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Three-dimensional programmable transport of micro/nano-particles can be straightforwardly achieved by using
optical forces arising from intensity and phase gradients of a structured laser beam. Repulsor and tractor beams
based on such forces and shaped in the form of a curved trajectory allow for downstream and upstream (against
light propagation) transportation of particles along the beams, respectively. By using both types of beams, bidi-
rectional transport has been demonstrated on the example of a circular helix beam just by tuning its phase gra-
dient. Specifically, the transport of a single particle along a loop of the helix has been reported. However, the
design and generation of helix-shaped beams is a complex problem that has not been completely addressed, which
makes their practical application challenging. Moreover, there is no evidence of simultaneous transport of multi-
ple particles along the helix trajectory, which is a crucial requisite in practice. Here, we address these challenges by
introducing a theoretical background for designing helix beams of any axial extension, shape, and phase gradient
that takes into account the experimental limitations of the optical system required for their generation. We have
found that only certain phase gradients prescribed along the helix beam are possible. Based on these findings, we
have experimentally demonstrated, for the first time, helix-shaped repulsor and tractor beams enabling program-
mable bidirectional optical transport of particles en masse. This is direct evidence of the essential functional
robustness of helix beams arising from their self-reconstructing character. These achievements provide new in-
sight into the behavior of helix-shaped beams, and the proven technique makes their implementation easier for
optical transport of particles as well as for other light–matter interaction applications. ©2022Chinese Laser Press

https://doi.org/10.1364/PRJ.468060

1. INTRODUCTION

Optical manipulation such as optical cooling, trapping, bind-
ing, and transporting of particles, has experienced intense de-
velopment in the past three decades [1–6]. In the last decade,
increasing attention has been devoted to mastering new tech-
niques for optical transport and delivery of micro-objects even
against the light propagation direction. Optical tractor beams,
conceptually proposed in 2011 [7,8] and experimentally dem-
onstrated in multiple works [9–16], offer the ability to pull par-
ticles against light propagation, which is interesting for optical
transport. The reported optical tractor beams are based on dif-
ferent mechanisms to exert the required optical pulling force
over the illuminated object, and most of them have relied
on fine-tuning of the object material properties [12,15].

The so-called optical solenoid mode allows for the creation
of a repulsor and tractor beam in the form of a helix as exper-
imentally demonstrated in 2010 [9]. It can exert both pushing
or pulling optical forces over the illuminated object which are

responsible for downstream or upstream transport of the object
along the solenoid [9], respectively. This has been achieved
by an appropriately designed phase gradient [17] along the
solenoid beam that redirects part of the light radiation pressure
to create the required pushing or pulling optical force [18].
Note that the required retrograde (pulling) force arises when
the illuminated particle scatters the wave’s momentum density
downstream into the direction of light propagation and then it
recoils upstream by conservation of momentum [18]. The
phase-gradient-based mechanism allows switching between the
repulsor and tractor beam just by reversing the phase gradient;
thus, it enables a bidirectional optical transport along the
solenoid beam [9]. This pioneering and visionary study did
not receive the attention it merited. The only experimental
demonstration of a solenoid tractor beam, applied for transport
of a single dielectric micro-particle (silica sphere of 1.5 μm in
diameter) along a part of the circular helix turn, has been re-
ported in Ref. [9]. However, it remains unclear whether the
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solenoid beam can simultaneously transport multiple particles
or be not along multiple loops of the helix, which in turn is a
crucial requisite for practical optical transport applications.

Non-diffracting beams [19,20] are promising for generating
tractor beams because they can maintain both intensity and
shape in the propagation direction, which is essential for
long-range particle transportation. The solenoid beam belongs
to the family of the non-diffracting rotating beams [19,20];
therefore, it would provide long-range transportation.
However, it corresponds to the ideal solution of a helix beam
of infinite axial extension, which is not physically realizable.
Other proposed tractor beams [7,8,10–16] are also limited
by the axial extension of the beam.

Here, we get back to the important problem of the design
and creation of phase-gradient-based repulsor and tractor helix-
shaped beams suited for bidirectional optical transport of multi-
ple particles along a three-dimensional (3D) trajectory. Our
approach is based on the so-called polymorphic beam, which
is a kind of structured laser beam whose intensity and phase
gradient forces can be independently prescribed along an arbi-
trary 3D trajectory to drive the optical transport of particles
along it; see, for example, Refs. [21–23].

The goal of this work is twofold: first, to present and clarify
crucial aspects of the theory required for the design and correct
experimental generation of helix-shaped repulsor and tractor
beams displaying discrete propagation invariance and, second,
to experimentally study the optical transport of particles driven
by helix beams of different geometry. We report the first ex-
perimental evidence of simultaneous transport of multiple par-
ticles along multiple loops of the helix beam, which underlines
its inherent structural robustness in the presence of multiple
particles. This robustness of the helix-shaped beams allows
us to study the bidirectional 3D optical transport of particles
en masse along the same helix as an exploring test previous to
future applications.

