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Quantum mechanics provides a disembodied way to transfer quantum information from one quantum object to
another. In theory, this quantum information transfer can occur between quantum objects of any dimension, yet
the reported experiments of quantum information transfer to date have mainly focused on the cases where the
quantum objects have the same dimension. Here, we theoretically propose and experimentally demonstrate a
scheme for quantum information transfer between quantum objects of different dimensions. By using an optical
qubit-ququart entangling gate, we observe the transfer of quantum information between two photons with differ-
ent dimensions, including the flow of quantum information from a four-dimensional photon to a two-
dimensional photon and vice versa. The fidelities of the quantum information transfer range from 0.700 to
0.917, all above the classical limit of 2/3. Our work sheds light on a new direction for quantum information
transfer and demonstrates our ability to implement entangling operations beyond two-level quantum
systems. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.461283

1. INTRODUCTION

The information transfer between different objects is one of the
most fundamental phenomena in nature. In the classical world,
a macroscopic object that carries unknown information can
have its information precisely measured and copied, and thus
this information can be transferred to another object while still
being retained on the original object. In the quantum world,
although quantum mechanics does not allow the unknown
quantum information carried on a quantum object to be per-
fectly cloned or precisely measured [1,2], it does allow quantum
information to be transferred from one object to another object
in a disembodied way, i.e., only the quantum information but
not the object itself is transferred. Quantum information trans-
fer (QIT) between two quantum objects, which is also called
quantum teleportation [3,4] when the two objects are separated
at different locations, is widely used in quantum information
applications including long-distance quantum communication
[5–7], distributed quantum networks [8,9], and measurement-
based quantum computation [10–14]. It has been experimen-
tally demonstrated in a variety of physical systems [15–27],
including photons [17,18], atoms [19], ions [20–22], electrons
[23], defects in solid states [24], optomechanical systems [25],
and superconducting circuits [26,27]. Recently, more complex
experiments have also been reported, such as the open destina-
tion teleportation [28,29] and the teleportation of a composite

system [30,32], a multilevel state [31,32], and multidegree of
freedom of a particle [33].

So far, the reported experiments havemainly focused onQIT
between quantum objects with the same dimension. However,
in quantum applications such as distributed quantum networks,
different quantum objects may have different dimensions, and
QIT between them is also required. For example, as shown in
Fig. 1(a), there are two quantum objects A and B, where A is
two-dimensional (2D) and carries no quantum information,
and B is four-dimensional (4D) and carries two qubits of un-
known quantum information beforehand. If B wants to transfer
quantum information to A, because A is 2D and capable of car-
rying atmost one qubit of quantum information, only one of the
two qubits stored in B can be transferred to A. We call this pro-
cess a 4-to-2 QIT, which will distribute the two qubits of quan-
tum information originally concentrated on B over both A and
B. Now A and B are each loaded with one qubit of quantum
information. Obviously, as shown in Fig. 1(b), this one qubit
of quantum information stored inA can also be transferred back
to B. We call this process a 2-to-4 QIT, which concentrates the
two qubits of quantum information distributed over bothA and
B on object B only.

In this work, we theoretically propose and experimentally
demonstrate a scheme for QIT between a 2D quantum object
and a 4D one. By using an optical qubit-ququart entangling
gate, we successfully transfer one qubit of quantum information
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from a 4D photon preloaded with two qubits of quantum in-
formation to a 2D photon, i.e., achieving a 4-to-2 QIT. We
also experimentally realize a 2-to-4 QIT, i.e., transferring
one qubit of quantum information from a 2D photon to a
4D photon preloaded with one qubit of quantum information.
Besides fundamental interests, the QITs demonstrated here
have the potential to simplify the construction of quantum cir-
cuits and find applications in quantum computation and quan-
tum communications.

2. SCHEME OF QUANTUM INFORMATION
TRANSFER

A. 2-to-2 QIT
Before presenting the scheme for implementing the QIT be-
tween quantum objects of different dimensions, let us briefly
review how to implement the QIT between quantum objects of
the same dimensions. Here we take the 2D case as an example,
assuming that both A and B are 2D quantum objects, where A
is in the state 1ffiffi

2
p �j0iA � j1iA� without any quantum informa-

tion preloaded, and B is in the state αj0iB � βj1iB loaded
with one-qubit unknown quantum information. As shown
in Fig. 2(a), by applying a controlled-X gate (CX gate, com-
monly referred as CNOT gate) on A and B, the quantum state
of the composite system of A and B would become
1ffiffiffi
2

p j0iA�αj0iB � βj1iB� �
1ffiffiffi
2

p j1iA�αj1iB � βj0iB�

� 1ffiffiffi
2

p �αj0iA � βj1iA�j0iB �
1ffiffiffi
2

p �βj0iA � αj1iA�j1iB ,

where X j0i � j1i, X j1i � j0i. After measuring B in the j0∕1i
basis and forwarding the measurement outcome to A, a unitary
operation (I or X ) based on the outcome is applied on A and
thus converts its state to αj0iA � βj1iA. The state of A now has
the same form as the initial state of B and thus completes the
QIT from B to A.

