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Exploring high sensitivity on the measurement of angular rotations is an outstanding challenge in optics and
metrology. In this work, we employ the mn-order Hermite–Gaussian (HG) beam in the weak measurement
scheme with an angular rotation interaction, where the rotation information is taken by another HG mode state
completely after the post-selection. By taking a projective measurement on the final light beam, the precision of
angular rotation is improved by a factor of 2mn�m� n. For verification, we perform an optical experiment
where the minimum detectable angular rotation improves
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p

-fold with HG55 mode over that of HG11 mode,
and achieves a sub-microradian scale of the measurement precision. Our theoretical framework and experimental
results not only provide a more practical and convenient scheme for ultrasensitive measurement of angular ro-
tations but also contribute to a wide range of applications in quantum metrology. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.473699

1. INTRODUCTION

Measuring the angular rotations with high sensitivity has an
increasing interest recently, for its growing potential in a wide
range of optical science and applications. For example, precise
measurement of rotations plays a vital role in atom interferom-
eter gyroscopes [1], optical tweezers [2], rotational Doppler ef-
fect [3–5], and magnetic field measurements [6]. Traditionally,
the basic laser beam with Gaussian profile is incapable of taking
angular rotations because it is rotational symmetry [7].
Motivated by the studies of light endowed with orbital angular
momentum (OAM) [8], some related efforts are proposed to
increase the sensitivity of angular rotation’s measurement.
But it is worth noting that the pure OAM lights like Laguerre–
Gaussian (LG) beams are still rotational symmetry, and there-
fore quantum resources are involved for angular rotations
measurement in addition, such as quantum entanglement of
high OAM values [9] and N00N states in the OAM bases
[10,11]. Recently, D’Ambrosio et al. also proposed a scheme
on the rotation measurements with a microradian (μrad)-
scaling sensitivity by utilizing the classical entangled formalism
of OAM and polarization [12]. However, these schemes are
complicated to implement, for example, quantum resources
are usually difficult to generate [13,14] and fragile in noise
[15], and a customized q-plate is necessary for generating
OAM-polarization entangled formalism [12,16]. To explore

the more practical and simple protocol for precise measurement
of angular rotations, Magaña Loaiza et al. have reported a weak
value amplification scheme with experimental precision of
0.4° �≈7 mrad�, where the light beam with angular Gaussian
profile is employed [17].

Those previous works concentrated on the precision im-
provement via higher OAM values, but we find that the ulti-
mate precision on rotation measurement is decided by the
variance of OAM distribution instead of OAM value.
Therefore, we employ the Hermite–Gaussian (HG) pointer
to achieve an ultrahigh sensitivity on the measurement of an-
gular rotations because of its large OAM variances. Previously,
the n-order HG pointer was employed on the measurement of
spatial displacement [18,19], where the corresponding quan-
tum Cramér–Rao (QCR) bound [20] was improved linearly
with mode number n. In this work, we employ the mn-order
HG pointer in a rotational-coupling weak measurement
scheme. After the post-selection, the information of angular ro-
tation is taken by an HGmode state, which is orthogonal to the
initial pointer state. Then projecting the final light beam to the
state taking angular rotations, the quantum limit precision of
rotation measurement can be achieved, which is enhanced with
a factor of 2mn� m� n.

For demonstration, we set up an optical experiment to im-
plement the precision measurement of angular rotation.
Instead of the tomography of OAM distribution in Ref. [17],
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we demodulate the angular rotations from the projection inten-
sity directly, and the imaginary weak value is also not necessary.
The measurement precision in our experiment achieves
0.89 μrad with the 5 × 5-order HG beam. Our results shed
new light on the precise measurement of angular rotation
and have potential for optical metrology, remote sensing, bio-
logical imaging, and navigation systems [4,21,22].

2. THEORETICAL MODEL

A. Enhanced Quantum Limit via HG Pointer
To be clear, we first consider the general weak measurement
process with post-selection as depicted in Fig. 1. For simplicity,
we consider a two-level system with initial state jii and a
pointer with initial state jψ ii. They couple together during
the weak interaction procedure with an impulse Hamiltonian
Ĥ I � δ�t − t0�αÂ ⊗ Ω̂, where Ω̂ is a translation operator on
the pointer, and α is the corresponding interaction strength.
Here Â is a Pauli operator on the two-level system. In weak
measurement scheme, the interaction strength α ≪ 1, and then
the unitary evolution operator of weak interaction procedure
can be approximately calculated as Û � exp�−i R Ĥ Idt� ≈
1 − iαÂ ⊗ Ω̂. (Without loss of generality, we adopt units
making ℏ � 1 in this paper.)

To individually read out the measurement information
from the pointer, we post-select the system by state jf i and
turn the final state in whole to be jψ f ijf i, where jψ f i≈
N �1 − iαAwΩ̂�jψ ii is the pointer’s final state, and N �
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2αIm�Aw�hΩ̂ii � α2jAwj2hΩ̂2ii

q
is the normalized

factor with hΩ̂ii � hψ ijΩ̂jψ ii, hΩ̂2ii � hψ ijΩ̂2jψ ii. Aw is a
weak value calculated by Aw � hf jÂjii∕hf jii [23,24].

To analyze the estimating precision in our weak measure-
ment scenario, we employ the quantum Fisher information
(QFI) as a figure of merit [25,26]. The QFI of final pointer
state jψ f i about interaction strength parameter α can be
calculated as Q�α� ≈ 4jAwj2hΔΩ̂2ii, where hΔΩ̂2ii � hΩ̂2ii−
hΩ̂i2i . For N classical measured samples, the variance of esti-
mator α̂ satisfies the QCR inequality δα̂2 ≥ 1∕NQ�α�, which
leads to an uncertainty relation

δα̂2hΔΩ̂2ii ≥
1

4N jAwj2
: (1)

In this work, we apply the weak measurement scheme to the
measurement of angular rotation. Thus, the interaction
strength corresponds to the rotation angle of pointer, and
the translation operator Ω̂ � L̂z is the OAM operator.
Traditionally, the laser beam with a Gaussian profile is widely

used in weak measurement, and the corresponding spatial wave

function is ψG�x, y� � 1ffiffiffiffiffiffiffi
2πσ20

p exp
�
− x2�y2

4σ20

�
, where σ20 is the

spatial variance of the Gaussian beam. Obviously, hΔL̂2z iG � 0
because of the rotational symmetry of the Gaussian beam.
Thus, it is necessary to devise an appropriate pointer for rota-
tion measurement. In addition, as revealed from Eq. (1), in-
creasing the variance of the OAM of the pointer is
beneficial for higher precision on measuring angular rotations.