The work is organized as follows. Section 2 introduces the
theoretical background and establishes the design rules of helix
beams with infinite axial extension, underlying the crucial role
played by the resonance-like selection of the phase gradient that
governs the helix beam creation, and Section 3 is devoted to
physically realizable helix beams with finite axial extension. The
analytical expressions that describe the design of such a finite
helix beam as well as predict its axial extension are presented.
The reduced axial extension is due to the limitations of the
optical system required for the experimental generation of
the helix beam. Section 4 presents an analysis of the experi-
mental results that demonstrate the performance of the consid-
ered helix-shaped beams for simultaneous optical transport of
multiple dielectric nanoparticles (NPs, silica sphere of 500 nm
in diameter). The work ends with concluding remarks and
discussions.

2. THEORETICAL BACKGROUND

A. Polymorphic Beam
Let us first briefly revise a direct method for 3D laser curve
generation based on the polymorphic beam approach. A coher-
ent polymorphic laser beam [21–23] can be transformed
around the focal plane (e.g., at z � 0) of an objective lens into

a 3D light curve represented by c�t� � �R�t�,Z �t��, with
R�t� � �R�t� cos t,R�t� sin t�. Its intensity and phase distri-
butions can be independently controlled along the curve
[21,22,24]. Specifically, the angular spectrum A0�k⊥, z� of a
polymorphic beam at z � 0 is defined as follows:

A0�k⊥, 0� �
Z

∞

−∞
g�t� exp�−iZ �t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q
� exp�ik⊥R�t��dt:

(1)

Here, k � 2π∕λ is the wavenumber with wavelength λ in the
mounting medium where the laser beam is focused, and
k⊥ � �kx , ky� is the projection of the wave vector k on the
transverse plane (perpendicular to the optical axis). The expres-
sion Eq. (1) is reduced to the paraxial form reported in
Refs. [21–24]. Here, g�t� is a complex-valued weight that plays
an important role in the design of the complex amplitude of the
laser curve described by c�t�. Specifically, the modulus jg�t�j (in
units Vm) defines the intensity distribution along the curve and
its length. For instance, the intensity distribution is uniform
along the curve if jg�t�j ∝ jc 0�t�j, where c 0�t� � dc�t�∕dt �
�R 0�t�,Z 0�t��. The length of the curve can be reduced by using
jg�t�j → jg�t�jrect�t∕T �, where the parameter T stands for the
maximum value of the polar angle (e.g., t) parametrizing the
curve. The phase along the curve is given by Ψ�t� � arg�g�t��,
and it can be defined as Ψ�t� � 2πL · S�t�∕S�T �. Therefore,
the phase distribution is uniform along the curve when
S�t� � R

t
0 jc 0�τ�jdτ. The term 2πL is the phase accumulation

along the curve with L being a real number [25]. Further in-
formation about the phase design along the curve has been
reported in Ref. [22].

Since the expression Eq. (1) corresponds to the angular spec-
trum of the polymorphic beam at the focal plane of the objec-
tive lens (corresponding to the position z � 0), one can write
the angular spectrum for any value of z as [26]

A0�k⊥, z� � A0�k⊥, 0� exp
�
iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �
, (2)

as well as for the corresponding complex field amplitude in the
focusing region where the light curve is created:

E�r, z� � 1

4π2

Z
k

−k
A0�k⊥, 0� exp

�
iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �
exp�−irk⊥�dk⊥:

(3)

Thus, there is a direct relation between the Eq. (1) and the
field amplitude projected on the back focal plane of the Fourier
transforming lens applied to create the light curve. Further,
only the transmitted wave (k2 > k2⊥) will be considered.

In the case of curves with rotational symmetry, it is often
useful to rewrite Eqs. (1) and (3) in cylindrical coordinates
k⊥ � �k⊥,ϕ� and r � �r, θ� as follows:

A0�k⊥,ϕ;0��
X∞
n�−∞

in exp�inϕ�
Z

∞

−∞
g�t�exp

h
−iZ �t�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −k2⊥

q i
× Jn�k⊥R�t��exp�−int�dt, (4)

E�r, θ, z� � 1

4π2

Z
k

0

Z
2π

0

k⊥A0�k⊥,ϕ; 0� exp
�
iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �
× exp�−irk⊥ cos�ϕ − θ��dk⊥dϕ, (5)
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where the indices n are integer numbers. The considered ex-
pressions can be applied for arbitrary curves. Here, we are in-
terested in helices for the generation of helix-shaped beams
working as repulsor or tractor beams. The design and main
properties of such beams are considered in the next sections.