B. 4-to-2 QIT
We now present the scheme for realizing the QIT from a 4D to
a 2D quantum object. Suppose A is still 2D and in the state
1ffiffi
2

p �j0iA � j1iA�, and B is now 4D and in the state

αj0iB � βj1iB � γj2iB � δj3iB , (1)

which is preloaded with two-qubit unknown quantum infor-
mation. To achieve the QIT between a 2D and a 4D quantum
object, instead of using a two-qubit gate like the CNOT gate,
one should use a qubit-ququart entangling gate. As shown in

Fig. 2(b), a controlled-X 4 gate (CX 4) is applied to A and B,
where X 4 is a 4D unitary gate defined as

X 4 �

0
BBBBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCCCA
,

which converts j0i (j1i) to j2i (j3i) and vice versa. The state of
A and B is thus converted to

Fig. 1. Quantum information transfer between a two-level and a
four-level quantum systems. (a) Quantum information transfer from
a four-level system B to a two-level system A. (b) Quantum informa-
tion transfer from a two-level system A to a four-level system B.

Fig. 2. Schematic diagrams for quantum information transfer.
(a) The quantum information transfer from one qubit to another.
The CX gate entangles qubit A, which initially contains no quantum
information, and qubit B, which initially contains one qubit of un-
known quantum information. The projective measurement on B re-
moves quantum information from B, thus transferring the one qubit of
quantum information to A. After the feedforward unitary operation,
the quantum information originally stored in B is restored in A, thus
completing the quantum information transfer. (b) The quantum in-
formation transfer from a ququart to a qubit. The initial state of qu-
quart B contains two qubits of unknown quantum information, while
qubit A initially contains no quantum information. After entangling A
and B using a CX 4 gate, where X 4 swaps j0i and j2i (j1i and j3i), a
projective measurement is applied on B to measure whether it is in the
subspace spanned by j0i and j1i or the subspace spanned by j2i and
j3i. Based on the measurement result, feedforward unitary operations
are applied on A and B, and the final state of A and B contains the two
qubits of quantum information originally stored in B, thus completing
the quantum information transfer from ququart B to qubit A. (c) The
quantum information transfer from a qubit to a ququart. Two qubits
of unknown quantum information are initially distributed over qubit
A and ququart B. After applying a CX 4 gate on A and B, a projective
measurement is applied on A and a feedforward unitary operation
based on the measurement result is applied on B. The final state
of B contains the two qubits of quantum information originally dis-
tributed over both A and B, thus completing the quantum information
transfer from qubit A to ququart B.
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1ffiffiffi
2

p j0iA�αj0iB � βj1iB � γj2iB � δj3iB�

� 1ffiffiffi
2

p j1iA�αj2iB � βj3iB � γj0iB � δj1iB�

� 1ffiffiffi
2

p �αj0iAj0iB � βj0iAj1iB � γj1iAj0iB � δj1iAj1iB�

� 1ffiffiffi
2

p �αj1iAj2iB � βj1iAj3iB � γj0iAj2iB � δj0iAj3iB�:
A projective measurement is then applied on B to measure
whether it is in the subspace spanned by j0iB and j1iB or
the subspace spanned by j2iB and j3iB . Based on the measure-
ment outcome, unitary operations (I ⊗ I 4 or X ⊗ X 4) are ap-
plied on A and B and their state becomes

αj0iAj0iB � βj0iAj1iB � γj1iAj0iB � δj1iAj1iB , (2)

where

I 4 �

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA:

Comparing Eq. (2) with Eq. (1), it is observed that the two
quantum states have exactly the same form except for the differ-
ence in the state basis, which means that the two-qubit quan-
tum information previously stored in B is now distributed over
both A and B. In other words, one of the two qubits of quan-
tum information originally stored in B is now transferred to A,
thus achieving a 4-to-2 QIT.

C. 2-to-4 QIT
We now show how the same quantum circuit can be used to
implement a 2-to-4 QIT (the inverse of the above process),
i.e., transferring one qubit of quantum information from a
2D quantum object to a 4D quantum object preloaded with
one-qubit unknown quantum information. The initial state of
A and B can be written as

αj0iAj0iB � βj0iAj1iB � γj1iAj0iB � δj1iAj1iB , (3)
where both the 2D A and the 4D B are preloaded with one
qubit of unknown quantum information. Note that the quan-
tum state of A and B can be either an entangled state or a sepa-
rable state. As shown in Fig. 2(c), a CX 4 gate is applied to A
and B, and their state is thus converted to

αj0iAj0iB � βj0iAj1iB � γj1iAj2iB � δj1iAj3iB
� j�iA�αj0iB � βj1iB � γj2iB � δj3iB�
� j−iA�αj0iB � βj1iB − γj2iB − δj3iB�,

where j�i � 1∕
ffiffiffi
2

p �j0i � j1i�. Similarly, after measuring A
in the j�i basis and forwarding the outcome to B, a 4D unitary
operation (I 4 or Z 4) is applied on B conditioned on the out-
come and thus converts its state to

αj0iB � βj1iB � γj2iB � δj3iB , (4)

where

Z 4 �

0
B@

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

1
CA:

Comparing Eq. (4) with Eq. (3), it is observed that the two
quantum states have exactly the same form except for the differ-
ence in the state basis, which means that the two qubits of
quantum information previously distributed over both A
and B are now concentrated in B. In other words, the one-qubit
quantum information originally stored in A is now transferred
to B, thus achieving a 2-to-4 QIT.

