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Topological rainbow trapping, which can separate and trap different frequencies of topological states into differ-
ent positions, plays a key role in topological photonic devices. However, few schemes have been proposed to
realize topological rainbow trapping effects in lossy photonic crystal systems, which has restricted their practical
applications, since loss is ubiquitous in nanophotonic devices. Here, we propose a method to realize a topological
rainbow based on non-Hermitian twisted piecing photonic crystals. Different frequencies of topological photonic
states are separated and trapped in different positions without overlap in the lossy photonic crystals. Moreover,
the frequencies of interface states can be modulated by loss, and a topological rainbow can also be achieved in both
TE and TMmodes. This work brings an effective method to realize robust nanophotonic multiwavelength devices
in non-Hermitian systems. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.470354

1. INTRODUCTION

Non-Hermitian systems have rich and interesting physics
[1–3], such as the non-Hermitian skin effect and the invalidity
of traditional bulk boundary correspondence [4–7], which have
aroused heated discussions. The introduction of topological
states provides a great way to design optical devices with robust-
ness [8–11]. So far, related works of topological state research
have focused mainly on Hermitian systems. However, the
understanding and development of topological physics in
non-Hermitian systems are vital because the actual system is
an open system. In photonics, using gain or loss to study non-
Hermitian systems is a convenient and general way. Gain media
are essential for topological lasers [12], whereas loss as an in-
herent property of most of materials is required to be sup-
pressed as much as possible in practice. How to deal with
loss is a challenge for developing non-Hermitian topological
devices. This work provides an alternative way to study non-
Hermitian photonic crystals (PCs) with loss, which is taken as
an effective controlling means to design topological nanopho-
tonic devices.

Rainbow trapping, which can disperse and trap light of dif-
ferent frequencies at different locations [13], offers a new and
attractive mean to design nanophotonic devices. There are tra-
ditional systems to realize rainbow trapping, such as metama-
terials [13,14], plasmonic waveguides [15,16], surface magneto
plasmons [17], nonlinear optics [18], and PCs [19]. Compared
to traditional systems, topological PCs are considered a robust

way to design rainbow devices [20–22]. Twisted photonic sys-
tems, which have abundant physics and potential application
values, have recently attracted wide attention [23–26].
Twisted PCs have nontrivial properties triggered by the twist-
ing degree of freedom [27], and have great potential to design
topological photonic devices. In photonics, twisted structures
are studied mainly to manipulate the propagation direction
of phonon polaritons on the nanoscale [28], and to create a
topological channel of light in coreless PC fibers [23,29].
However, to date, no effective schemes have been proposed
to achieve topological rainbow trapping based on twisted piec-
ing PCs, especially in non-Hermitian systems, which has re-
stricted the applications of topological optical devices in real
systems.

In this work, we propose an effective method to realize topo-
logical rainbow trapping based on non-Hermitian twisted piec-
ing PCs for the first time. Our structure is constructed by
piecing together two 2D all-dielectric PCs based on triangular
lattices with different twisted angles, which brings nontrivial
topology. The topological states with different frequencies can
be separated and trapped at different locations. Furthermore,
the frequencies of interface states can be tuned by the loss
of materials as a new degree of freedom of systems. The topo-
logical rainbow trapping effect can be realized for both TE and
TM modes, and the methods discussed here are free of crystal
restriction, as long as the PC has a bandgap that is easy to sat-
isfy, which can be generalized to other lattice types. Our
method will be applied to achieve robust nanophotonic
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wavelength routers, multichannel optical amplifiers, optical
storages, and optical buffers in non-Hermitian systems.

2. STRUCTURE AND THE CALCULATION OF
TOPOLOGICAL INVARIANT

The proposed non-Hermitian PC structure is based on a two-
dimensional PC comprising triangular lattices of air holes of
radius r � 0.48 × a embedded in a dielectric slab of n �
3.45� nI × i, as shown in Fig. 1(a). a �a � 420∕

ffiffiffi
3

p
nm�

is the lattice constant, and nI (nI � 0.5) represents the loss
of materials, which shows the non-Hermitian properties of
the systems. The calculated dispersion relations of TE modes
are shown in Fig. 1(b). It can be seen that there is a large pho-
tonic bandgap of normalized frequency [in normalized units of
(c∕a), c is the speed of light in vacuum] from 0.3830 to 0.5335.