B. Circular Helix Beam with Uniform Intensity and
Phase Distributions
Let us first consider a circular helix of constant radius R, cur-
vature, and torsion. It is described in Cartesian coordinates as
c�t� � �R cos t,R sin t, tγ�, with 2πjγj being the helix pitch
(height of one complete helix loop). Note that the sign of
γ � R tan β (where β is the helix slope angle) defines the chi-
rality of the helix. It is right-handed (counter-clockwise rota-
tion) when γ > 0 and left-handed (clockwise rotation) for
γ < 0. For the case of a circular helix, the expression jc 0�t�j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � γ2
p

holds, and a uniform intensity and phase distribu-
tions are prescribed along it by using g�t� � g0 exp�il t�, where
2πl is the phase accumulation over a complete helix loop. Thus,
the phase of the helix beam can be tuned by means of the wind-
ing number l. By introducing g�t� � g0 exp�il t� in Eq. (4), the
following expression for the angular spectrum of a circular helix
beam is obtained:

A0�k⊥,ϕ, 0�

� g0
X∞
n�−∞

inJn�k⊥R� exp�inϕ�

×
Z

∞

−∞
exp�i�l − n�t� exp

�
−itγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �
dt

� 2πg0
X∞
n�−∞

inJn�k⊥R� exp�inϕ�δ
�
l − n − γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �

� 2πg0
γ2

X
n∈Ω

in
jl − nj
k⊥n

Jn�k⊥nnR� exp�inϕ�δ�k⊥ − k⊥n�, (6)

where Ω is a set of the allowed Bessel mode with indices n de-
fined further and

k⊥n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

�l − n�2
γ2

s
: (7)

It is not surprising that the expression Eq. (6) is a
combination of concentric Montgomery rings [defined by
δ�k⊥ − k⊥n�], which describe the angular spectrum of rotating
[27] and more general self-imaging beams [28]. The circular
helix is a particular case of the family of rotating beams [27]
whose complex field amplitude satisfies the condition
E rot�r, θ� kγ, z � 2πγ� � exp�iζ�r, θ, γ��E rot�r, θ, z�, where
ζ�r, θ, γ� is an arbitrary real function whereas γ also defines
both the direction of rotation and the value of the longitudinal
period of the field. It is a set of concentric rings whose ampli-
tudes and radii k⊥n define the shape of the rotating beam [27].
In particular, the radius R of the circular helix beam is deter-
mined only by the complex-valued amplitudes of Montgomery
rings of radii k⊥n given by Eq. (7).

The set Ω of Bessel mode indices applied in Eq. (6) is de-
fined by the conditions k2 ≥ �l − n�2∕γ2 and kz � �l − n�∕
γ > 0. Therefore, this set depends on wavenumber k, winding

number l, and helix pitch 2πjγj. For positive γ (right-handed
helix), the set Ω is settled as

γ > 0, l − γk < n < l : (8)

One can observe that when the value of the index n increases
then k⊥n decreases. However, when jnj increases, k⊥n decreases;
therefore, the radius of the Montgomery ring decreases for
positive l (repulsor beam), while k⊥n increases for negative l
(tractor beam). Correspondingly, for negative γ (left-handed
helix), the set Ω is written as

γ < 0, l < n < l − γk: (9)

In this case, when n increases, then k⊥n increases. Note that
when jnj increases k⊥n increases for positive l (tractor beam)
and decreases for negative l (repulsor beam). Thus, one can
see that for a given value of l the Montgomery rings with
the largest radius always correspond to the largest allowed index
jnj for the tractor beam and the smallest index jnj for the re-
pulsor one. This fact is important for the experimental imple-
mentation of the helix beam (Section 3) due to the limited
aperture of the optical setup. Note that in the case of the tractor
beam the Bessel mode indices n have always the same sign as γ,
whereas for the repulsor beam the indices n can have the same,
opposite, or even mixed signs depending on the value of l (see
Appendix A).

Let us recall that the Fourier transform of in exp�inϕ� ·
δ�k⊥ − k⊥n�∕k⊥ is a helical Bessel mode Hn�k⊥nr,ϕ� �
Jn�k⊥nr� exp�inϕ� [29]. Then the circular helix beam is the
superposition of certain helical Bessel modes. According to
Eq. (2), the evolution of a helical Bessel mode during
propagation is described as Hn�k⊥nr,ϕ� exp�iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

p
� �

Hn�k⊥nr,ϕ� exp�iz�l − n�∕γ�. Thus, one obtains the following
expression for the infinite (ideal) circular helix beam:

E�r, θ, z� � g0
γ2

exp
�
iz
l
γ

�X
n∈Ω

jl − njJn�k⊥nR�Jn�k⊥nr�

× exp
h
in
�
θ −

z
γ

�i
, (10)

around the focal plane (at z � 0) of the Fourier transforming
lens, where the indices n satisfy Eq. (8) or Eq. (9) for right- or
left-handed helices, respectively. Note that the same expression
Eq. (10) has been also found in Ref. [9] to describe the solenoid
beam.