3. EXPERIMENTAL DEMONSTRATION USING
LINEAR OPTICS

A. Optical CX4 Gate
To experimentally implement the QIT operations described
above, the main challenge lies in the realization of the key part
of the quantum circuit, namely the qubit-ququart entangling
gate CX 4. Most experimentally realized quantum entangling
gates so far are based on qubits [34–40], and it is a challenging
task to implement such high-dimensional entangling opera-
tions in any physical system.

Here we present our method of implementing the CX 4 gate
using linear optics. As shown in Fig. 3(a), instead of imple-
menting the CX 4 gate directly, we first decompose it into
two consecutive gates CX 02 and CX 13 based on the fact that
X 4 � X 13X 02, where

X 02 �

0
B@

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

1
CA, X 13 �

0
B@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1
CA:

Although X 02 (X 13) is a 4D unitary operation, it only operates
on a 2D subspace spanned by j0i and j2i (j1i and j3i). X 02

(X 13) swaps j0i and j2i (j1i and j3i) and leaves j1i and j3i (j0i
and j2i) unchanged. Based on this fact, two optical CNOT
gates can be used to implement CX 02 and CX 13.

As shown in Fig. 3(a), system A consists of two photons,
a1 and a2, serving as the control qubit, and system B consists
of photon b, serving as the target ququart. The two orthonor-
mal basis states of system A are j0iA � jH ia1jH ia2 and
j1iA � jV ia1jV ia2, whereH and V denote horizontal and ver-
tical polarizations, respectively. For system B, to encode a qu-
quart with a single photon, photon b, both the polarization and
spatial degrees of freedom are used, and the four orthonormal
basis states are j0iB � jH0ib, j1iB � jH1ib, j2iB � jV 0ib,
and j3iB � jV 1ib, where H0 (H1) denotes photon in the
upper (lower) spatial mode with horizontal polarization, and
V 0 (V 1) denotes photon in the upper (lower) spatial mode
with vertical polarization. The CX 02 operation between qubit
A and ququart B can be realized by applying a polarization
CNOT gate to photon a1 and photon b in the upper path,
which can be understood as follows. When the polarization
of photon a1 is H (namely qubit A in j0iA), nothing happens;
when the polarization of photon a is V (namely qubit A in
j1iA), the polarization of photon b flips between H and V
if b is in the upper path (namely ququart B’s j0iB and j2iB
components being swapped), and is unaffected if b is in the
lower path (namely ququart B’s j1iB and j3iB components
being unchanged), which is exactly what a CX 02 gate achieves.
Similarly, the CX 13 operation can be realized by applying a
polarization CNOT gate to photon a2 and photon b in the
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lower path. As a result, the desired CX 4 gate can be achieved by
the two polarization CNOT gates as shown in Fig. 3(a).

Note that the use of two photons to encode the control qu-
bit is mainly due to the following experimental considerations.
The optical CNOT gates used experimentally are based on
postselection measurements, and such CNOT gates would fail
when they act on the same two photons twice in a row. By using
two photons a1 and a2 to encode the control qubit, the two
CNOT gates are not acting on the same two photons, thus
avoiding this problem.

B. Experimental Setup
Figure 3(b) shows the experimental setup for implementing the
two QIT schemes. Two photon pairs are generated by passing
femtosecond-pulse UV laser through type-II beta-barium bo-
rate (BBO) crystals (see Appendix A). Photons a1 and a2 of
the first pair are prepared at ϵjH ia1jH ia2 � ζjV ia1jV ia2,
which serves as the initial state of system A. By passing through
the beam displacer BD1 and its surrounding waveplates
(HWP2, QWP2, HWP3, QWP3, HWP4, and QWP4),
photon b from the second pair is prepared at ηjH0ib�
κjH1ib � λjV 0ib � μjV 1ib, which serves as the initial state
of system B. The upper (lower) rail of photon b is then super-
posed with photon a1 (a2) on a partial polarization beam-
splitter (PPBS). The PPBS, the loss elements, and its
surrounding half wave-plates can realize a polarization
CNOT gate on photon a1 (a2) and photon b in the upper
(lower) path [41]. These two polarization CNOT gates
together realize a CX 4 gate on qubit A and ququart B (see
Appendix C), and the state of the three photons becomes

ϵjH ia1jH ia2 ⊗ �ηjH0ib � κjH1ib � λjV 0ib � μjV 1ib�
� ζjV ia1jV ia2 ⊗ �ηjV 0ib � κjV 1ib � λjH0ib � μjH1ib�:

C. Results of the 4-to-2 QIT
To demonstrate the 4-to-2 QIT, ϵ and ζ are set to 1∕

ffiffiffi
2

p
, and

the three-photon state after the CX 4 gate can be written as

1ffiffiffi
2

p jH ia1jH ia2 ⊗ �ηjH0ib � κjH1ib � λjV 0ib � μjV 1ib�

� 1ffiffiffi
2

p jV ia1jV ia2 ⊗ �ηjV 0ib � κjV 1ib � λjH0ib � μjH1ib�.