The coordinate space is described by vectors x, y, as depicted
in Fig. 1(a). Lattice vectors a1, a2 are marked in Fig. 1(a). The
2D parametric space of the eigenstates can be built by Bloch
wave vectors k1, k2. In PCs, the inner product of the intrinsic
mode is defined by the expression [23]

hu�r�jv�r�i �
ZZ

unit cell

dr2u†�r� ·M �r� · v�r� (1)

where u, v are six-dimensional vectors �Ex ,Ey,Ez ,
Hx ,Hy,Hz�T , M is the tensor of permittivity and permeabil-

ity, and M �r� �
h εr�r� iξ�r�
−iξ�r� μr�r�

i
. The eigen state is a func-

tion of the electromagnetic field. If the medium does not have
electromagnetic coupling, only the integration of the electric
field or magnetic field is needed. The Berry connection
of a single unit cell in the electromagnetic wave can be
written as

An,k�k� �
i
RR

dr2En,k�r� · εr�r� · ∂kEn,k�r�RR
dr2En,k�r� · εr�r� · En,k�r�

� i
RR

dr2H n,k�r� · μr�r� · ∂kH n,k�r�RR
dr2H n,k�r� · μr�r� ·H n,k�r�

, (2)

where En,k�r� and H n,k�r� are the electric and magnetic fields
for the nth photonic band with wave vector k, respectively. It
should be noted that the integral value calculated only for the
magnetic field or electric field or both is different, but it does
not affect the final results of the Chern numbers [30], so it is
available using either the magnetic field or electric field.

The finite element method (FEM) is used to calculate the
electromagnetic field. The Brillouin zone (BZ) is discretized,
and the grid is small enough. Thus, the integral and derivative
are replaced by the summation and difference, which are easy for
numerical calculations. The Berry curvature is calculated on
each cell, and finally, the sum of all cells is calculated. For a fixed
k1, the Zak phase can be calculated in the following way:

Un�k2� �
hn�k2�jn�k2 � δk2�i
jhn�k2�jn�k2 � δk2�ij

(3)

θ�Zak�n,k1
� −Im

�
ln
�Y

hUn�k2�jUn�k2 � δk2�i
��

: (4)

In these equations, the eigenstates are described by the elec-
tric field. In the non-Hermitian case, the left eigenvector hnLj is
no longer the conjugate transpose of the right eigenvector jnRi,
and is calculated by hnLjH � EhnLj and H jnRi � E jnRi, re-
spectively. Although the phases for left and right eigenvectors
are different in non-Hermitian systems, the Wilson loop still
keeps the gauge invariant [31]. The same eigenvectors should
be chosen for states at the same locations. For example, if we
discretize the BZ into four plaquettes, by using hnLa jnRb i
hnRb jnLc ihnLc jnRd ihnRd jnLe i, hnRa jnLbihnLb jnRc ihnRc jnLd ihnLd jnRe i,
hnLa jnLbihnLb jnLc ihnLc jnLd ihnLd jnLe i, or hnRa jnRb ihnRb jnRc ihnRc jnRd i
hnRd jnRe i, the phase factors of the states in BZ cancel by multi-
plying twice, so each eigenstate has an arbitrary phase factor,
but it does not affect the calculated results. In the calculation
of Zak phase, we can use only the right eigenvector due to the
form of hnRa jnRb ihnRb jnRc ihnRc jnRd ihnRd jnRe i.

In Fig. 2(a), our proposed twisted piecing PC is formed by
joining the normal lattice and twisted lattice. We define ξ as a
displacement parameter in the a2 direction. For the twisted lat-
tice, it satisfies the relationship ξ∕ sin w � y∕ sin 120°. For a
fixed k1, the calculated Chern number that evolves with nI is
shown in Fig. 1(c). As the loss increases to a critical value,
the Chern number changes from one to zero, meaning that
the phase varies from topology to triviality. In the case of
nI � 0.5, as depicted in Fig. 1(d), when ξ changes by a lattice
constant, the Zak phase for each band will change by 2π and the
Chern number is one, which proves its topological properties.