For this reason, we employ the mn-order HG beam as initial
pointer for the measurement of angular rotations, where m and
n are the transverse mode numbers of the x component and y
component, respectively. Though themn-order HG beam takes
zero-mean OAM [7], its variance of OAM distribution in-
creases quadratically with the mode numbers

hΔL̂2z imn � 2 mn� m� n, (2)

which are going to be derived from the following. Then the
quantum limit of rotation measurement with the mn-order
HG beam is given as

δα̂2 ≥
1

4N jAwj2�2 mn� m� n� , (3)

which is derived from the QCR inequality (1), and the ultimate
precision is improved quadratically with mode numbers m and
n. Besides the improvement on the quantum limit of rotation
measurement, employing HG beams also provides a more con-
venient way to implement the optimal measurement for
demodulating angular rotations in a practical system.

B. Operator Algebra of HG Beams
In detail, we can relate the HG beams to the harmonic oscil-
lators (HOs) here. The wave function of the HG beam is [27]

umn�x, y, z� � exp

�
ik�x2 � y2�

2q�z� − i�m� n� 1�χ�z�
�

×
σ0
σ�z�ψmn

�
σ0
σ�z� x,

σ0
σ�z� y

�
, (4)

where the three z-dependent parameters, spatial variance σ2,
Gouy phase χ, and radius of curvature of the wavefront q,
can be determined by equalities

1

2σ2�z� −
ik
q�z� �

k
b� iz

, tan χ�z� � z
b
, (5)

where k is the wavenumber and b is the Rayleigh range [28].
ψmn�x, y� in Eq. (4) is the 2D harmonic HG function

ψmn�x, y� �
Hm

�
xffiffi
2

p
σ0

�
Hn

�
yffiffi
2

p
σ0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�n�1πσ20m!n!

p exp

�
−
x2 � y2

4σ20

�
, (6)

where Hn is the n-order Hermite polynomial.
From the view of quantum mechanics, wave function

ψmn�x, y� is the time-independent solution for the
Schrödinger equation of 2D harmonic oscillators:

i
∂ψ
∂t

�
�
σ20�p̂2x � p̂2y � �

1

4σ20
�x̂2 � ŷ2�

�
ψ : (7)

For eigenvalue Emn � m� n� 1, the corresponding eigenket
can be obtained asFig. 1. Post-selected weak measurement scheme.
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jm, ni �
ZZ

dxdyψmn�x, y�jx, yi: (8)

Here, we denote the mn-order HG beam state as

jumn�z�i �
ZZ

dxdyumn�x, y�jx, yi: (9)

Obviously, jumn�0�i � jm, ni. We define the creation (annihi-
lation) operators for the HO state jm, ni:
â†x jm, ni �

ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p jm� 1, ni, âx jm, ni �
ffiffiffiffi
m

p jm − 1, ni,
(10)

â†y jm, ni �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p jm, n� 1i, âyjm, ni �
ffiffiffi
n

p jm, n − 1i:
(11)

HG beam states are z dependent, and their wave functions
are the solutions of the paraxial wave equation

−2ik
∂
∂z

u�x, y, z� �
�
∂2

∂x2
� ∂2

∂y2

�
u�x, y, z�, (12)

which can be rewritten as

d

dz
jun�z�i � −

i

2k
�p̂2x � p̂2y �jun�z�i: (13)

This equation has the formal solution jumn�z�i �
Û �z�jumn�0�i with the propagation operator

Û �z� � exp

�
−

i

2k
�p̂2x � p̂2y �z

�
: (14)

Thus, the z-dependent mode creation (annihilation) operators
can be derived by

âx�z� � Û �z�âxÛ †�z�, â†x�z� � Û �z�â†x Û †�z�, (15)

ây�z� � Û �z�âyÛ †�z�, â†y �z� � Û �z�â†y Û †�z�: (16)

Hence, the momentum and position operators can be obtained
by these z-dependent creation and annihilation operators:8>>><

>>>:

p̂x � − i
2σ0

�âx�z� − â†x�z��
x̂ � σ0�âx�z� � â†x�z�� � zσ0

ib �âx�z� − â†x�z��
p̂y � − i

2σ0
�ây�z� − â†y �z��

ŷ � σ0�ây�z� � â†y �z�� � zσ0
ib �ây�z� − â†y �z��

: (17)

Moreover, it is easy to determine that the momentum op-
erators p̂x � − i

2σ0
�âx − â†x� and p̂y � − i

2σ0
�ây − â†y � for 2DHO

states, which have the same expression as those of HG beam
states. In other words, the result of inflicting displacement on
themn-order HG beam state is the same as that of themn-order
HO state. Then we can derive the OAM operator L̂z by
Eq. (17):

L̂z � x̂p̂y − ŷp̂x � i�âx�z�â†y �z� − â†x�z�ây�z��: (18)

Obviously, the OAM variance of the mn-order HG beam
hΔL̂2z imn � 2mn� m� n is z independent, and the OAM op-
erator L̂z is also z independent because L̂z ≡ Û �z�L̂zÛ †�z�.
Thus, the mn-order HG beam state is equivalent to the
mn-order HO state in the scenario of rotation measurement.

C. Saturating Quantum Limit via Projective
Measurement
Taking the initial pointer state as jψ ii � jm, ni, then the final
pointer state can be calculated as

jψ f i ≈ jm, ni � Awα�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�n� 1�

p
jm − 1, n� 1i

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m� 1�n

p
jm� 1, n − 1i�, (19)

where the rotation parameters are carried by an HG mode
state

jψ L̂i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 mn� m� n
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�n� 1�

p
jm − 1, n� 1i

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m� 1�n

p
jm� 1, n − 1i�, (20)

which is a superposition state of pointer’s adjacent modes
jm − 1, n� 1i and jm� 1, n − 1i.

