]. However, these reported metasurface-based optical
computing strategies rely on the specific structure of optical
metasurface design with complex and high-cost machining
processes. At the same time, the fixed structural parameters of
unit cells, which cannot be arbitrarily modified during the de-
sign and optimization process, also challenge the flexibility of
the design. Due to the outstanding design and optimization
capabilities, deep learning has attracted much attention in
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many topics and research fields [36–42]. The superiority of this
method has been verified in the optimization work of unit cell
structure and array performance [43–49]. Notably, such a
method also shows great potential in designing optical opera-
tional devices since the artificial neural network can perfectly
describe the process of electromagnetic (EM) wave diffraction.
Several deep-learning-based optical computational systems us-
ing a metasurface are proposed, such as mathematical opera-
tions [50–52], target recognition [53–57], image processing
[58], cloaking [59], and holographic generation [60,61], to
name a few. In addition, optical logic operation also can be real-
ized by combining deep learning and metasurface technology.
In this case, plane waves can be chosen as the incident signal,
and will be converged to the designated zones in the output
layer through the scattering of the metasurface, which can avoid
the strict requirements on the light source and bulky optical
apparatus. The input (light source) and hidden layer (corre-
sponding metasurface structure) also can be arbitrarily changed
to obtain the desired output results by training the network to
improve the flexibility of the design. For example, an optical
logic operator based on a multilayer dielectric structured meta-
surface corresponding to a two-layer diffractive neural network
has been proposed and experimentally demonstrated to realize
basic logic operations [62], which proves the feasibility of this
method in the design of an optical logic operator and makes the
realization of miniaturized programmable optical processors
possible.

In this paper, we design a single-layer metasurface-based
compact logic operator using a diffractive neural network.
The nodes in the hidden layer of the fully connected neural
network (FCNN) can be mapped to the unit cells of the meta-
surface. When the incident wave illuminates a specific region of
the metasurface and the relative logical operation and input
value are selected, the transmitted wave will be scattered and
focused to specific zones in the output layer with logical infor-
mation (“1” and “0”). After training the FCNN, three basic
logic operation functions (AND, OR, and NOT) are theoreti-
cally and experimentally verified with the same metasurface,
and the measured results agree very well with the theoretical
predictions and simulated results. The proposed metasur-
face-based logic operator uses subwavelength-thickness strip
resonators, which are quite compact and easy to process. In
addition, the artificial neural network with only one hidden
layer is achieved by using a single-layer metasurface, which pro-
vides the possibility to realize compact photonic processors and
integrated optical computing systems. More importantly, due
to the single-layer network design and optimized functional
partition of input and output layers, the resources and time
to train the network are greatly reduced.

2. DESIGN OF FCNN AND OPTICAL LOGIC
OPERATOR

Since the output results of optical logic operators possess only
two states (“1” or “0”) with different input light sources, it is
very similar to the classification problem in deep learning ar-
chitectures [63]. Therefore, the optical logic operator can be
constructed based on related machine learning theories. The
single-layer FCNN is selected as a design template, since the

scattering and propagation characteristics of an EM wave are
very similar to such a network. Figure 1 shows the physical
models to implement the single-layer FCNN used in this work.
The input layer is implemented by appropriately carved absorb-
ers in the microwave band to control the shape of the incident
wave, which represents the input value and operation type. The
hidden layer is implemented by a single-layer metasurface com-
posed of subwavelength thickness strip resonators, which can
modulate the incident wavefront and transfer it to the output
layer. Elaborately, the output layer is designed to be two circular
areas with logical information (“1” and “0”), and the transmit-
ted wave will be converged to one of them to show the output
results. Consequently, the mapping relationship between the
FCNN and the metasurface can be achieved. First, in the hid-
den layer, the Pancharatnam–Berry (PB) phase unit cells that
can introduce abrupt phase changes to the incident wave are
used to represent the nodes [64]. The value of the nodes in
each layer of the FCNN (p0i , p

h
i , p

Y
i ) is given as

phi � w1p0i � b1, (1)

pYi � w2phi � b2, (2)

where w1, w2, b1, b2 are the weight and bias between adjacent
layers. For the corresponding physical implementation of the
metasurface, p0i , p

h
i , p

Y
i represents the phase of the input, hid-

den, and output layers, respectively. w1, w2 are fixed to be 1
throughout the iteration process. Here, we set the initial bias of
incident wave as b0 � 0. b1 represents the bias imposed on the
phase of the incident wave, which can be obtained by training
the FCNN and further realized by the modulation of the meta-
surface. Since there is no metasurface set between hidden and
output layers, b2 stays at 0 in this network. In addition, the
propagation process of the EM wave between adjacent layers
can be described as [65]

d z
j �x, y, z�jxjyjzj �

e−jkrj

rj
, (3)

rj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x − xj�2 � �y − yj�2 � �z − zj�2

q
: (4)