3. TOPOLOGICAL RAINBOW TRAPPING AND
TUNABILITY

A. Topological Rainbow Trapping
The topological photonic interface can be formed by the splic-
ing trivial PC (undeformed lattice) and topological PC (twisted
lattice), as depicted in Fig. 2(a). The area of the structure is
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Fig. 1. (a) Schematic diagram of the proposed non-Hermitian 2D
PC geometry with a triangular lattice of air holes embedded in a di-
electric substrate. (b) Dispersion bands of 2D PC with a complete
photonic bandgap (gray stripe) at na � 1 and n � 3.45� nI × i
(nI � 0.5), where the inset shows the unit cell with high symmetry
points. (c) Chern number distribution as a function of nI , which shows
phase transition from topology to triviality with the increasement of
loss. (d) Zak phase evolution for nI � 0.5, and ξ is the displacement
parameter along the a2 direction.
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8
ffiffiffi
3

p
a × 15a. The red dot “o” is the origin of the y axis and

represents the center of rotation. The red point “y 0” depicts
the location where the air hole center intersects with the y axis
along the direction of the reverse extension line of a2. We in-
troduce parameter y to represent the distance between y 0 and o,
and w is the twisted angle. The solid black line illustrates the
interface between topological and trivial PCs. Interface states
will be constructed at the interface, and an interesting topologi-
cal rainbow phenomenon can be found, so the twisted piecing
PC provides a new degree of freedom to modulate the topo-
logical photonic states propagating along this interface.
Figure 2(c) shows jE j2 eigenmode field distributions of TE
mode at w � 13°. It is clear that different frequencies of topo-
logical photonic states are trapped into different positions along
the interfaces of structures to form the topological rainbow
trapping.

Group velocity can be further used to demonstrate the
physical mechanism of topological rainbow forming from the
perspective of the slow light effect. The group velocity of
the interface state can be calculated by numerical integration
according to the equation

vg �
∂ω
∂k

�
�
w�k�

���� ∂Ĥ∂k
����w�k�

�

�
ZZZ

�E �r� H �r�
�	

0 −n×

n× 0

�	
E�r�
H �r�

�
d3 r � n

·
ZZZ

�E �r� ×H �r� � c:c:�d3r: (5)

The electric field and magnetic field are calculated by the
FEM eigen solver provided by the software COMSOL
Multiphysics, and n is the unit vector along the interface
[21]. Figure 2(b) shows the distribution of group velocity of
the interface states as a function of frequencies and
translation parameter ξ. The color depth represents the magni-

tude of group velocity of the interface states. The dark regions are
without interface states, and the bright region is where the inter-
face states exist. The green dashed lines mark the boundaries of
the three regions, and are the zero group velocity lines where the
states will stop. In such a topological structure, the incident plane
wave at a certain frequency will be slowed down from propagat-
ing forward due to the decreasing-to-zero group velocity at this
spatial position, and the wave eventually approaches “stopping”
in principle between the domain walls, forming topologically
protected states. As depicted in Fig. 2(c), it is clear that electric
fields are highly concentrated at the interface (slow light state
with low group velocity) and transport forward with the varying
of the frequency. Therefore, the interface states of different
frequencies will be located at different positions, and topological
rainbow trapping can occur.