However, the expressions Eqs. (8)–(10) are necessary but
not sufficient conditions for the creation of a helix-shaped light
curve. Let us analyze these equations and identify their impor-
tant limitations. One can see that the phase accumulation is 2πl
along a helix pitch 2πjγj, as it has been prescribed. Moreover,
the phase gradient ∇Ψjr�R of the beam E�R, θ, z� projected
onto the helix is given by kt � ut l∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
, where ut is

a unit vector tangent to the helix, and it is defined in
Cartesian coordinates as

ut �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � γ2
p �−R sin θux � R cos θuy � γuz�: (11)

Indeed, the gradient of the phase Ψn � �l − n�z∕γ � nθ of
any Bessel mode (of the set Ω) evaluated at r � R is written as
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∇Ψnjr�R � −
n
R

sin θux �
n
R

cos θuy �
�l − n�

γ
uz : (12)

Thus, all the Bessel modes of the set Ω have the same phase
gradient projection given by ξt � ut∇ΨnjR � l∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
, at

any point with radial coordinate r � R. In Fig. 1, the projec-
tions of the wave vector kn of one of the modes (n ∈ Ω) com-
prising the helix beam are shown. For both repulsor and tractor
beams [see Figs. 1(a) and 1(b)], the wave vector component
kn,z is always pointing into the light propagation direction
(i.e., along the z axis), and the component kt is pointing in the
same and opposite direction to the tangent vector ut for repul-
sor and tractor, respectively. Because the value of jkt j � kt has
to be less than k, there exists a limitation for the maximum
value of the winding number: jl j < jlmaxj � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
.

Moreover, this limitation is even more restrictive for tractor

helix beams: jl j < jlmaxj � kR. Indeed, since kz > 0, then
kt < k⊥ � kR∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
and, therefore, jl j < kR for tractor

helix beams.
In addition, only certain values of the winding number l

allow the creation of a helix beam with the prescribed radius
R, helix pitch 2πjγj, and wavenumber k. This important con-
straint for the winding number arises from the behavior of both
the Bessel modes Jn�k⊥nr� and their weights w�n ∈ Ω, l , γ� �
jn − l jJn�k⊥nR� exp�inθ� describing the beam Eq. (10).
Specifically, a helix beam can be only created when the con-
structive interference of the modes w�n ∈ Ω, l , γ�Jn�k⊥nr�
yields the maximum of the intensity distribution jEl �r, θ, z�j2
at the point �r � R, θ � z∕γ, z�. This is only possible for
certain values l � l res, which in this context will be further
referred to as resonant winding numbers. Let us recall that
the function k⊥n also depends on the winding number l

(a)

(d)

(e)

(b) (c)

Fig. 1. Wave vector kn of one of the Bessel modes comprising a (a) repulsor and (b) tractor helix beam and its components k⊥n, kz,n, and kt are
indicated along one helix loop. The phase gradient projection kt � ut l∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
on the helix does not depend on n, and it has the opposite

direction for repulsor and tractor beams. (c) The intensity distributions jEl �x, y; 0�j2 of the repulsor and tractor helix beams corresponding to
R � 4 μm and pitch of 4.4 μm (γ > 0) are displayed for several values of the resonant winding numbers l � l res as an example. The normalized
intensity profilesW �l , x� of the beam Eq. (10), resulting from the resonance search algorithm, are displayed in (d) for the repulsor mode and (e) for
the tractor one.
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[see Eq. (7)], and then it also plays a role in the resonance
through the function Jn�k⊥nr�. Let us underline that a helix
beam might be created with at least two Bessel modes; thus,
kjγj ≥ 2, which means that the helix pitch has to be larger than
2λ. Note that in the case of a solenoid beam (circular helix)
comprising the superposition of only two Bessel modes the
value of l can be found by using the optimized interference
condition proposed in Ref. [18].