In a complete metrological process, a classical measurement
strategy is necessary for the final state to read out the unknown
parameters [29]. In this case, the final estimating precision of
angular rotation is evaluated by the classical Fisher information
(CFI):

F �α� �
X
λ

1

hψ f jΠ̂λjψ f i
� ∂
∂α

hψ f jΠ̂λjψ f i
�2

, (21)

where Π̂ � fΠ̂λjΠ̂ ≥ 0,
P

λ Π̂λ � Îg is a set of positive-
operator-valued measure (POVM). Then the practical preci-
sion of angular rotation is limited by the classical Cramér–Rao
(CCR) bound δα̂2 ≥ 1∕NF �α�. Basically, the CCR bound of a
single parameter is capable of saturating the quantum limit
given by QCR inequality via devising an optimal measurement
strategy [29]. For the measurement of angular rotation, the
tomography of OAM distributions Π̂OAM � fjlihl jjl ∈ Zg
was usually chosen as the optimal POVM traditionally [17],
where jli is the eigenket of the OAM operator. However,
the complete tomography theoretically requires infinite projec-
tive measurements on different eigenkets jli for final pointer. In
our scheme with an mn-order HG pointer, a single projection
for final pointer on the state jψ L̂i is capable of demodulating
the angular rotations, and the tomography of the OAM spec-
trum or HG mode spectrum is no longer required. Especially,
no matter how large the mode number of initial HG pointer is,
the optimal POVM on the final pointer is a single projective
measurement Π̂HG � fΠ̂L̂ � jψ L̂ihψ L̂j, Î − Π̂Lg. Then the
CFI of the rotation parameter can be calculated as F �α� �
4jAwj2�2mn� m� n�, which leads to the CCR bound
δα̂2 ≥ 1∕4N jAwj2�2mn� m� n� saturating the correspond-
ing QCR bound in Eq. (3). To visualize the dependency of
the theoretical precision limit on the mode numbers m and
n, we illustrate the CCR bound of parameter α with different
mode numbers under projective measurement method in
Fig. 2, where the measured number of photons is set as
N � 4.04 × 107 and the weak value is set as Aw �
cot 5° ≈ 11. Besides, we also plot the CCR bound at m � n
with the red line in Fig. 2, where the precision limit is improved
fastest, and the dependency of the sensitivity on the factor of
2mn� m� n is evident.
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3. EXPERIMENTAL SCHEME

A. Experimental Materials and Setup
To experimentally verify that the enhancement on rotation
measurement with an HG pointer, we setup a practical optical
system to implement it as shown in Fig. 3. A light beam from a
laser working at 780 nm is expanded and then converted to
mn-order HG mode via a spatial light modulator (SLM)
and a spatial filter system [30]. Here the beam’s polarization
states jH i and jV i are set as the basis of the two-level system.

We employ a Dove prism to introduce a pair of inverse weak
rotations α for the jH i and jV i components in a polarizing
Sagnac interferometer. The Pauli operator is denoted as
Â � jH ihH j − jV ihV j. In the post-selected weak measure-
ment scheme, pre-selection and post-selection states are nearly
orthogonal to amplify the estimated parameter [17,31–35].
Thus, we choose jii � 1ffiffi

2
p �jH i � jV i� and jf i �

cos�π4 − ε�jH i − sin�π4 − ε�jV i, where ε ≪ 1. Thus, the weak
value Aw � cot ε. Considering N measurement samples
(effective measured number of photons in the experiment),
the minimum detectable rotation α given by QCR bound is

αQCR
min � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 mn� m� n
p 1

2j cot εj ffiffiffiffiffi
N

p , (22)

which is significantly improved by the spatial mode numbers of
the HG beams.

The laser employed in this experiment is a distributed Bragg
reflector (DBR) single-frequency laser of Thorlabs Inc. (part
number: DBR780PN), which works at 780 nm with 1 MHz
typical linewidth. To generate the high-order HG beams, we
used an SLM of Hamamatsu Photonics (part number:
X13138-02), which has 1272 × 1024 pixels with 12.5 μm pixel
pitch. The focal length of the Fourier lens in the 4f system is
5 cm. A 200 μm square pinhole is used as the spatial filter.

In this work, we set up a polarized Sagnac interferometer to
introduce a pair of inverse rotation signals for horizontal and ver-
tical polarization states. However, the extinction ratio of the re-
flection port of the polarizing beam splitter (PBS) cube (part
number CCM1-PBS25-780/M of Thorlabs Inc.) is from 20:1
to 100:1 in practice, which deteriorates the degree of polarization
of the output beam. Hence, we added a polarizer behind the

Fig. 3. Diagram of the experimental setup. (a) The mn-order HG beam is converted from an expanded Gaussian beam of an 780 nm laser by an
SLM and a spatial filter system. The pre-selection is implemented by a Glan–Taylor polarizer (GTP) and an HWP. A polarized Sagnac interfer-
ometer is employed to implement the weak interaction procedure, where the inverse rotation signals are introduced by a Dove prism. Then a Soleil–
Babinet compensator (SBC), an HWP, and a GTP are used to implement the post-selection. Finally, another SLM with a Fourier transfer lens is used
to implement the projective measurement, where the successful projected photons are collected by an APD with an SMF. (b) Dove prism with PZT
chips and generation method of the rotation signal. There are four PZT chips pasted on the reflection side of the prism with a 2 × 2 array, where the
vertical distance of the PZT array is 10 mm.

Fig. 2. Lower bound of estimation variances δα̂2 with different
mode numbers under the projective measurement method. The mea-
sured photons number is set as N � 4.04 × 107, and the weak value is
set as Aw � cot 5° ≈ 11. The x axis and y axis are the mode numbers
of m and n, respectively, and the z axis is the estimation variance of
parameter α. The red line in this figure is the CCR bound at m � n,
where the precision limit is improved fastest.
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reflection port of the PBS to improve the degree of polarization.
A half-wave plate (HWP), whose optic axis is at 45° angle with
respect to the horizontal plane, was employed to exchange the
polarization states in the clockwise loop and counterclock-
wise loop.

In our experimental scheme, the Dove prism is driven by
piezoelectric transducer (PZT) chips, and we exert an
f � 1 kHz cosine driving signal on the PZT to generate
the tiny rotation signal. Here, we pasted four PZT chips on
the reflection side of the Dove prism as illustrated in Fig. 3(b).
The four PZT chips are arranged as a 2 × 2 array, and the ver-
tical distance of this array is 10 mm. Here we used the
NAC2013 PZT chip of the Core Tomorrow company, which
shifts 22 nm with 1 V driving voltage. We exert cosine signals
(with 1/2 amplitude DC bias) on the PZT chips, where a
π-phase difference is introduced between the top-row PZT
chips and bottom-row PZT chips. Therefore, a cosine driving
signal with 1 V peak-to-peak voltage corresponds to a 2.2 μrad
maximum rotation of the Dove prism, which leads to a 4.4 μrad
transverse rotation of the input light beam. Besides this cosine
driving signal, the initial rotation bias of the Dove prism, which
is denoted as α0 and on the milliradian (mrad) scale, is non-
negligible. Thus, the total rotation is αtot � α0 � α cos�2πf t�,
and it is easy to determine that α ≪ α0 ≪ 1.