B. Topological Rainbow Tuned by Loss
Topological rainbow trapping can also be tuned by loss in the
non-Hermitian system. Evidently, the operating frequency
range of a rainbow depends on the frequency range of interface
states. The loss can influence the movement of bands by en-
gineering band dispersion, so the operating frequency of the
topological rainbow trapping in non-Hermitian systems can
be tuned by loss. Take a state with normalized frequency
0.5156c∕a for example; the interface state distributions with
different losses are shown in Fig. 3(a). The y coordinate rep-
resents the distance from the origin to the position of topologi-
cal states along the splicing interface, and the z axis shows the
electric field intensity. Different colors indicate different imagi-
nary parts of the refractive index of the medium, that is, differ-
ent losses are applied. It is clear that the interface states are
located at different positions with the variation of loss.
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Fig. 2. Topological rainbow effect at the interface of two kinds of
PCs with different topological properties in non-Hermitian system.
(a) Schematic diagram of the proposed 2D topological PC. The solid
black line illustrates the interface between trivial PC (normal lattice)
and topological PC (twisted lattice). (b) Map of the group velocity
distribution as a function of ξ and frequency. All dashed lines denote
zero group velocity. (c) Normalized electric field distributions of jE j2
along the y direction.
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Fig. 3. (a) Position and electric intensity distribution for the pho-
tonic state of frequency 0.5156c∕a, which is controlled by loss. Loss
can tune the operating frequency of interface states. (b) Normalized
electric field distributions of jE j2 of the certain state in (a) under
different losses.
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Predictably, the interface states of any frequencies located at the
splicing of the structure all satisfy this law. In a nutshell, the
interface state frequencies of rainbow devices can be tuned
by the loss of medium materials. The electric field distribution
with different losses is depicted in Fig. 3(b). The interface states
with the frequency of 0.5156c∕a are trapped in different loca-
tions tuned by different losses.

C. Topological Rainbow Trapping for TM Modes
The method of constructing the topological rainbow trapping
effect based on our proposed lossy PCs can also be used for the
TM mode. The calculated dispersion relations of TM and TE
modes are shown in Fig. 4(a), where the inset shows the super-
cell for calculations with high symmetry points, and blue and
orange solid lines represent the bulk states of TM and TE
modes, respectively. It can be seen that TE possesses a large
photonic bandgap and TM possesses a complete overlap with
the TE bandgap. By appropriately modifying the dielectric con-
stant or air hole radius, the complete bandgap can be enlarged.
Figure 4(b) shows jE j2 field distributions of TM mode at
w � 8°. Light with different frequencies will stop at different
spatial positions along the direction of propagation, and rain-
bow trapping occurs. Because our topological rainbow trapping
is based on the nontrivial topology induced by twisted defor-
mation, the conclusion can be easily generalized to other lattice
types and structures in TE or TM mode, as long as the com-
plete bandgap exists.

4. ROBUSTNESS VERIFICATION

To further demonstrate the robustness of the topological rain-
bow device, some disorders are introduced by changing the

positions and radii of the air holes around the interface of
our proposed structure. First, consider the case with fewer per-
turbations, as shown in Fig. 5(a). The holes marked by red ar-
rows have moved by the distance ofΔx � Δy � 0.1a, and they
are located at the unit cells near the interface. A little bit farther
away from the boundary, the circular hole has shrunk by
Δr � 0.2r, indicated with red arrows. At the same time, the
air hole is missing as indicated by white dotted circles. The elec-
tric intensity distributions in TE mode are shown in Fig. 5(b).
The frequencies of interface states are affected due to the dis-
orders, compared with Fig. 2(c), but the photonic states can
still be separated and trapped at different locations along the
interface. This further verifies the robustness of the designed
rainbow device.

Furthermore, we continuously increase perturbations to
probe the robust limitations of the structure. As shown in
Fig. 6(a), we keep the translations of holes at the same posi-
tions, and make the contraction and missing of the holes occur
closer to the boundary. The parameters Δx � Δy � 0.1a and
Δr � 0.2r remain unchanged. Clearly, this will have a larger
effect on the distribution of interface states. It can be seen from
Fig. 6(b) that under the effects of strong disorders, the locality
of interface states is damaged, such as 0.5101c∕a and
0.5182c∕a, and a part of light flows into the structure, which
reduces the electric intensity distribution jE j2 of interface states
by about 1 × 1018. In addition, the frequencies of these states
have also been changed by about 0.03c∕a. However, the
interface states at the ends of the structure along the y direc-
tion are almost unchanged because they are less affected by
perturbations.