Fig. 1. Input, hidden, and output layers and parameters of
the FCNN used in this paper, and the corresponding physical
implementations.
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After the forward propagation through the input and hidden
layers, the electric field distribution on the output layer can be
described as

IYi �xYi , yYi , zYi � �
Z

∞

−∞

Z
∞

−∞

����Eh
i �xhi , yhi , zhi � × e−jkp

h
i

× d z
j �x, y, z�jxYj yYj zYj

����
2

dxhi dyhi , (5)

Eh
i �xhi , yhi , zhi � �

Z
∞

−∞

Z
∞

−∞

����E0
i �x0i , y0i , z0i �

× d z
j �x, y, z�

����
xhj y

h
j z

h
j

dx0i dy0i , (6)

E0
i �x0i , y0i , z0i � � E0e−jp0 : (7)

E0
i �x0i , y0i , z0i � and Eh

i �xhi , yhi , zhi � are the electric field distribu-
tion on the input and hidden layers, respectively, E0 is the ini-
tial electric field amplitude of the input layer, and p0 is the
initial phase. For the convenience of calculation and training of
the proposed network, we set these parameters as E0 � 1,
p0 � 0. According to the propagation process of the network
described in Eqs. (1)–(7), each input situation can generate the
desired output result by learning corresponding parameters. As
shown in Fig. 1, two circular regions in the output layer are
chosen that correspond to the logical information “1” (left)
and “0” (right), respectively. The total electric field energy dis-
tribution of the output regions can be expressed as

SRtotal �
Z

AreaR
IYi dxYi dyYi , (8)

SLtotal �
Z

AreaL
IYi dxYi dyYi : (9)

Furthermore, the final logic output results can be judged as�
Outputfinal � 1 SLtotal ≫ SRtotal
Outputfinal � 0 SLtotal ≪ SRtotal

, (10)

where the superscripts R and L refer to right and left, respec-
tively. It can be observed from Eq. (10) that the output logic
information is “1” (“0”) when most of the field energy is con-
verged to the left (right) area. Then, a back-propagation algo-
rithm is applied to train the FCNN used here to obtain the
desired phase bias (b1) in the hidden layer. To evaluate the error
between the output field intensity IYi and the target field in-
tensity T Y

i , the loss function is defined as

F loss �
X

Output area

�TY
i − IYi �2: (11)

Moreover, in this work, the gradient descent method is ap-
plied to continuously optimize the phase bias and reduce the
loss function until the network converges. As shown in
Fig. 2(a), the value of the loss function of the FCNN basically
converges after 300 iterations while ensuring good training re-
sults. To achieve all basic logic operations, the functional par-
tition of the input layer and the target images of the output
layer are elaborately designed, as shown in Figs. 2(b) and
2(c). In the output layer, the size of two focal areas containing
logical information and the distance between them have been

optimized, which can reduce the loss function when perform-
ing iterative operations to save the time to train the network.
The functional partition of the input layer is divided into four
optional blocks composed of value selections and logical oper-
ation areas, and can implement 10 different input operations by
applying the regional multiplex strategy. For example, as shown
in Fig. 2(c), the input conditions of “OR” and “AND” are in-
dependent of each other, while the operation areas of “NOT 1”
and “NOT 0” cover two value selection areas and two logic op-
eration areas, respectively. Notably, the inputs of “NOT 1” and
“NOT 0” are complementary and do not conflict with the logic
operations of “OR” and “AND.” With such a design, the size of
the required metasurface is significantly reduced since there are
only four optional areas. At the same time, fewer optional areas
ensure sufficient size of each functional area and uniformity of
the incident wave energy for all logic operations. More impor-
tantly, based on the designs mentioned above, all the basic logical
operations can be achieved with one hidden layer after optimi-
zation, which means that only one piece of metasurface is re-
quired for physical implementation, further improving the
compactness of the optical logic operator device.