After the post-selection, another SLM is employed to project
the final pointer to carrying state jψ L̂i with a Fourier transfer
lens and a spatial filter from single-mode fiber (SMF) coupling
detected photons to an avalanche photodiode (APD, part num-
ber: APD440A of Thorlabs Inc.), which has maximum conver-
sion gain of 2.65 × 109 V=W and 100 kHz bandwidth. Then
the detected voltage signal is analyzed by the spectrum analyzer
module of Moku:Lab, which is a reconfigurable hardware
platform produced by Liquid Instruments. The resolution
bandwidth (RWB) of spectrum analyzer was 9.168 Hz in
our experiment, which leads to the detecting time of
τ � 109.08 ms.

B. Experimental Results
In practice, before exerting the driving signal, we project the
final pointer to state jm, ni to fix the measured photons number
N for different HG pointers. In the experiment, the detected
power of the APD is fixed as I 0 � 94.34 pW at the beforehand
projection step. Theoretically, the detected optical power is
given as I 0 � γN∕τ, where γ is the energy of a single photon
at λ � 780 nm and the detecting time duration τ �
109.08 ms in our experiment. Thus, the effective measured
photons number is fixed asN � 4.04 × 107 in this experiment.

Then, exerting the driving signal on the PZT chips and pro-
jecting the final pointer to jψ L̂i, the detected photons number is

N α � jhψ L̂jΠ̂L̂jψ L̂ij2N � �2mn� m� n��cot ε�2α2totN
≈ �2mn� m� n��cot ε�2α20N

� 2�2mn� m� n��cot ε�2α0α cos�2πf t�N : (23)

Similarly, the detected power of the APD is

Iα ≈ �2mn� m� n��cot ε�2α20I 0
� 2�2mn� m� n��cot ε�2α0α cos�2πf t�I 0: (24)

Inputting the detected power signal of the APD into a
spectrum analyzer, the tiny rotation signal at f � 1 kHz is
demodulated as

I1 kHz
α � 2�2mn� m� n��cot ε�2α0αI 0: (25)

From Eq. (23), we can obtain the shot noise of APD as
δN α �

ffiffiffiffiffiffiffi
N α

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn� m� n

p j cot εjα0
ffiffiffiffiffi
N

p
, and the corre-

sponding shot-noise power is

δIα � γδN α∕τ ≈ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn� m� n

p j cot εjα0
ffiffiffiffiffi
N

p
∕τ: (26)

Thus, the detected peak signal-to-noise ratio of the spectrum
analyzer is

SNR � I1 kHz
α

δIα
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn� m� n

p j cot εj
ffiffiffiffiffi
N

p
α: (27)

When SNR � 1, the minimum detectable rotation signal can be
obtained as

α�m,n�min � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn� m� n

p 1

2j cot εj ffiffiffiffiffi
N

p : (28)

In practice, we detected the peak level from spectrum ana-
lyzer at 1 kHz to demodulate the amplitude of rotation signal.
Generally, the peak level consists of three parts: signal level,
shot-noise floor, and electrical-noise floor, which is denoted
as V p � V α � V sn � V en. Here, V α ∝ I �1kHz�

α is the signal
level, V sn ∝ δIα is the shot-noise level, and they vary with
the different HG modes. In our experiment, the electrical noise
level V en � 35.75 μV is a constant value in the experiment,
which was detected without inputting light on the APD.
The detected level of the total noise floor with a mn-order
HG beam is V �m,n�

noise � V �m,n�
sn � V en. Thus, the detected signal-

to-noise ratio with a mn-order HG beam in our scheme is
obtained as

SNR�m,n� � V �m,n�
α

V �m,n�
sn

� V �m,n�
p − V �m,n�

noise

V �m,n�
noise − V en

: (29)

To determine the detected noise levels, we illustrate the elec-
trical spectra of HG11 to HG66 modes at 500 Hz to 5 kHz
with driving voltage 5 V in Fig. 4.

Fig. 4. Detected electrical spectrum of HG11 to HG66 modes at
500 Hz to 5 kHz. The driving voltage of the PZT is 5 V, which cor-
responds to 22 μrad rotation signal. The first line is the spectrum of the
electrical-noise floor of the APD detector, which is detected without
input light on the APD.
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As is shown in Fig. 4, the electrical noise is V en �
35.75 μV, and the detected shot-noise level of the mn-order
HG beam can be calculated by V �m,n�

sn � V �m,n�
noise − V en. We list

the results in Table 1.
In Fig. 5, we illustrate the experimental results of detected

peak signal level and signal-to-noise ratio at 1 kHz with
1 × 1-order, 3 × 3-order, and 5 × 5-order HG modes. Finally,
a significant precision of 0.89 μrad is achieved with the
HG55 mode in this experiment. We list the experimental re-
sults of the driving voltages of the PZT at SNR � 1 and the
corresponding minimal detected rotation angles in Table 2. For
comparison, we also calculate the theoretical predictions of
minimal detectable rotations based on Eq. (28) with fixed de-
tected photon number N � 4.04 × 107 and post-selection an-
gle ε � 5°. Our experiment results are well consistent with the
theoretical predictions.

4. DISCUSSION

A. Technical Advantages of a Weak Value
In the theoretical frame, the post-selection is employed for indi-
vidually reading out the measurement parameters from the
pointer, and the precision enhancement comes from the mode
entanglement of the HG pointer, but not the weak values.
Thus, our main conclusion still holds in the post-selection-free
scheme. In the experimental scheme, we still employed the
weak value amplification technology, though the weak value
Aw � cot ε takes no enhancement for the theoretical mini-
mum detectable rotation in Eq. (28) because the detected num-
ber of photons N � jhf jiij2N 0 � sin2εN 0 is attenuated by
the post-selection, where N 0 is the number of photons before
post-selection. However, the weak value amplification technol-
ogy has been proved efficient for suppressing technical noises,
such as reflection of optical elements [35] and detector satura-
tion [36,37]. The detector saturation is non-negligible in our
experiment since the saturation power of our APD detector is
only 1.54 nW. Considering the projection demodulation of
SLM, only 10% of photons can be modulated on the first-order
diffraction, so the maximum efficient received power of our
detector is about 154 pW, which is easily saturated without
post-selection. For example, the efficient detected light power
in our experiment is I 0 � 94.34 pW, and the post-selection
angle ε � 5°. Therefore, for the post-selection-free scheme,
an I0∕sin2ε � 12.42 nW detected light power is needed to
achieve the same precision of the post-selected scheme,
which is far larger than the saturation power of the APD
detector.