Active feed-forward is needed for a full, deterministic 4-to-2
QIT. However, in this proof-of-principle experiment, we did
not apply feed-forward but used postselection to realize a prob-
abilistic 4-to-2 QIT. By postselecting the jH0ib and jH1ib
components and converting jH0ib to jH ib and jH1ib to
jV ib using BD2 and its preceding waveplates, the three-photon
state

ηjH ia1jH ia2jH ib � κjH ia1jH ia2jV ib
� λjV ia1jV ia2jH ib � μjV ia1jV ia2jV ib,

is obtained. By projecting photon a2 to jDi �
1ffiffi
2

p �jH i � jV i�, the two-photon state of a1 and b becomes

ηjH ia1jH ib � κjH ia1jV ib � λjV ia1jH ib � μjV ia1jV ib:
The two qubits of quantum information originally concen-
trated on photon b are now distributed over two photons
a1 and b, which indicates that one qubit of quantum informa-
tion has been transferred from photon b to photon a1, thus
achieving a 4-to-2 QIT.

We then measure the fidelity of the final state,
F � Tr�ρjψihψ j�, which is defined as the overlap between
the ideal final state (jψi) and the measured density matrix (ρ).
The verification of the QIT results is based on fourfold coinci-
dence detection which in our experiment occurs with a rate of

Fig. 3. Experimental layout for quantum information transfer between a qubit and a ququart. (a) Optical CX 4 gate. Two photons a1 and a2 are
used to encode qubit A, where j0iA � jH ia1jHia2 and j1iA � jV ia1jV ia2. Photon b is used to encode ququart B, where j0iB � jH0ib,
j1iB � jH1ib, j2iB � jV 0ib, and j3iB � jV 1ib. H0 (H1) denotes photon in the upper (lower) spatial mode with horizontal polarization
and V 0 (V 1) denotes photon in upper (lower) spatial mode with vertical polarization. A CX 4 gate between the control qubit A and the target
ququart B is decomposed into a CX 02 gate and a CX 13 gate. The CX 02 (CX 13) gate is equivalent to a polarization CNOT gate operating on photon
a1 (a2) and photon b in the upper (lower) path. (b) Experimental setup. A pulsed ultraviolet (UV) laser is focused on two beta-barium borate (BBO)
crystals and produces two photon pairs a1–a2 and b−t. By tuning HWP1 and QWP1, the first photon pair, a1–a2, is prepared at
ϵjH ia1jH ia2 � ζjV ia1jV ia2, which serves as the initial state of system A. BD1 and its surrounding waveplates (HWP2, QWP2, HWP3,
QWP3, HWP4 and QWP4) prepare photon b at ηjH0ib � κjH1ib � λjV 0ib � μjV 1ib, which serves as the initial state of system B. The
two polarization CNOT gates based on PPBS are used to implement the optical CX 4 on system A and system B. BD2 and its surrounding
waveplates (QWP5, HWP5, HWP at 0°, HWP at 45°, QWP6 and HWP6) are used to analyze the ququart state.
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0.22 Hz. In each setting, the typical data collection time is
10 min, which allows us to sufficiently suppress Poisson noise.

Five different initial states of B are prepared for demonstrat-
ing the 4-to-2 QIT:

jϕ1iB � 1ffiffiffi
2

p �j0iB � j1iB� �
1ffiffiffi
2

p �jH0ib � jH1ib�,

jϕ2iB � 1ffiffiffi
2

p �j0iB � j2iB� �
1ffiffiffi
2

p �jH0ib � jV 0ib�,

jϕ3iB � 1

2
�j0iB � j1iB � j2iB � j3iB�

� 1

2
�jH0ib � jH1ib � jV 0ib � jV 1ib�,

jϕ4iB � 1ffiffiffi
2

p �j1iB � j2iB� �
1ffiffiffi
2

p �jH1ib � jV 0ib�,

jϕ5iB � 1

2
�j0iB − j1iB − j2iB − j3iB�

� 1

2
�jH0ib − jH1ib − jV 0ib − jV 1ib�:

Figures 4(a)–4(e) shows the 4-to-2 QIT results of the five dif-
ferent initial states on specific bases from which the fidelities

can be extracted. For each of the five initial ququart states
jϕ1iB to jϕ5iB , the fidelity of the final state of A and B is,
in numerical sequence: 0.8860� 0.0298, 0.7686� 0.0271,
0.7342� 0.0255, 0.7375� 0.0203, and 0.8220� 0.0164,
which are summarized in Fig. 4(f ). The fluctuation of the fidel-
ities in the experiment stems from the fact that the realized
CNOT gates have different performance for different control
qubits, i.e., the noise is higher when the polarization of the
control qubit is horizontal.

D. Results of the 2-to-4 QIT
To demonstrate the 2-to-4 QIT, λ and μ are set to zero, and the
quantum state after the CX 4 gate can be written as

ϵjH ia1jH ia2 ⊗ �ηjH0ib � κjH1ib�
� ζjV ia1jV ia2 ⊗ �ηjV 0ib � κjV 1ib�:

By projecting both photons a1 and a2 to jDi, the quantum
state of photon b becomes

ϵηjH0ib � ϵκjH1ib � ζηjV 0ib � ζκjV 1ib:
This ququart state of photon b is then analyzed by the mea-
surement setup consisting of BD2, its surrounding waveplates,

Fig. 4. Experimental results for the quantum information transfer from ququart B to qubit A. (a)–(e) Measurement results of the final state of A
and B for the initial states jϕ1iB , jϕ2iB ,…, and jϕ5iB . Here j�i � 1ffiffi

2
p �j0i � j1i� and j� ii � 1ffiffi

2
p �j0i � ij1i�. (f ) Summary of the fidelities of the

partial quantum state transfer for the five initial states. The average achieved fidelity of 0.7897� 0.0109 overcomes the classical bound of 2/3. The
error bars (SD) are calculated according to propagated Poissonian counting statistics of the raw detection events.
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the polarization beamsplitter (PBS), and the single-photon
detector D3 (see Appendix D). The two qubits of quantum
information originally distributed over system A (photons a1
and a2) and system B (photon b) are now concentrated on sys-
tem B, which indicates that one qubit of quantum information
has been transferred from system A to system B, thus achieving
a 2-to-4 QIT.