To find the resonant values l res, the following resonance
search algorithm can be applied. This algorithm consists of
the analysis of the intensity distribution jEl �r, θ, z�j2 for only
one transverse plane, for example at z � 0, due to the beam
symmetry. The first step is to verify that the global intensity
maximum (i.e., the peak intensity) is located at the expected
helix point �r � R, θ � 0, 0�. The second step is to check that
the local maxima are below a chosen threshold, for example, a
∼70% of the peak intensity. This resonance search algorithm
has been implemented in a program for automatic and fast
search of l � l res of the helix beams. To illustrate its perfor-
mance, let us consider a helix with radius R � 4 μm and pitch
of 4.4 μm (γ > 0) corresponding to a helix slope angle β �
10°, whereas the light wavelength is λ � 800 nm in the
medium (water, as in our experiments). The intensity distribu-
tions jEl �x, y; 0�j2 of the corresponding repulsor and tractor
helix beams are displayed in Fig. 1(c) for different values
of l res. The normalized intensity profile W �l , x� �
jEl �x, y � 0, z � 0�j2∕maxfjEl �x, y; 0�j2g of the beam along
the x–axis is displayed as a function of the winding number l
for this helix, for both repulsor [Fig. 1(d)] and tractor
[Fig. 1(e)] modes. In this map for W �l , x�, it is observed that
only certain values of the winding number l yield a peak in-
tensity at the point x � R of the helix. The values of
W �l , x � R� are also displayed for each case where the resonant
values l res are indicated by blue and red circles for repulsor and
tractor helix beams, correspondingly. Let us underline that the
value of the winding number is limited by jlmaxj �
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
� 32 and jlmaxj � kR � 31.4 for the considered

repulsor and tractor helix beams, respectively. As observed in
Figs. 1(d) and 1(e), the radius of the helix beam coincides with
the expected one R � 4 μm for values jl resj < lmax. For in-
stance, the resonant values l res � 17.9 and l res � −5.91 corre-
spond to the repulsor (with phase gradient projection
ξt � 4.4 μm−1) and tractor (with ξt � −1.46 μm−1) helix
beam whose intensity distribution jEl �x, y, z�j2 is displayed
as a volumetric representation in Figs. 1(d) and 1(e) as well.
The intensity values above ∼70% of the peak intensity corre-
spond to the prescribed helix as expected. Interestingly, for val-
ues jl j > lmax, a helix beam with increasing radius can be
created as observed in the map W �l , x� displayed in Figs. 1(d)
and 1(e). Nevertheless, in this forbidden region above lmax, the
beam Eq. (10) rapidly collapses to a single Bessel mode with
index n → l .

The existence of resonances for a helix beam and the limits of
its winding number have not been previously reported. The
knowledge of these resonances is crucial for the creation of
helix-shaped repulsor and tractor beams providing a new insight
into their behavior. Moreover, it underlines that only certain
values of the phase gradient projection ξt � l res∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
,

which defines the propulsion force exerted by a repulsor and
tractor helix beam, can be prescribed. The described resonance
search algorithm provides the allowedwinding numbers l res, and
it has been applied for the creation of the helix beams considered
in this work. Note that for helix beams with γ > 0 the tractor
and repulsor case corresponds to ξt < 0 and ξt > 0, respectively.
Thus, the particle can be transported downstream for ξt > 0 and
upstream for ξt < 0 along a right-handed helix (γ > 0), and vice
versa for a left-handed helix (γ < 0).

The dipole approximation (corresponding to a Rayleigh par-
ticle of radius a < 0.1λ) provides a straightforward interpreta-
tion of the confinement and propulsion forces as a function of
the beam intensity and phase distributions [4,18]. Note that
the light polarization plays a little role in the electric dipole
force at first order [4,18], which is our case. A detailed theo-
retical analysis of the optical forces exerted by tractor beams in
the Rayleigh limit for first and higher orders, including solenoi-
dal tractor beam modes, has been reported in Ref. [18]. As a
rule of thumb, it is often assumed, as a reasonably good
approximation, that the optical propulsion force F arising from
the radiation pressure is proportional to the product of the
beam intensity I and phase gradient ξt as follows: F �
σextIξtut∕ck0 [23]. Here, σext is the extinction cross section
of the particle, which can be numerically calculated by using
the well-known Mie scattering theory for slightly larger
particles [30]. Note that if the radius R or the helix pitch
2πjγj is changed the strength of the propulsion force
jFj ∝ I · l res∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
is also changed, which can alter the

particle transport efficiency. Moreover, let us recall that the he-
lix pitch has to be larger than 2λ, which also sets a limit to the
minimum value of R for a fixed value of the helix slope.

C. Helix Beams of Different Geometries, Intensity,
and Phase Distributions
Let us now consider how to create a generalized helix beam
whose shape, intensity, and/or phase distributions can be non-
uniform along the helix if needed. Such a generalized helix beam
is described by the curve c�t� � �R�t� cos t,R�t� sin t, tγ�, with
2πjγj being the helix pitch. This kind of generalized helix beam
belongs to the class of self-imaging beams that satisfy the follow-
ing condition: E s−im�r, θ, z � 2πγ� � exp�iζ�E s−im�r, θ, z�.
Montgomery demonstrated that these beams can be also presented
as a linear superposition of Bessel modes [28]. Thus, our goal is to
define the coefficients of these Bessel modes to construct a gen-
eralized helix beam with independent control of its shape c�t�,
intensity, and phase distributions.