In addition, we consider the overall variation of the radius of
circular holes due to the interferences of external conditions.
From Figs. 7(a)–7(c), the bulk bands of unit cells with radii
of r � 0.46a, r � 0.48a, and r � 0.5a are calculated, respec-
tively. With the increase of radius, the bands gradually move up

Fig. 4. (a) Dispersion bands of 2D non-Hermitian PC of triangular
lattice with a complete photonic bandgap (gray stripe). Blue and or-
ange solid lines represent TM and TE mode bulk states, respectively.
(b) Normalized electric field distributions of jE j2 of topological rain-
bow phenomenon in TM mode.
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Fig. 5. (a) Structure of proposed non-Hermitian 2D PC with fewer
disorders. (b) Normalized electric field distributions of jE j2 of topo-
logical rainbow phenomenon with fewer disorders in TE mode.
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and the gaps gradually get narrow. When the radius is small, the
wide bandgap provides more operational spaces for the design
and machining of topological rainbow devices. As the radius
gets larger, the bandgap becomes narrower, which is not

conducive to frequency division, and when a limit value is
reached, the rainbow effect disappears. Figures 7(d) and 7(e)
show field distributions in the cases of r � 0.46a and
r � 0.5a, respectively. Compared with the distributions of
states shown in Fig. 2(c) (r � 0.48a), it can be seen clearly that
the rainbow effect has lower frequencies and larger work regions
when the radius is 0.46a. When the radius is 0.5a, the frequen-
cies become higher and the intervals become narrower. In ad-
dition, the localization of the light becomes weaker, leading to
some discretization and a significant decrease in the electric
field strength. If the radius becomes larger, the implementation
of rainbow devices will be threatened.

To show the influence of rotated angles on the performance
of topological rainbow devices, we have calculated the electric
intensity distributions jE j2 of different interface states when
the rotated angle is 12°. Different rotated angles correspond
to different shifted distances of ξ for air holes in the a2 direc-
tion, and so correspond to different frequencies of interface
states as depicted in Fig. 2(b). However, the bandgap will
not be influenced, which means the rainbow effect will not
be affected. Figure 8(a) is the geometry structure, and the cal-
culated intensity distributions of the rainbow are shown in
Fig. 8(b). Compared with the original rainbow distributions
with a rotated angle of 13°, the frequencies of interface states
shift, but the spatially dispersed interface states still exist under
the change of rotated angles.

In summary, the robustness of our proposed topological
structures is not absolute. But when the perturbations added

Fig. 6. (a) Structure of proposed non-Hermitian 2D PC with bigger
disorders. (b) Normalized electric field distributions of jE j2 of topo-
logical rainbow effect with bigger disorders in TE mode, which are
affected by disturbances.

Fig. 7. (a) Calculated energy bands of unit cells for different radii, which show apparent changes of bandgaps. (b) Normalized electric field
distributions of jE j2 of topological rainbow phenomena in cases of r � 0.46a and r � 0.5a. The performances of rainbow devices are affected
by the increase of radius.
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Fig. 8. (a) Schematic diagram of the proposed 2D topological rainbow structure with different angles. (b) Normalized electric field distributions of
jE j2 along the y direction when the rotated angle is 12°.

2732 Vol. 10, No. 12 / December 2022 / Photonics Research Research Article



to the device are not serious, our structure has great robustness.
The pure dielectric material silicon is easy to process, so it has
excellent application prospects in the design of low loss and
anti-interference nanophotonic devices.

5. CONCLUSION

In conclusion, topological rainbow trapping based on twisted
piecing all-dielectric PCs in non-Hermitian systems has been
realized for the first time, where topological states with different
frequencies can be separated and trapped in different locations.
This work simulates real device conditions by studying non-
Hermitian PCs with loss, since the real world is composed
of open non-Hermitian systems. Loss is generally unfavorable
for photonic devices, but in this work, loss is taken as a new
degree of freedom to control the operating frequency, which is
an effective approach in non-Hermitian systems. Moreover, the
rainbow trapping effect can be achieved in both TE and TM
modes. The topological principle discussed here is free of sym-
metry restrictions, as long as a complete bandgap exists, so it
can be easily generalized to other lattice types. This work pro-
vides a method to design topological photonic devices with the
advantages of robustness in real systems, such as wavelength
routers, multichannel optical amplifiers, optical storages, and
optical buffers.