Nine different initial states of A and B are used in the gen-
eral quantum state transfer experiment:

jψ1iAB � 1ffiffiffi
2

p �j0iA � ij1iA� ⊗ j0iB

� 1ffiffiffi
2

p �jH ia1jH ia2 � ijV ia1jV ia2� ⊗ jH0ib,

jψ2iAB � 1ffiffiffi
2

p �j0iA � ij1iA� ⊗
1ffiffiffi
2

p �j0iB − j1iB�

� 1ffiffiffi
2

p �jH ia1jH ia2 � ijV ia1jV ia2�

⊗
1ffiffiffi
2

p �jH0ib − jH1ib�,

jψ3iAB � 1ffiffiffi
2

p �j0iA � ij1iA� ⊗
1ffiffiffi
2

p �j0iB � ij1iB�

� 1ffiffiffi
2

p �jH ia1jH ia2 � ijV ia1jV ia2�

⊗
1ffiffiffi
2

p �jH0ib � ijH1ib�,

jψ4iAB � 1ffiffiffi
2

p �j0iA � j1iA� ⊗ j0iB

� 1ffiffiffi
2

p �jH ia1jH ia2 � jV ia1jV ia2� ⊗ jH0ib,

jψ5iAB � 1ffiffiffi
2

p �j0iA � j1iA� ⊗
1ffiffiffi
2

p �j0iB � j1iB�

� 1ffiffiffi
2

p �jH ia1jH ia2 � jV ia1jV ia2�

⊗
1ffiffiffi
2

p �jH0ib � jH1ib�,

jψ6iAB � 1ffiffiffi
2

p �j0iA � j1iA� ⊗
1ffiffiffi
2

p �j0iB − ij1iB�

� 1ffiffiffi
2

p �jH ia1jH ia2 � jV ia1jV ia2�

⊗
1ffiffiffi
2

p �jH0ib − ijH1ib�,

jψ7iAB � j1iA ⊗ j0iB � jV ia1jV ia2 ⊗ jH0ib,

jψ8iAB � j1iA ⊗
1ffiffiffi
2

p �j0iB � j1iB�

� jV ia1jV ia2 ⊗
1ffiffiffi
2

p �jH0ib � jH1ib�,

jψ9iAB � j1iA ⊗
1ffiffiffi
2

p �j0iB − ij1iB�

� jV ia1jV ia2 ⊗
1ffiffiffi
2

p �jH0ib − ijH1ib�:

Figures 5(a)–5(i) show the 2-to-4 QIT results of the nine differ-
ent initial states on specific bases, from which the fidelities can
be directly extracted. For each of the nine initial states jψ1iAB
to jψ9iAB , the fidelity of the final state of ququart B is, in
numerical sequence: 0.8018� 0.0271, 0.7220� 0.0289,
0.6997� 0.0241, 0.8772� 0.0217, 0.7897� 0.0257,
0.8080� 0.0249, 0.8770� 0.0130, 0.8431� 0.0134, and
0.9171� 0.0138, which is summarized in Fig. 5(j).

The reported data are raw data without any background
subtraction, and the main errors are due to double pair emis-
sion, imperfection in preparation of the initial states, and the
nonideal interference at the PPBS and BD2. Throughout our
experiments, whether 2-to-4 or 4-to-2, we are actually trans-
mitting one qubit of quantum information. Specifically, in
the 4-to-2 experiment, particle B is preloaded with two qubits
of quantum information and sends one of two qubits to A. In
the 2-to-4 experiment, the one qubit carried by A is transmitted
to B which is already preloaded with one qubit of quantum
information. Therefore, the classical threshold should be
2∕�d � 1� � 2∕3 in our experiments. Despite the experimen-
tal noise, the measured fidelities of the quantum states are all
well above the classical limit 2∕3, defined as the optimal state-
estimation fidelity on a single copy of a one-qubit system [42].
These results prove the successful realization of the 4-to-2 and
the 2-to-4 QIT.

4. CONCLUSION

In this work, we have experimentally transferred one qubit of
quantum information from a 4D photon preloaded with two
qubits of quantum information to a 2D photon. We have also
experimentally realized the inverse operation, namely transfer-
ring one qubit of quantum information from a 2D photon to a
4D photon preloaded with one qubit of quantum information.
Our experiments show that quantum information is indepen-
dent of its carriers and can be freely transferred between quan-
tum objects of different dimensions. Although the present
experiments are realized in the linear optical architecture,
our protocols themselves are not limited to the optical system
and can be applied to other quantum systems such as trapped
atoms [19], ions [21,22], and electrons [23].