We return to the general expression for the polymorphic
beam written in polar coordinates, Eq. (4). Since the helix is
a periodic curve in the axial direction z, then g�t�Jn�k⊥R�t��
can be represented as a Fourier series,

g�t�Jn�k⊥R�t�� �
X∞
m�−∞

am,n�k⊥� exp�imt�, (13)

where

am,n�k⊥� �
1

2π

Z
π

−π
g�τ�Jn�k⊥R�τ�� exp�−imτ�dτ: (14)

By introducing Eq. (13) into Eq. (4), the angular spectrum
expression in the form of a combination of the Montgomery
rings is again obtained:

2564 Vol. 10, No. 11 / November 2022 / Photonics Research Research Article



A0�k⊥,ϕ; 0� � 2π
X∞
m�−∞

X∞
n�−∞

in exp�inϕ�am,n�k⊥�

× δ
�
m − n − γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q �
: (15)

The analysis of the argument of δ-function shows that the
same selection rules (defining the set Ω of allowed indices n) as
in Eq. (7) and in Eqs. (8) and (9) hold for k⊥ and for the indices
n, correspondingly, if one substitutes l by m. Thus, we obtain

A0�k⊥,ϕ��
2π

γ2
X
n∈Ω

in exp�inϕ�
X∞
m�−∞

jm−nj
k⊥

am,n�k⊥n�δ�k⊥ −k⊥�,

(16)

where

k⊥n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

�m − n�2
γ2

s
: (17)

Note that the allowed values of m are defined by the expres-
sion Eq. (14). By following a similar approach to the one con-
sidered in Section 2.B, the focused helix beam around the focal
plane can be written as

E�r, θ, z� � 2π

γ2
X
n∈Ω

exp�inθ�

×
X∞
m�−∞

jm − njam,n�k⊥n�Jn�k⊥nr� exp
�
iz
m − n
γ

�
:

(18)

The same selection rules (defining the set Ω of allowed in-
dices n) as in Eq. (7) and in Eqs. (8) and (9) hold for k⊥n and for
the indices n, correspondingly, if one substitutes l by m. The
choice of transmitted Bessel modes depends on the values of
am,n�k⊥n�, where jm − nj ≤ jγjk and �m − n�∕γ > 0, which
again proves that an arbitrary configuration of the helix beam
is not possible.

For a helix beam with a uniform phase and amplitude dis-
tribution along the curve, the term an,m�k⊥� is given by

am,n�k⊥� �
g0

2πjc 0�2π�j
Z

π

−π
jc 0�τ�j

× exp
�
il

R
τ
0 jc 0�s�jds
jc 0�2π�j

�
Jn�k⊥R�τ��exp�−imτ�dτ, (19)

where jc 0�τ�j � f�R�τ��2 � �R 0�τ��2 � �Z 0�τ��2g1∕2.
In particular, for the case of the circular helix with uniform

amplitude and phase distribution along the helix, only one term
m � l in the decomposition Eq. (13) is allowed: am,n�k⊥� �
g0Jn�k⊥R�δm,l : However, if the phase distribution of the
circular helix is not uniform, for example, g�τ� �
g0 exp�i�lτ� b sin τ��, then the coefficients are am,n�k⊥� �
g0Jn�k⊥R�Jm−l �b�, where we have considered integer l. As in
the case of the circular helix beam studied in the previous sec-
tion, the resonance search algorithm can be also applied to find
the resonant winding numbers l res for the case of the general-
ized helix beam.

Helices shaped in different forms can be easily created with
the radius

R�t� � ρ

�����1a cos

�
M
4
t
	����n2 �

����1b sin

�
M
4
t
	����n3

�
−1∕n1

, (20)

which corresponds to the Superformula [31] often used for
modeling abstract and natural shapes. The set of real numbers
Q � �ρ, a, b, n1, n2, n3,M� in Eq. (20) allows the generation
of a wide variety of shapes of different symmetry. For instance,
the set Q � �R; 1; 1, 6, 6, 6, 3� allows the generation of the
triangular helix considered in the next sections.

3. PHYSICALLY REALIZABLE HELIX BEAMS

In the previous section, we have established the construction
rules for the infinite helix beam of different chirality, shape,
and winding number l. However, there is no optical system
able to generate an ideal helix beam of infinite extension.
Thus, the design of a physically realizable helix beam requires
taking into account the characteristics and limitations of the
optical system that, in particular, reduces the helix extension.
Basically, the generation of a helix beam requires a coherent
laser beam and an optical system comprising a spatial light
modulator (SLM) device for encoding the polymorphic beam
as well as a focusing objective lens with focal length f and
numerical aperture NA, as sketched in Fig. 2.