After fully training the network based on the target images,
the numerical demonstration of the functions of this network is
performed and shown in Fig. 2(d). Here, the distance between
the output and hidden layers is set to be 10λ at the operating
frequency of 10 GHz, and the electric field intensity is selected

Fig. 2. (a) Curve of the error between the obtained and ideal results
during the iteration of FCNN. (b) Designed target output image
utilized for training the FCNN. (c) Designed 10 types of input corre-
sponding to all the basic logic operation functions in this paper.
(d) Electric field intensity distribution on the output layer when the
distance between the hidden and output layers is 10λ, which shows the
calculated output results for different input logic operations: (d1) 0 OR
0, (d2) 0OR 1, (d3) 1OR 0, (d4) 1OR 1, (d5) NOT 0, (d6) 0 AND0,
(d7) 0 AND 1, (d8) 1 AND 0, (d9) 1 AND 1, and (d10) NOT 1.
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as quantity for observation. It can be seen in Fig. 2(d) that these
calculated output results of all logical operations, presented as
corresponding focal positions, are consistent with the theoreti-
cal logical results. We identified four common (sometimes
overlapping) situations that authors should use as guidance.
These are provided as minimal models, and authors should feel
free to include any additional details that may be relevant.

3. SIMULATED AND EXPERIMENTAL
DEMONSTRATION

For physical implementation, it is important to design a meta-
surface composed of unit cells that can modify the phase of the
incident wave accurately. Here, a metasurface based on the sin-
gle layer PB phase element illustrated in Fig. 3(a) operates as the
hidden layer to manipulate the phase distribution of the trans-
mitted wave through the geometric phase distribution. The
unit cell structure is composed of the metal strip with a length
of 6.8 mm, a width of 0.5 mm, and a thickness of 0.018 mm,
printed on a 2 mm thick dielectric substrate with relative per-
mittivity εr � 3.5 and tangent losses tan σ � 0.001. The
period of the unit cell structure is 7.5 mm, which is about
λ∕4 at 10 GHz. The phase control performance of the elemen-
tary unit cell can be numerically simulated. Periodic boundary
conditions are used along the x and y directions and a right-
handed circularly polarized (RHCP) plane wave is used as the
incident wave while changing the rotation angle (0 ≤ θ ≤ π).
Then, we can achieve the phase manipulation of the transmit-
ted cross-polarized left-handed circularly polarized (LHCP)
component. According to the PB phase principle, the value
of the introduced abrupt phase change has a strict linear rela-
tionship with the rotation angle (more exactly, twice the rota-
tion angle), which can cover the whole phase range of 0 to 2π

accurately. Thus, the response of the metasurface can achieve
the requirement of the hidden layer in FCNN [66].

After sufficient training, the phase offset of each node in the
hidden layer is obtained, which determines the rotation angle
of each unit cell of the metasurface. Figure 3(b) shows a
photograph of the proposed metasurface construction and
Fig. 3(c) demonstrates phase map of the designed metasurface.
Compared to the optical logical operator based on 3D printed
24λ × 17λ two-layer metasurfaces in Ref. [62], the device pro-
posed in this paper only uses a single-layer metasurface with a
more compact size of 10λ × 10λ based on much simpler unit
cell structures. This implies that the design in this work pro-
vides remarkable advantages in terms of integration. The pro-
posed metasurface is simulated using commercial full-wave
simulation software under all input conditions and the electric
field distribution on the plane located 10λ away from the meta-
surface is selected for observation. The light sources used here
are RHCP plane waves with uniform amplitude and phase at a
10 GHz microwave frequency. The simulated results of all log-
ical operations are shown in Fig. 3(d), which agree very well
with the calculated results shown in Fig. 2(d). To further prove
the practicability of the proposed optical logical operator, a test
scenario is built as shown in Fig. 4.