The techniques developed in this work for entangling
operations on photons of different dimensions can be used
to prepare a new type of maximally entangled state such
as 1∕2�j0ia1j0ia2 ⊗ j0ib � j0ia1j1ia2 ⊗ j1ib � j1ia1j0ia2 ⊗
j2ib � j1ia1j1ia2 ⊗ j3ib�, where photons a1 and a2 are both
2D and belong to system A, and photon b is 4D and belongs to
system B. System A and system B have the same dimension but
a different number of particles. Such maximally entangled
states with asymmetric particle numbers can be used as a physi-
cal resource for realizing quantum teleportation between sys-
tems with the same dimension but different particle numbers.

Our approach can be readily extended to higher dimensional
cases (see Appendixes E and F). With these QIT operations,
one can either concentrate the quantum information from
multiple objects to one object or distribute the quantum infor-
mation from one object to multiple objects. Such operations
have the potential to simplify the construction of multiqubit
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gates [43,44] (see Appendix G) and find applications in quan-
tum computation and quantum simulations.

APPENDIX A: GENERATING TWO PHOTON
PAIRS

For the sake of simplicity, in Fig. 3(b) of the main text, we only
show a simplified version of the spontaneous parametric down-
conversion (SPDC) sources. Figure 6 shows the detailed exper-
imental setup for generating two photon pairs. An ultraviolet
pulse laser centered at 390 nm is split into two parts, which are
used to generate two SPDC photon pairs. The lower part of the
laser directly pumps a BBO crystal to generate a pair of photons
in the state jV bijHti via beamlike type-II SPDC, where pho-
ton t is used for the trigger. The upper part of the laser goes
through HWP1 and QWP1 to prepare its polarization at
αjH i � βjV i. It then passes through an arrangement of two
beam displacers (BDs) and HWPs to separate the laser into
two beams by 4 mm apart (such configuration was first adopted
by Zhong et al. in Ref. [45]). The two beams then focus on a
BBO crystal to generate two photon pairs in the states

jV a1ijHa2i and jV a1 0 ijHa2 0 i via beamlike type-II SPDC,
where the subscripts denote the spatial modes. jV a1ijHa2i
and jV a1 0 ijHa2 0 i are then rotated using HWPs to
jHa1ijHa2i and jV a1 0 ijV a2 0 i, respectively. Photon pairs of
jHa1ijHa2i and jV a1 0 ijV a2 0 i are then combined into the same
spatial modes using two BDs. After tilting the two BDs to
finely tune the relative phase between the two components,

Fig. 5. Experimental results for the quantum information transfer from qubit A to ququart B. (a)–(i) Measurement results of the final state of B
for the initial states jψ1iAB , jψ2iAB ,…, and jψ9iAB . Here j�i � 1ffiffi

2
p �j0i � j1i� and j � ii � 1ffiffi

2
p �j0i � ij1i�. (j) Summary of the fidelities of the

general quantum state transfer for the nine initial states. The average achieved fidelity of 0.8151� 0.0074 overcomes the classical bound of 2/3. The
error bars (SD) are calculated according to propagated Poissonian counting statistics of the raw detection events.

Fig. 6. Experimental setup for generating two photon pairs.
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the two photons a1 and a2 are prepared into αjH ia1jH ia2�
βjV ia1jV ia2, which is the desired quantum state of system A.

APPENDIX B: TWO-PHOTON INTERFERENCE
ON A PPBS

The PPBS implements the quantum phase gate by reflecting ver-
tically polarized light perfectly and reflecting (transmitting) 1/3
(2/3) of horizontally polarized light. To realize a perfect quantum
gate with the PPBS, the input photons on the PPBS need to be
indistinguishable to each other. To evaluate the indistinguish-
ability of the input photons, a two-photon Hong-Ou-Mandel
(HOM) interference on the PPBS needs to be measured.
For large delay, the two photons are completely distinguishable
due to their time of arrival. The probability to get a coincidence
from an jHH i input is then 5/9. In case of perfectly indistin-
guishable photons at zero delay, the probability drops to 1/9.
From the above considerations, the theoretical dip visibility
V th � 80% is obtained, which is defined via V � �c∞ − c0�∕c0,
where c0 is the count rate at zero delay, and c∞ is the count rate
for large delay. As shown in Fig. 7, the HOM interference is
experimentally measured, and a dip visibility of V exp �
0.661� 0.0015 is obtained, where the error bar is calculated
from the Poissonian counting statistics of the detection events.
The overlap quality Q � V exp∕V th � 0.826� 0.0019
indicates that about 17.4% of the detected photon pairs are
distinguishable.

APPENDIX C: IMPLEMENTATION OF CX4 GATE
USING LINEAR OPTICS

As described in the main text, an optical CX 4 gate between
system A (photons a1 and a2) and system B (photon b) can
be implemented with a setup as shown in Fig. 8(a). Photons
a1 and a2 encode the control qubit, and its initial state
is ϵj0iA � ζj1iA � ϵjH ia1jH ia2 � ζjV ia1jV ia2. Photon
b encodes the target ququart, and its initial state is ηj0iB�
κj1iB � ηjH0ib � κjH1ib. After passing through the loss
elements that transmit horizontally polarized light perfectly

and transmit 1/3 of vertically polarized light, photon a1
(a2) and photon b in the upper (lower) mode are superposed
on the PPBS. The PPBS, the loss elements, and the two sur-
rounding HWPs at 22.5° together implement a polarization
CNOT operation on the input photons [41,46,47]. Such op-
tical circuit can thus realize the following transformations:

jH ia1jH ia2 ⊗ jH0ib → jH ia1jH ia2 ⊗ jH0ib,
jH ia1jH ia2 ⊗ jH1ib → jH ia1jH ia2 ⊗ jH1ib,
jV ia1jV ia2 ⊗ jH0ib → jV ia1jV ia2 ⊗ jV 0ib,
jV ia1jV ia2 ⊗ jH1ib → jV ia1jV ia2 ⊗ jV 1ib:

As a result, after passing through this optical circuit, the initial
input state
�ϵj0iA � ζj1iA� ⊗ �ηj0iB � κj1iB�

� �ϵjH ia1jH ia2 � ζjV ia1jV ia2� ⊗ �ηjH0ib � κjH1ib�,
would become

ϵjH ia1jH ia2 ⊗ �ηjH0ib � κjH1ib�
� ζjV ia1jV ia2 ⊗ �ηjV 0ib � κjV 1ib�

� ϵj0iA ⊗ �ηj0iB � κj1iB� � ζj1iA ⊗ �ηj2iB � κj3iB�,
which is exactly the desired output state of a CX 4 gate.
The above optical CX 4 gate operates with a success probability
of 1/27. In practice, to combat low count rates, we adopt
the method proposed in Ref. [41] to simplify the implementa-
tion of the optical CX 4 gate. The simplified experimental
setup is shown in Fig. 8(b). We achieve a correct balance
by removing the loss elements and prebiasing the input
polarization states during gate characterization. The initial
state of photons a1 and a2 is now prepared at

Fig. 7. HOM interference at the PPBS for an jHH i input. In case
of perfect interference, the count rate should drop down to 20%, lead-
ing to a theoretically achievable dip visibility of 80%.

Fig. 8. CX 4 gate with linear optics. (a) The standard optical CX 4

gate. (b) The simplified optical CX 4 gate.
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ϵ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵj2�jζj2

9

q
jH ia1jH ia2��ζ∕3�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵj2�jζj2

9

q
jV ia1jV ia2 in-

stead of ϵjH ia1jH ia2 � ζjV ia1jV ia2. The HWP applied on
photon b before entering the PPBS is now set at 15°, thus
converting photon b to the state

ffiffiffi
3

p
∕2�ηjH0i � κjH1i� �

1∕2�ηjV 0i � κjV 1i� instead of 1∕
ffiffiffi
2

p �ηjH0i � κjH1i� �
1∕

ffiffiffi
2

p �ηjV 0i � κjV 1i�, which is the case if the HWP is set
at 22.5°.

APPENDIX D: STATE ANALYSIS OF A PHOTONIC
QUQUART STATE

A photon with both polarization and spatial degrees of freedom
(DOFs) can encode a ququart state. To fully characterize such
state, one needs to perform projective measurement onto
various different ququart states. To fulfill this task, we build
a ququart state analyzer as shown in Fig. 9, which can project
the input ququart to any state in the form of
�ajH i � bjV i� ⊗ �cj0i � d j1i�. This setup works as follows.
Suppose the input ququart state is �ajH i � bjV i� ⊗
�cj0i � d j1i�. After passing through QWP3 and HWP3,
which are used to convert ajH i � bjV i to jH i, the ququart
state becomes jH i ⊗ �cj0i � d j1i�. The subsequent two

HWPs (one at 45° and the other at 0°) and the BD are used
to convert jH i ⊗ �cj0i � d j1i� to cjH i � d jV i, which is
now a polarization qubit state. QWP4 and HWP4 are then
used to convert cjH i � d jV i to jH i, which can pass through
the PBS and get detected by the SPD. As a result, for any input
ququart state, only its �ajH i � bjV i� ⊗ �cj0i � d j1i� com-
ponent can pass through the setup described above, which ef-
fectively realizes the desired projective measurement. By
changing the parameters a, b, c, and d , this state analyzer
can be used to perform a full state tomography on the input
ququart state.

APPENDIX E: MERGE OPERATION

The scheme of 2-to-4 QIT can be extended to the higher di-
mensional case, i.e., transferring one qubit of unknown quan-
tum information from a qubit to a qudit. We call the operation
of aggregating quantum information from two particles to one
particle the Merge operation, and Merge(2, d → 2d ) denotes
the aggregation of quantum information of a qubit and a
d -dimensional qudit to a 2d -dimensional qudit. The quantum
circuit to implement Merge(2, d → 2d ) is shown in Fig. 10(a),
where the initial state of system A is αj0iA � βj1iA, and the
initial state of system B is

Pd−1
i�0 γijii, which is a d -dimensional

qudit. A controlled-X 2d (CX 2d ) gate is applied to A and B,
where X 2d is a 2d -dimensional unitary gate defined as
X 2d � Pd−1

k�0�jkihk � d j � jk � d ihkj�, which swaps jki
and jk � d i for k in the range of 0 to d − 1, expanding the
state space of system B from d to 2d dimensions. The state
of A and B is thus converted from

Fig. 9. State analyzer for a single-photon ququart state with both
polarization and spatial degrees of freedom.