The SLM is a programmable device that allows the holo-
graphic encoding [32] of a complex field amplitude E0�r0�
given by Eq. (1) [or Eq. (4)] in our case. Note that
k⊥ � kr0∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � r20

p
, where r0 � �x0, y0� is the spatial coor-

dinates in the SLM plane (display) [19]. The main limitation of
an SLM is its pixelated display, whose spatial resolution is typ-
ically limited by a micron-sized pixel. A Montgomery ring
modulated by the corresponding helical phase [see Eq. (6)]
can be represented in practice as a ring of width dn correspond-
ing to several pixels. This limitation is responsible for the finite
axial extension Z eff of the helix beam.

To estimate the axial extension Z eff of the helix, we
have considered the degradation of a helical Bessel mode
exp�inϕ� Jn�k⊥r� generated by a Montgomery ring of radius
rn and width dn using the Fourier transforming property of
a focusing lens. Specifically, by generalizing the approach re-
ported in Ref. [33] (for the estimation of the Bessel J0-beam
intensity degradation along the optical axis) to a helical Bessel
mode, we have obtained the following expression:

In�R, z� ∝
����
Z

ζ2

ζ1

Jn�kR
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
� exp�ikzζ�ζdζ

����2, (21)

which describes the intensity evolution of the helix beam along
the z direction at the point r � R, where integration limits are
ζ1,2 � f ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � �r0,n � dn∕2�2

p
. The value of Z eff where the

intensity In�R, z� of one of the transmitted Bessel modes de-
creases by a ratio of 25% (following a Rayleigh criteria) can
be considered as the effective length of the helix beam. Note
that integration limits ζ1,2 are given as a function of the
Montgomery ring parameters (its radius r0,n and width dn)
as well as of the focal length f of the objective lens. Thus,
the effective length (extension) of the helix beam also depends
on the value of this focal length.

The expression for the complex field amplitude correspond-
ing to a finite circular helix beam (encoded into the SLM),

Research Article Vol. 10, No. 11 / November 2022 / Photonics Research 2565



E0�r0,ϕ� ∝ g0T
X∞
n�−∞

in exp�inϕ�Jn
�

kr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � r20

p R
	

× sinc
��

l − n − γ
kfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � r20

p 	
T
2

�
, (22)

can be easily derived from Eq. (6) by using jg�t�j �
g0rect�t∕T �, where sinc�x� � sin x∕x and T � Z eff∕jγj ac-
count for the axial extension Z eff of the helix beam. Note that
the beam E0�r0,ϕ�, Eq. (22), is optically projected (by using
a 1× Keplerian telescope comprising two relay lenses, RL1 in
Fig. 2) onto the back aperture plane (entrance pupil) of the
objective lens, which focuses it in the form of a helix over
the sample (in the mounting medium).

Let us underline that the sinc�·� function in the expression
Eq. (22), corresponding to the finite circular helix, reaches
its maximum value at the same position r0,n of the nth
Montgomery ring defined by the delta function δ�k⊥ − k⊥n�
in Eq. (6) for the infinite circular helix. Thus, the sinc�·� func-
tions replace the Montgomery rings comprising the field
E0�r0,ϕ�. Moreover, the indices n in the summation Eq. (22)
follow the same selection rule given by Eq. (8) for γ > 0 and
Eq. (9) for γ < 0.

Another important limitation arises from the characteristics
of the objective lens. According to the specifications of the
microscope objective manufacturer, the radius of the entrance
pupil of an objective is given by r0,max � f NA. We recall that
the numerical aperture of the immersion objectives lens is
NA � nimm sin α, where nimm is the refractive index of the im-
mersion medium. Thus, the maximum transverse projection of
the wavenumber k of the laser beam before entering in the
mounting medium is kimm

⊥,max � k0 NA � k0nimm sin αimm.
In practice, the condition NA ≥ nm holds for oil immersion

objectives, and the maximum transverse projection km⊥,max �
k0nm < kimm

⊥,max corresponds to the laser beam (e.g., the helix
beam) focused in the mounting medium of refractive index nm.
This constraint is derived from the Snell law nimm sin αimm �
nm sin αm due to the focusing angle limitation corresponding
to the total internal reflection on the glass-water interface of the
sample. It means that the effective entrance pupil radius is
reff0,max � f nm when NA ≥ nm. Since E0�r0,ϕ� is optically
projected onto the objective’s back aperture, then only the
Montgomery rings with radius r0,n < reff0,max can be transmitted
through the objective and then participate in the formation of
the focused helix laser beam.