Table 1. Experimental Results of Detected Noise Levels

HG mode HG11 HG22 HG33 HG44 HG55 HG66

Noise levela 41.43 μV 44.43 μV 49.39 μV 54.08 μV 57.27 μV 61.70 μV
Shot-noise level 5.68 μV 8.68 μV 13.64 μV 18.33 μV 21.52 μV 25.95 μV

aTotal detected noise levels in the APD.
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Fig. 5. Experimental results. (a) Detected peak signal level of the HG11, HG33, and HG55 modes at 1 kHz. (b) Detected signal-to-noise ratio of
the HG11, HG33, and HG55 modes. The driving voltage of the PZT increases from 0 to 2 V, which corresponds to 0–8.8 μrad rotation signal.

Table 2. Minimal Detectable Rotation Angles with
Different HG Modes

Theorya Experiment

HG Mode αth
min V PZT

b αexp
min

HG11 3.44 μrad 801 mV 3.52 μrad
HG33 1.40 μrad 321 mV 1.41 μrad
HG55 0.89 μrad 203 mV 0.89 μrad

aThese theoretical predictions are derived from Eq. (28) with fixed detected
photon number N � 4.04 × 107 and post-selection angle ε � 5°.

bThe driving voltages of PZT chips at SNR � 1.
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B. Rotation-Coupling Weak Measurement for
Hamiltonian Estimation
Though we only investigate the enhanced measurement on an-
gular rotation, the precision enhancement of employing HG
pointers can be applied in various missions in quantum physics.
The most obvious application of our scheme in quantum phys-
ics is the estimation of Hamiltonian [38,39]. In this case, we do
not only concentrate on the interaction strength parameter α
but we are also interested in the information of operator Â. For
a two-level system, the unknown operator can be represented
as Â � ~n · ~σ, where ~n � �sin θ cos ϕ, sin θ sin ϕ, cos θ� is
the direction vector of the measurement operator, and
~σ � �σ̂x , σ̂y, σ̂z�, where σ̂x , σ̂y, and σ̂z are Pauli matrices.
Thus, there are two unknown parameters θ and ϕ to be esti-
mated for identifying the operator Â. As we calculated in the
theoretical model, the final pointer’s state in our post-selected
scheme is jψ f i ≈N �1 − iαAwΩ̂�jψ ii. Then the QFI of param-
eter g ∈ �θ,ϕ� can be calculated asQ�g� ≈ 4α2j∂gAwj2hΔΩ̂2ii.
Combined with the QCR inequality δĝ2 ≥ 1∕NQ�g�, the es-
timation precision of parameter g ∈ �θ,ϕ� satisfies the uncer-
tainty relation

δĝ2hΔΩ̂2ii ≥
1

4Nα2j∂gAwj2
, (30)

where the quantum limits of Hamiltonian parameters are still
governed by the variance of the translation operator on the ini-
tial pointer. This means that our scheme has potential to be
applied in this scenario for improving the performance of
Hamiltonian estimation. For example, the initial pointers with
Gaussian profile are employed traditionally, and the two-level
system couples with the pointer via a displacement interaction
Ω̂ � p̂x . Then the variances hΔΩ̂2ii � hΔp̂2xiG � 1∕4σ0, and
the corresponding quantum limit on estimating Hamiltonian
parameters g ∈ �θ,ϕ� is given by

δĝ2 ≥
σ20

Nα2j∂gAwj2
: (31)

If we replace the Gaussian pointer by an mn-order HG pointer,
the quantum limit will be improved to

δĝ2 ≥
σ20

�2m� 1�Nα2j∂gAwj2
(32)

because the variance hΔp̂2ximn � �2m� 1�∕4σ0 increases lin-
early with the HG mode m in the corresponding displacement
direction. Further, replacing the displacement interaction by
rotational interaction, that is, Ω̂ � L̂z , there will be a signifi-
cant improvement in the precision limit on estimating
Hamiltonian parameters:

δĝ2 ≥
1

4�2 mn� m� n�Nα2j∂gAwj2
, (33)

which is quadratically improved by the HG mode numbers m
and n. Moreover, the enhancement factor 2mn� m� n is ana-
log to the Heisenberg scaling limit in quantum interference
[40] because the mode number m in the x direction and mode
number n in the y direction are independent for an HG beam
state or a 2D HO state. Thus, mode state jm, ni can be

regarded as an eigenket in the product Hilbert space
Hx ⊗ Hy, where Hx and Hy are the Hilbert spaces for the
mode state in the x direction and the mode state in the y di-
rection. Therefore, the OAM operator L̂z � i�âx â†y − â†x ây� in
this product Hilbert space Hx ⊗ Hy, which leads to the un-
known parameters �α, θ,ϕ� taken by the state jψ L̂i.
Moreover, it is obvious to note that the state jψ L̂i in
Eq. (20) is a mode-entangled state in the product Hilbert space
Hx ⊗ Hy.

C. Rotation-Coupling Weak Measurement for
Monitoring the Quantum Bit
Besides Hamiltonian estimation, our precision-enhanced
method also has the potential for monitoring the quantum
bit, which is a vital mission in quantum metrology [41].
Generally, the state of an arbitrary quantum bit (qubit) can
be represented as

jqubiti � cos
θ

2
j0i � eiϕ sin

θ

2
j1i, (34)

where θ and ϕ are the azimuthal angles on the Bloch sphere,
and j0i and j1i are the eigenkets of Pauli operator σ̂z. To avoid
apparent disturbance on the qubit, a series of continuous weak
measurements is adopted to monitor it [42].