Here, the horn antenna is placed far enough away (about
50λ) from the input layer to generate the desired quasi-planar
RHCP incident wave. The inset in Fig. 4 shows the planar
absorbers with different shapes used to control the incident
wave to activate a specific optional region of the metasurface,
which corresponds to the input values and logical operations
illustrated in Fig. 2(c). The measured electric field energy dis-
tribution on the input layer is shown in Fig. 5(a). These 10
configurations of the input conditions can be realized by rotat-
ing the four carved absorbers under quasi-plane wave illumina-
tion. On the output layer, the linear components EY

x and EY
y

are measured using an EFS-105-12 fiber optic active antenna
probe mounted on two orthogonal linear computer-controlled
translation stages to achieve the desired LHCP electric field

Fig. 3. (a) Schematic diagram of the unit cell for the proposed
single-layer metasurface and corresponding simulation settings.
(b) Photograph of the fabricated single-layer metasurface. (c) Phase
map of the optimized metasurface-based optical logic operator.
(d) Full-wave simulated results of the output electric field intensity
distribution for different input logic operations in the observation
plane (output layer) located 10λ away from the metasurface: (d1) 0
OR 0, (d2) 0 OR 1, (d3) 1 OR 0, (d4) 1 OR 1, (d5) NOT 0,
(d6) 0 AND 0, (d7) 0 AND 1, (d8) 1 AND 0, (d9) 1 AND 1,
and (d10) NOT 1.

Fig. 4. Schematic diagram of the measured scenario for the optical
logic operator. The inset shows the structure of the tailored absorbers
performing as the input layer.
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distribution [67]. Figure 5(b) shows the measured electric field
energy distribution of the transmitted LHCP component on
the output layer of all the basic logic operations, which is in
good agreement with the calculated and simulated results dem-
onstrated above. Although there are some discrepancies in the
regions outside the focus due to the actual non-ideal excitation
input in the experiments [as shown in Fig. 5(a)], clear logical
information can be observed. The measured errors can be re-
duced by improving the experimental scenario (e.g., by having
the electromagnetic waves illuminating the metasurface as close
as possible to plane waves).

Furthermore, according to Eqs. (8)–(10), the maximum
electric field energy distribution on the output layer for each
logic operation is confined in the two designated zones with
logic information. Therefore, the logical operation results
can be judged intuitively from the electric field energy distri-
bution on the center line passing through the two designated
zones. Consequently, the measured results are plotted to obtain

the output results of all logic operations, as shown in Fig. 5(c).
It can be seen that the peak of the electric field energy along the
selected line is well confined in the designated output zone, and
the corresponding demonstrated logical results (the horizontal
position of the peaks) are consistent with the theoretical values
and numerically simulated results. Such a design can be ex-
tended to higher frequencies, such as terahertz and optical re-
gimes, through the utilization of nanostructured PB phase
elements that may be composed of α-silicon, single crystal sil-
icon, TiO2, and GaN. Moreover, the metasurface array can be
optimized by means of inverse design methods [68], such as the
inverse design based on a tandem neural network (T-NN) [69],
to further miniaturize the optical logic operator.

4. CONCLUSION

In conclusion, by using a diffractive neural network, a compact
logic operator based on a single-layer metasurface is proposed at

Fig. 5. (a) Measured results of input electric field intensity distribution on the proposed metasurface for different logic operations: (a1) 0 OR 0,
(a2) 0 OR 1, (a3) 1 OR 0, (a4) 1 OR 1, (a5) NOT 0, (a6) 0 AND 0, (a7) 0 AND 1, (a8) 1 AND 0, (a9) 1 AND 1, and (a10) NOT 1. (b) Measured
results of all basic logical operations illustrated by the electric field intensity distribution of the output layer in an observation plane located 10λ away
from the metasurface: (b1) 0 OR 0, (b2) 0 OR 1, (b3) 1 OR 0, (b4) 1 OR 1, (b5) NOT 0, (b6) 0 AND 0, (b7) 0 AND 1, (b8) 1 AND 0, (b9) 1
AND 1, and (b10) NOT 1. (c) Measured results of all basic logic operations in the form of normalized electric field energy on the line that passes
through the two designated zones.
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a microwave frequency to realize the three basic logic operations
of AND, OR, and NOT. It has been theoretically and exper-
imentally verified that the proposed logic operator can well real-
ize all the designed functions, and the measured results are in
good agreement with the theoretical and calculated results. The
neural network used in this design has only one hidden layer,
which provides remarkable improvements in training speed and
computational resource usage. In addition, this optical logic
operator is implemented by a single-layer metasurface com-
posed of compact unit cell structures, which means that it is
easy to process and integrate with other optical devices.
Moreover, the designed method also can be readily applied
to other frequency regimes and implementations would be pos-
sible with suitable fabrication technologies.
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