Funding. Beijing Institute of Technology Research Fund
Program for Teli Young Fellows; National Natural Science
Foundation of China (12274031).

Acknowledgment. Cuicui Lu acknowledges the helpful
discussions with Prof. Yong-Chun Liu in Tsinghua University.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented
in this paper may be obtained from the authors upon reason-
able request.

†These authors contributed equally to this paper.

REFERENCES
1. Y. Ashida, Z. Gong, and M. Ueda, “Non-Hermitian physics,” Adv.

Phys. 69, 249–435 (2021).
2. M. Wagner, F. Dangel, H. Cartarius, J. Main, and G. Wunner,

“Numerical calculation of the complex berry phase in non-Hermitian
systems,” arXiv:1708.03230 (2017).

3. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional topology of
non-Hermitian systems,” Rev. Mod. Phys. 93, 015005 (2021).

4. S. Yao and Z. Wang, “Edge states and topological invariants of non-
Hermitian systems,” Phys. Rev. Lett. 121, 086803 (2018).

5. Y. Xiong, “Why does bulk boundary correspondence fail in some
non-Hermitian topological models,” J. Phys. Commun. 2, 035043
(2018).

6. K. Zhang, Z. Yang, and C. Fang, “Correspondence between winding
numbers and skin modes in non-Hermitian systems,” Phys. Rev. Lett.
125, 126402 (2020).

7. Z. Yang, K. Zhang, C. Fang, and J. Hu, “Non-Hermitian bulk-boundary
correspondence and auxiliary generalized Brillouin zone theory,”
Phys. Rev. Lett. 125, 226402 (2020).

8. X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, and
J. W. Dong, “A silicon-on-insulator slab for topological valley trans-
port,” Nat. Commun. 10, 872 (2019).

9. Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, and Z. H.
Hang, “Visualization of a unidirectional electromagnetic waveguide
using topological photonic crystals made of dielectric materials,”
Phys. Rev. Lett. 120, 217401 (2018).

10. J. Ma, X. Xi, and X. Sun, “Topological photonic integrated circuits
based on valley kink states,” Laser Photon. Rev. 13, 1970049 (2019).

11. J. C. Budich and E. J. Bergholtz, “Non-Hermitian topological sensors,”
Phys. Rev. Lett. 125, 180403 (2020).

12. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N.
Christodoulides, and M. Khajavikhan, “Topological insulator laser: ex-
periments,” Science 359, eaar4005 (2018).

13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’
storage of light in metamaterials,” Nature 450, 397–401 (2007).

14. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyper-
bolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).

15. K. L. Tsakmakidis, T. W. Pickering, J. M. Hamm, A. F. Page, and O.
Hess, “Completely stopped and dispersionless light in plasmonic
waveguides,” Phys. Rev. Lett. 112, 167401 (2014).

16. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and
releasing by chirped plasmonic waveguides at visible frequencies,”
Appl. Phys. Lett. 97, 153115 (2010).

17. J. Xu, P. He, D. Feng, K. Yong, L. Hong, Y. Shen, and Y. Zhou, “Slow
wave and truly rainbow trapping in a one-way terahertz waveguide,”
Opt. Express 29, 11328–11341 (2021).

18. J. Li, G. Hu, L. Shi, N. He, D. Li, Q. Shang, Q. Zhang, H. Fu, L. Zhou,
W. Xiong, J. Guan, J. Wang, S. He, and L. Chen, “Full-color enhanced
second harmonic generation using rainbow trapping in ultrathin hyper-
bolic metamaterials,” Nat. Commun. 12, 6425 (2021).

19. Z. Hayran, H. Kurt, and K. Staliunas, “Rainbow trapping in a chirped
three-dimensional photonic crystal,” Sci. Rep. 7, 3046 (2017).

20. C. Lu, C. Wang, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Topological
rainbow concentrator based on synthetic dimension,” Phys. Rev. Lett.
126, 113902 (2021).