As is illustrated in Fig. 6, an ancillary device (pointer) is em-
ployed to monitor the quantum system via a weak interaction
procedure, which is described by the von Neumann measure-
ment theory [23] via an impulse Hamiltonian (here we take the
monitoring of qubits on the basis of σ̂z , for example):

Ĥ I � δ�t − t0�ασ̂z ⊗ Ω̂, (35)

which leads to a composite unitary evolution
Û � exp�−i R Ĥ Idt� ≈ 1 − iασ̂z ⊗ Ω̂ of the quantum system
and pointer. After the weak interaction, the measurement in-
formation of the Pauli operator σ̂z on the qubit is transferred to
the pointer shift of the ancillas via a translation operator Ω̂, and
the final state of the whole system is

jΨf i � cos
θ

2
j0ijψ�i � eiϕ sin

θ

2
j1ijψ−i, (36)

where jψ�i � exp�−iαΩ̂�jψ ii and jψ−i � exp�iαΩ̂�jψ ii.
Unlike our post-selected weak measurement scheme, post-
selection of the qubit is forbidden. Thus, we should measure

Fig. 6. Schematic of monitoring quantum bits.
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the information about parameter θ from the final pointer state,
which is a mixed state:

ρ̂f � cos2
θ

2
jψ�ihψ�j � sin2

θ

2
jψ−ihψ−j, (37)

and then the corresponding QFI of parameter θ can be calcu-
lated asQ�θ� � 1 − �Rehψ�jψ−i�2 ≈ 4α2hΩ̂2ii, which leads to
the quantum limit on measuring parameter θ being
governed by the uncertainty relation (see Appendix B for
derivation)

δθ̂2hΩ̂2ii ≥
1

4α2N
, (38)

which means that the monitoring sensitivity is still dependent
on the devising of the pointer and coupling method. Applying
our mn-order HG pointer and rotation-coupling method to
this scheme, the quantum limit on monitoring the azimuthal
angle θ of the qubit is then derived as

δθ̂2 ≥
1

4α2�2mn� m� n�N , (39)

where the precision enhancement still holds.
Moreover, we express the HG beams via harmonic oscillator

model, which has been widely used in quantum computation
and metrology topics, such as superconducting qubits [43,44]
and optomechanics [45–47]. Thus, our theoretical model can
be applied in such scenarios naturally and can provide a signifi-
cant method in quantum metrology.

5. CONCLUSION

In summary, we have implemented a practical scheme for
measuring the tiny rotation by employing an mn-order HG
pointer in a post-selected weak measurement scheme, where
the precision limit is theoretically improved by a factor of
2mn� m� n. Experimentally, we demodulate the angular ro-
tation parameter via a single projective measurement, and pre-
cision up to 0.89 μrad is achieved with 5 × 5-order HG beams.
Moreover, we have found that the precision enhancement of
the rotation-coupling method with an HG pointer still holds
in a wide range of applications in quantum physics, such as
Hamiltonian estimation and monitoring qubits. Thus, our re-
sults constitute valuable resources not only for measurement
and control of light’s angular rotation in optical metrology
but also for sensitive estimating and control of evolution pro-
cedure in quantum physics.

APPENDIX A: DERIVATION OF QUANTUM
LIMITS IN A POST-SELECTED WEAK
MEASUREMENT SCHEME

In this section, we give the calculation details about the quan-
tum limits of weak interaction parameters α, θ, and ϕ in post-
selection weak measurement, where α is the weak interaction
strength and α ≪ 1, θ and ϕ are the Hamiltonian parameters
of the two-level system. In this case, the operator Â is given as
the generalized formalism Â � ~n · ~σ, ~σ � �σ̂x , σ̂y, σ̂z�,
where σ̂x , σ̂y, and σ̂z are the Pauli matrices. The weak inter-
action procedure described by an impulse Hamiltonian is

Ĥ I � δ�t − t0�αÂ ⊗ Ω̂, and then the evolution operator of
the weak interaction procedure can be calculated as

Û � exp�−iĤ Idt� � exp�−iαÂ ⊗ Ω̂�

� 1

2
�Î � ~n · ~σ� exp�−iαΩ̂� � 1

2
�Î − ~n · ~σ� exp�iαΩ̂�

≈ 1 − iα~n · ~σ ⊗ Ω̂: (A1)

The initial state of the whole system before weak interaction
can be denoted as jΨii � jψ iijii. Then the final state of the
whole system after weak interaction and post-selection can be
calculated as

jΨ̃f i � jf ihf jÛ jΨii ≈ jf ihf j�1 − iα~n · ~σ ⊗ Ω̂�jΨii
� �hf jii�1 − iMwΩ̂�jψ ii� ⊗ jf i: (A2)

Here we denote αAw � Mw for simplicity. Then the pointer’s
final state is expressed as jψ̃ f i � hf jii�1 − i

ℏMwΩ̂�jψ ii, which
can be normalized as

jψ f i � N �1 − iMwΩ̂�jψ ii, (A3)

where

N � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 Im�Mw�hΩ̂ii � jMwj2hΩ̂2ii

q (A4)

is the normalized factor.
For a parameterized state jψ�g�i, its corresponding QFI for

a single parameter g can be given by [26,29]

Q�g� � 4

�
∂hψ�g�j

∂g
∂jψ�g�i

∂g
−
∂hψ�g�j

∂g
jψ�g�ihψ�g�j ∂jψ�g�i

∂g

�
:

(A5)

Substituting jψ f i into Eq. (A5), the QFI of each measurement
parameter can be calculated as

Q�g� � 4N 2

�				 ∂Mw

∂g

				
2

hΩ̂2ii −N 2

�				 ∂Mw

∂g

				
2

hΩ̂i2i

� ImMw

				 ∂Mw

∂g

				
2

hΩ̂iihΩ̂2ii � jMwj2
				 ∂Mw

∂g

				
2

hΩ̂2i2i
��

≈ 4

				 ∂Mw

∂g

				
2

hΔΩ̂2ii, (A6)

where g ∈ �α, θ,ϕ�. Utilizing the quantum Cramér–Rao
(QCR) inequality δĝ2 ≥ 1∕NQ�g�, a coupling-parameter un-
certainty relation can be obtained as

δĝ2hΔΩ̂2ii ≥
1

4N
·

1

j∂gMwj2
: (A7)

Note that this result is derived under the approximate condi-
tion Mw ≪ 1.

Taking ~n � �sin θ cos ϕ, sin θ sin ϕ, cos θ�, we can
calculate
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8>>><
>>>:

∂Mw
∂α � σxw sin θ cos ϕ� σyw sin θ sin ϕ� σzw cos θ
∂Mw
∂θ � α�σxw cos θ cos ϕ� σyw cos θ sin ϕ − σzw sin θ�

∂Mw
∂ϕ � α�σyw sin θ cos ϕ − σxw sin θ sin ϕ�

,

(A8)

where σxw, σyw, and σzw are the corresponding weak values of
Pauli operators σ̂x , σ̂y, and σ̂z , respectively. Then, substituting
Eqs. (A6) and (A8) into the uncertainty relation in the
inequality (A7), the lower bounds for δα̂2, δθ̂2, and δϕ̂2 can
be calculated separately.