Fig. 10. (a) The Merge operation. The quantum circuit for merging the quantum information of a qubit and a d -dimensional qudit into a
2d -dimensional qudit. (b) The Split operation. The quantum circuit for splitting the quantum information of a 2d -dimensional qudit to a qubit
and a d -dimensional qudit. (c) Implementing a three-qubit quantum gate using Merge and Split operations.
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�αj0i� βj1i�⊗
Xd−1
i�0

γijii �
Xd−1
i�0

�αγij0iAjiiB � βγij1iAjiiB�

(E1)

to
Xd−1
i�0

�αγij0iAjiiB � βγij1iAji � d iB�

� j�iA ⊗
Xd−1
i�0

�αγijiiB � βγiji � d iB�

� j−iB ⊗
Xd−1
i�0

�αγijiiB − βγiji � d iB�:

After measuring A in the j�i basis and forwarding the outcome
to B, a 2d -dimensional unitary operation (I 2d or Z 2d ) is ap-
plied on B conditioned on the outcome and thus converts its
state to

Xd−1
i�0

�αγijiiB � βγiji � d iB�, (E2)

where

Z 2d � I 2d − 2
Xd−1
k�0

jk � d ihk � d j:

By comparing Eq. (E2) and Eq. (E1), one sees that the two
quantum states have exactly the same form except for the differ-
ence in the state basis, which means that the quantum infor-
mation originally stored in A and B has been merged into B.

APPENDIX F: SPLIT OPERATION

The scheme of 4-to-2 QIT can be extended to the higher di-
mensional case, i.e., transferring one qubit of unknown quan-
tum information from a qudit to a qubit. We call this operation
of distributing quantum information from one particle to two
particles the Split operation, and Split(2d→2, d ) denotes the
distribution of quantum information from a 2d -dimensional
qudit to a qubit and a d -dimensional qudit. The quantum cir-
cuit to implement Split(2d→2, d ) is shown in Fig. 10(b),
where system A is initially in the state 1ffiffi

2
p �j0iA � j1iA�, and

the initial state of system B is in the 2d -dimensional qudit state:

X2d−1
i�0

γijii �
Xd−1
i�0

�γijii � γi�d ji � d i�: (F1)

A CX 2d gate is applied to A and B, and their state becomes

1ffiffiffi
2

p j0i ⊗
Xd−1
i�0

�γijii � γi�d ji � d i�

� 1ffiffiffi
2

p j1i ⊗
Xd−1
i�0

�γiji � d i � γi�d jii�

� 1ffiffiffi
2

p
Xd−1
i�0

�γij0ijii � γi�d j1ijii�

� 1ffiffiffi
2

p
Xd−1
i�0

�γij1iji � d i � γi�d j0iji � d i�:

A projective measurement is then applied on B to measure
whether it is in the subspace spanned by j0iB, j1iB ,…, jd − 2iB ,
and jd − 1iB or the subspace spanned by jd iB,
jd � 1iB ,…, j2d − 2iB , and j2d − 1iB . Based on the measure-
ment outcome, unitary operations (I ⊗ I 2d or X ⊗ X 2d ) are
applied on A and B, and their state becomes

1ffiffiffi
2

p
Xd−1
i�0

�γij0ijii � γi�d j1ijii�: (F2)

Comparing Eq. (F2) and Eq. (F1), it is observed that the two
quantum states have exactly the same form except for the differ-
ence in the state basis, which means that the quantum informa-
tion originally stored in B is now split into A and B.

APPENDIX G: CONSTRUCTION OF MULTIQUBIT
GATES

In various quantum information applications, including quan-
tum computation and quantum simulation, multiqubit quan-
tum gates are widely used. Theoretically, multiqubit quantum
gates can be decomposed into two-qubit CNOT gates and
single-qubit quantum gates for implementation, but in prac-
tice, such decomposition can be quite complex and consumes
a lot of resources experimentally. Here, we propose a method to
simplify the implementation of multiqubit quantum gates by
using QIT methods. This approach essentially transforms an
arbitrary n-qubit quantum gate operation into a unitary trans-
form on a 2n-dimensional qudit, which is simpler to implement
in certain circumstances. For example, for a path-encoded
2n-dimensional photon, when n is not very large, an arbitrary
2n × 2n qudit unitary transform can be readily implemented
using the Reck scheme [48,49]. We present below our method
using a 3-qubit quantum gate as an example. Specifically, the
method can be divided into three steps. (1) The quantum in-
formation of the three input qubits is converged to a single
particle, which can be achieved by two Merge operations. As
shown in Fig. 10(c), a ququart is obtained by a Merge(2,
2 → 4) operation acting on qubit 2 and qubit 1. Then a
Merge(2, 4 → 8) operation acts on qubit 3 and this ququart
to obtain a qudit (d � 8), which contains the quantum infor-
mation of the input three qubits. (2) The qudit is then sub-
jected to an 8 × 8 unitary transformation, which has the
same mathematical form as the matrix of the three-qubit quan-
tum gate expanded in the computational basis. (3) The quan-
tum information of this qudit is then distributed to three
particles, which can be achieved by two Split operations.
The eight-dimensional qudit is split by a Split(8 → 2,4) oper-
ation to get a qubit and a ququart, and this ququart is then split
by a Split(4 → 2,2) operation to finally get three qubits at the
output, thus completing the three-qubit quantum gate. For an
arbitrary n-qubit quantum gate, it is often simpler and more
resource-efficient to use our method than the traditional de-
composition of n-qubit quantum gates into CNOT gates
and single-qubit quantum gates, as long as n is not very large,
i.e., the 2n-dimensional qudit can be easily unitary-trans-
formed.
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