21. C. Lu, Y. Z. Sun, C. Wang, H. Zhang, W. Zhao, X. Hu, M. Xiao, W.
Ding, Y. C. Liu, and C. T. Chan, “On-chip nanophotonic topological
rainbow,” Nat. Commun. 13, 2586 (2022).

22. H. Zhang, L. Qian, C. Wang, C. Y. Ji, Y. Liu, J. Chen, and C. Lu,
“Topological rainbow based on graded topological photonic crystals,”
Opt. Lett. 46, 1237–1240 (2021).

23. G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q.
Zhang, Q. Bao, C. W. Qiu, and A. Alu, “Topological polaritons and
photonic magic angles in twisted alpha-MoO3 bilayers,” Nature 582,
209–213 (2020).

24. G. Hu, C.-W. Qiu, and A. Alù, “Twistronics for photons: opinion,” Opt.
Mater. Express 11, 1377–1382 (2021).

25. G. Hu, M. Wang, Y. Mazor, C.-W. Qiu, and A. Alù, “Tailoring light with
layered and moiré metasurfaces,” Trends Chem. 3, 342–358 (2021).

26. B. Lou, N. Zhao, M. Minkov, C. Guo, M. Orenstein, and S. Fan,
“Theory for twisted bilayer photonic crystal slabs,” Phys. Rev. Lett.
126, 136101 (2021).

27. J. Duan, N. Capote-Robayna, J. Taboada-Gutierrez, G. Alvarez-
Perez, I. Prieto, J. Martin-Sanchez, A. Y. Nikitin, and P. Alonso-
Gonzalez, “Twisted nano-optics: manipulating light at the nanoscale
with twisted phonon polaritonic slabs,” Nano Lett. 20, 5323–5329
(2020).

28. X. Zhou, Z. K. Lin, W. Lu, Y. Lai, B. Hou, and J. H. Jiang, “Twisted
quadrupole topological photonic crystals,” Laser Photon. Rev. 14,
2070046 (2020).

29. R. Beravat, G. K. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell,
“Twist-induced guidance in coreless photonic crystal fiber: a helical
channel for light,” Sci. Adv. 2, e1601421 (2016).

30. H.-X. Wang, G.-Y. Guo, and J.-H. Jiang, “Band topology in classical
waves: Wilson-loop approach to topological numbers and fragile top-
ology,” New J. Phys. 21, 093029 (2019).

31. M. L. N. Chen, L. J. Jiang, S. Zhang, R. Zhao, Z. Lan, andW. E. I. Sha,
“Comparative study of Hermitian and non-Hermitian topological di-
electric photonic crystals,” Phys. Rev. A 104, 033501 (2021).

Research Article Vol. 10, No. 12 / December 2022 / Photonics Research 2733

https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1038/s41467-019-08881-z
https://doi.org/10.1103/PhysRevLett.120.217401
https://doi.org/10.1002/lpor.201970049
https://doi.org/10.1103/PhysRevLett.125.180403
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1038/nature06285
https://doi.org/10.1038/srep01249
https://doi.org/10.1103/PhysRevLett.112.167401
https://doi.org/10.1063/1.3502487
https://doi.org/10.1364/OE.422274
https://doi.org/10.1038/s41467-021-26818-3
https://doi.org/10.1038/s41598-017-03454-w
https://doi.org/10.1103/PhysRevLett.126.113902
https://doi.org/10.1103/PhysRevLett.126.113902
https://doi.org/10.1038/s41467-022-30276-w
https://doi.org/10.1364/OL.419271
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1364/OME.423521
https://doi.org/10.1364/OME.423521
https://doi.org/10.1016/j.trechm.2021.02.004
https://doi.org/10.1103/PhysRevLett.126.136101
https://doi.org/10.1103/PhysRevLett.126.136101
https://doi.org/10.1021/acs.nanolett.0c01673
https://doi.org/10.1021/acs.nanolett.0c01673
https://doi.org/10.1002/lpor.202070046
https://doi.org/10.1002/lpor.202070046
https://doi.org/10.1126/sciadv.1601421
https://doi.org/10.1088/1367-2630/ab3f71
https://doi.org/10.1103/PhysRevA.104.033501

	XML ID funding