In this work, we investigate two types of pointer in the weak
measurement scheme, a Gaussian pointer and an HG pointer.
For the Gaussian pointer, the measurement parameters are
coupled to the pointer’s spatial displacement, which leads to a
constant QCR bound. For the HG pointer, its mode numbers
in the x direction and y direction are respectively m and n, and
the QCR bound is improved with pointer’s mode numbers m
and n. Moreover, the 2D HG pointer theoretically equals a
2D harmonic oscillator (HO), which has been proved in the
main text. Therefore, our results can be extended to any
HO-formalism pointer here. Coupling the measurement param-
eters to the pointer’s displacement (x direction), the QCR bound
is improved by factor 1∕�2m� 1�, which is enhanced linearly.
Coupling the measurement parameters to the pointer’s rotation,
the QCR bound is improved by factor 1∕�2mn� m� n�,
which is enhanced quadratically. Here we calculate these three
QCR bounds for parameters α, θ, and ϕ at α � 0.001,
θ � π∕4, and ϕ � 0, respectively. Without loss of generality,
we normalize the value of pointer’s spatial uncertainty σ to
1∕

ffiffiffi
2

p
and set the measured samples number N � 1. In

Fig. 7, we illustrate the results for α, θ, and ϕ by choosing
jii � jf i � 1ffiffi

2
p �j0i � ei

π
4j1i�, which equals a part measure-

ment of the pointer without post-selection. Here j0i and j1i
are the eigenkets of the Pauli operator σ̂z on the two-level system.

In practice, the post-selection state is usually nearly orthogo-
nal to the pre-selection state in a weak measurement scheme.
Here we also analyze the impact of the post-selection state’s
angle. The pre-selection state is still jii � 1ffiffi

2
p �j0i � ei

π
4j1i�,

and post-selection state is chosen as jf i � 1ffiffi
2

p �j0i−
ei�

π
4�ε�j1i�, where ε ≪ 1. To hold the approximate condition

Mw ≪ 1, we also require α∕ε ≪ 1; otherwise the quadratic
enhancement may vanish. In Fig. 8, we illustrate the QCR
bound of interaction strength α with HO pointer and rotation
coupling, and ε varies from 0.1 to 0.01. As is shown in Fig. 8,
when the post-selection angle ε is small enough to violate the
approximate condition Mw ≪ 1, the Heisenberg-like limit
would vanish. Thus, the condition Mw ≪ 1 should be strictly
fulfilled in our scheme.

APPENDIX B: DERIVATION OF QFI FOR
MONITORING QUBITS WITH A WEAK
MEASUREMENT SCHEME

As is elucidated in the main text, the ancillary pointer is
adopted to monitor the qubit via a weak interaction procedure
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Fig. 7. QCR bounds of the measurement parameters. (a) QCR bounds of parameter α. (b) QCR bounds of parameter θ. (c) QCR bounds of
parameter ϕ. The y axis is the variance of estimator ĝ, and the x axis is the mode numbers. Mode numbersm and n simultaneously increase from 0 to
25. The red dotted line is the QCR bound of the Gaussian pointer with displacement coupling. The blue line is the QCR bound of the HO pointer
with displacement coupling. The orange line is the QCR bound of the HO pointer with rotation coupling. Here the pre-selection state and post-
selection state are chosen as jii � jf i � 1ffiffi

2
p �j0i � ei

π
4j1i�, and values of all the parameters are α � 0.001, θ � π∕4, and ϕ � 0. In addition, the

value of σ0 is normalized to 1∕
ffiffiffi
2

p
.

Fig. 8. QCR bound of α about post-selection angle ε. This is the
QCR bound of α with a 2D HO pointer and rotation coupling. The x
axis is the mode numbersm and n, which simultaneously increase from
1 to 25. The pre-selection state is jii � 1ffiffi

2
p �j0i � ei

π
4j1i�, and the

post-selection state is jf i � 1ffiffi
2

p �j0i − ei�π4�ε�j1i�, where the angle ε

varies from 0.1 to 0.01. In addition, we plot three QCR bounds at
different values of ε. The green line is ε � 0.1, the red line is
ε � 0.05, and the yellow line is ε � 0.01.
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Û ≈ 1 − iασ̂z ⊗ Ω̂. Then the measurement information of the
Pauli operator σ̂z on the qubit is transferred to the pointer shift
of the ancillas via a translation operator Ω̂, and the final state of
the whole system is

jΨf i � cos
θ

2
j0ijψ�i � eiϕ sin

θ

2
j1ijψ−i, (B1)

where jψ�i � exp�−iαΩ̂�jψ ii and jψ−i � exp�iαΩ̂�jψ ii.
Taking a partial trace on the state jΨf i, the final pointer
can be calculated as a mixed state

ρ̂f � Trqubit�jΨf ihΨf j�

� cos2
θ

2
jψ�ihψ�j � sin2

θ

2
jψ−ihψ−i: (B2)

The QFI of parameter θ on state ρ̂f is given by

Q�θ� � Tr�ρ̂f L̂2θ�, (B3)

where L̂θ is the symmetric logarithmic derivative (SLD) for
parameter θ, and it is governed by the relation [29]

ρ̂f L̂θ � L̂θρ̂f � 2∂θρ̂f : (B4)

To calculate the QFI in Eq. (B3), we construct a set of ei-
genkets S � fje1i, je2i,…, jenig on the Hilbert space of state
ρ̂f , where n � dim�ρ̂f � is the dimension of this Hilbert space,
and the eigenkets je1i, je2i are constructed as

je1i � 1ffiffiffiffiffiffiffiffiffiffiffi
2�1�δ�

p �jψ�i � jψ−i�,
je2i � 1ffiffiffiffiffiffiffiffiffiffi

2�1−δ�
p �jψ�i − jψ−i�, (B5)

where δ � Rehψ�jψ−i � Rehψ ijei2αΩ̂jψ ii ≈ 1 − 2α2hΩ̂2ii.
Then the final pointer state can be rewritten as

ρ̂f � 1� δ

2
je1ihe1j �

1 − δ

2
je2i

× he2j �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p

2
cos θ�je1ihe2j � je2ihe1j�, (B6)

and its partial derivative of θ is

∂θρ̂f � −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p

2
sin θ�je1ihe2j � je2ihe1j�: (B7)

Combining with Eqs. (B4) and (B6), we have four equations
about the matrix entries of SLD L̂θ:

8>>>>><
>>>>>:

2he1j∂θρ̂f je1i � �1� δ�he1jL̂θje1i �
ffiffiffiffiffiffiffi
1−δ2

p
2 cos θ�he2jL̂θje1i � he1jL̂θje2i� � 0

2he2j∂θρ̂f je2i � �1 − δ�he2jL̂θje2i �
ffiffiffiffiffiffiffi
1−δ2

p
2 cos θ�he1jL̂θje2i � he2jL̂θje1i� � 0

2he1j∂θρ̂f je2i � he1jL̂θje2i �
ffiffiffiffiffiffiffi
1−δ2

p
2 cos θ�he2jL̂θje2i � he1jL̂θje1i� � −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
sin θ

2he2j∂θρ̂f je1i � he2jL̂θje1i �
ffiffiffiffiffiffiffi
1−δ2

p
2 cos θ�he1jL̂θje1i � he2jL̂θje2i� � −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
sin θ

, (B8)

from which we can calculate four matrix entries of SLD L̂θ:

he1jL̂θje1i � �1 − δ� cot θ,
he2jL̂θje2i � �1� δ� cot θ,
he1jL̂θje2i � he2jL̂θje1i � −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
csc θ: (B9)

The expression of QFI in Eq. (B3) can be calculated by

Q�θ� � Tr�ρ̂f L̂2θ� � Tr�L̂θ∂θρ̂f � �
X
jexi∈S

hex jL̂θ∂θρ̂f jexi

� −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p

2
sin θ�he2jL̂θje1i � he1jL̂θje2i�: (B10)

Combining with Eq. (B9), the QFI can be calculated finally as

Q�θ� � 1 − δ2 � 1 − �Rehψ�jψ−i�2 ≈ 4α2hΩ̂2ii, (B11)

where hΩ̂2ii � hψ ijΩ̂2jψ ii is the secondary moment of the
coupling operator Ω̂ on the initial pointer state.

APPENDIX C: GENERATION METHOD OF HG
BEAMS AND EXPERIMENTAL RESULTS

Traditionally, a mode cleaner cavity is necessary for generating
high-order HG beams [48,49]. However, a mode cleaner cavity
is usually difficult to set up and control in experiments. In this
work, we generate the high-order HG beams by an SLM and
4f spatial filter system [30], which is easier to implement in
experiments.

In this scheme, the light beam from a 780 nm DBR laser
was expanded to a 8.6-mm-width Gaussian beam by a fiber
coupler. The complex amplitude of expanded Gaussian beam
is denoted as Ain�x, y� exp�iϕin�x, y��. Then, inputting this light
into a SLM, where the phase map H �x, y� is displayed, the out-
put amplitude of the SLM can be denoted as

S�x, y� � Ain�x, y� exp�iϕin�x, y� � iH �x, y��: (C1)

Here we denote the relative phase as ϕr � ϕout − ϕin � ϕg ,
where ϕg is the grating phase, and the relative amplitude is
Ar � Aout∕Ain. To filter the target light, we let

H �x, y� � f �Ar� sin�ϕr�: (C2)

This is based on the Bessel expansion formula

exp�if �a� sin�ϕ�� �
X∞
−∞

Jq �f �a�� exp�iqϕ�, (C3)

where Jq�·� is the qth-order Bessel function. Thus, the ampli-
tude of the first-order diffraction beam is
Ain · J1�f �Ar�� exp�iϕout�. The mapping function f �·� can
be easily derived as

f �Ar� � J−11 �Ar�, (C4)

where J−11 �Ar� is the inverse function of the first-order Bessel
function.

By employing a 4f spatial filter system with an aperture at
the first-order diffraction point, we can generate any target
beam amplitude T �x, y� � Aout exp�iϕout� with the displayed
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phase map H �x, y� � J−11 �Ar� sin�ϕr� on the SLM. Here we
illustrate the experimentally generated results of HG00 to
HG66 beams and calculate the corresponding purity in the
above table (Table 3).

APPENDIX D: IMPLEMENTATION OF
PROJECTIVE MEASUREMENT

In our experimental scheme, the rotation signal was finally de-
tected by projective measurement [17]. Suppose that the input
light field on the SLM is g�x, y�, and the modulation light field
on the SLM is h�x, y� (the modulation method is same as the
generation method of HG beams). The input field and the
modulation field are simply combined as g�x, y�h�x, y� on
the SLM, and a Fourier lens transfers this field to

f �u, v� � F �g�x, y�h�x, y��

�
ZZ �∞

−∞
g�x, y�h�x, y� exp�−i2π�xu� yv��dxdy,

(D1)

which is spatially filtered by an SMF coupled to an APD, and
the coupling efficiency into the fiber is given as

η ∝
				
ZZ �∞

−∞
f �u, v� exp

�
u2 � v2

w2
f

�
dudv

				
2

, (D2)

where wf is the field width of the fiber mode. In our experi-
ment, wf � 4.6 μm, which is much smaller than the features
of f �u, v�. (The focal length of the Fourier lens is 10 cm, which
transfers the waist width of the 500 μm HG00 beam to
nearly 50 μm.) Therefore, we have

R R
f �u, v� exp��u2�

v2�∕w2
f �dudv ≈

R R
f �0,0� exp��u2 � v2�∕w2

f �dudv, which
leads to

η ∝ jf �0,0�j2 �
				
ZZ �∞

−∞
g�x, y�h�x, y�dxdy

				
2

� jhh�jgij2:

(D3)

From Eq. (D3), we know that the detected intensity of the
APD directly reflected the projective probability of state jgi on
state jh�i because the amplitude of the mn-order HG beam is
real, i.e., jumn�z�i � ju�mn�z�i. By modulating jψ L̂i on the
SLM, the detection probability of the APD is

P � jhψ L̂jψ f ij2 ≈ �2mn� m� n��cot ε�2α2: (D4)

In a practical system, the precision limit is given by the classical
Cramér–Rao (CCR) bound [39,50] δα̂2 ≥ 1∕NF �α�, where

F �α� � 1

P

�
∂P
∂α

�
2

� 1

1 − P

�
∂�1 − P�

∂α

�
2

≈ 4�2mn� m� n��cot ε�2 (D5)

is the classical Fisher information of our projection measure-
ment. Thus, the minimum practical detectable rotation α given
by the CCR bound is

αCCRmin � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 mn� m� n

p 1

2j cot εj ffiffiffiffiffi
N

p , (D6)

which determines that αCCRmin � αQCR
min . In other words, the sig-

nificant enhancement of measurement precision can be
achieved in a practical optical system without involving any
quantum resources.
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