In the case of a dry objective lens, the conditions NA < nm
and r0,n < r0,max � f NA hold; however, when km⊥,max �
k0NA < k0nm, then the mode index selection rule [given by
expressions Eqs. (8) and (9)] has to be corrected as follows:

γ > 0, l − γk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m −NA2

p
< n < l ,

γ < 0, l < n < l − γk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m −NA2

p
: (23)

This indicates that k0jγj�nm −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m −NA2

p
� ≥ 2 has also to

be fulfilled for the transmission of at least two Bessel modes
when NA < nm. These constraints dictate a threshold for
the value of the helix pitch for each case:

2πjγj ≥



2λ0∕nm, if NA ≥ nm
2λ0∕�nm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m −NA2

p
�, if NA < nm

: (24)

Let us recall that the described resonance search algorithm
providing the resonant winding numbers l res can be also
applied for the finite circular helix [Eq. (22)]. The finite
helix beam is created if a sufficient number of modes with
k⊥n�l res� < kimm

⊥,max can be transmitted through the optical
system. Depending on the considered optical system, this

Fig. 2. Sketch of the experimental setup: optical trapping system (inverted widefield microscope and an SLM) and an optical scanning system
[sCMOS camera and electrically tunable varifocal lens (ETL)] used for dynamic 3D imaging of the sample at a frame rate of 10 Hz. A collimated
input laser beam (wavelength of λ0 � 1064 nm ) illuminates the SLM, where the beam [Eq. (22)] has been encoded as a hologram. The encoded
beam is projected (using the relay lens RL1 and the microscope’s tube lens, both with focal length of 200 mm) onto the back aperture of the objective
lens (Nikon, 1.45 NA) that focuses the helix beam over the sample. The dynamic 3D image is reconstructed by a computer from the set of through-
focus bright-field images collected by the scanning system. The achromatic relay lens RL2 has a focal length of 150 mm.
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constraint can be very restrictive; therefore, the design param-
eters of the helix beam (its radius R, γ, and l res) have to be
properly chosen to allow the transmission of a sufficient num-
ber of modes.

Volumetric representations of the intensity and phase dis-
tributions of a finite helix beam with radius R � 4 μm and
pitch of 4.4 μm, corresponding to the case NA ≥ nm (as for
the infinite helix Fig. 1), are displayed in Fig. 3 for different
helix handedness and values of the winding number l. They
have been created by introducing the expression Eq. (22) of
the polymorphic beam into the expression Eq. (3) and comput-
ing the beam propagation (using experimental parameters

provided in the next section) for a range of 30 μm around
the focal plane of the objective lens. Irrespective of the handed-
ness of the helix [see Figs. 3(a) and 3(b), with γ > 0 and γ < 0
for right- and left-handed, respectively], a uniform phase dis-
tribution is observed along the curve for both tractor and re-
pulsor configurations as prescribed.

To help the 3D visualization of the beam intensity distri-
bution, only the values above the ∼75% of its peak intensity
(maximum) are displayed in Figs. 4(a)–4(c), which corresponds
to the intensity threshold used for the estimation of Z eff . The
intensity distributions of the same circular helix beam (tractor
with R � 4 μm, pitch of 4.4 μm, and l � −5.91) with

(a) (b)

Fig. 3. (a) Intensity and phase distributions of circular helix beams (radius R � 4 μm, pitch of 4.4 μm) corresponding to (a) repulsor and
(b) tractor modes for anticlockwise (γ > 0) and clockwise (γ < 0); see Visualization 1. The phase gradient projections along the helix of the repulsor
(tractor) beam point downstream (upstream). These results correspond to the numerically propagated finite helix beam (axial extension
Z eff � 30 μm) calculated using Eqs. (3) and (22).

Fig. 4. (a) and (b) show volumetric representations (intensity values above the 75% of the maximum intensity) of a circular helix beam
(R � 4 μm and pitch of 4.4 μm) with axial extension of 30 μm and 12.5 μm, respectively. The third row displays the amplitude of the corresponding
signals [Eq. (22)] encoded into the SLM. (c), (d) Volumetric representation of a triangular helix beam (pitch of 3.5 μm) with axial extension of
12.5 μm; see Visualization 2. (e) The extension of the circular helix beam has been estimated by using Eq. (21) for the cases (a) and (b), respectively.
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Z eff � 30 μm and Z eff � 12.5 μm are shown in Figs. 4(a)
and 4(b), respectively. The considered triangular helix beam
[given by Eq. (20) with Q � �4 μm; 1; 1, 6, 6, 6, 3�, pitch of
3.5 μm, and l � −5.45] displayed in Figs. 4(c) and 4(d) has
an axial extension of Z eff � 12.5 μm.

The axial extension Z eff of the numerically propagated cir-
cular helix beams [Figs. 4(a) and 4(b)] coincides with the esti-
mated one obtained by computing the integral Eq. (21) for
different values of the propagation distance z [see Fig. 4(e)].
Specifically, the estimated value of Z eff has been obtained from
the normalized intensity profile In�R, z�∕In�R, 0� for each
case, where n � −11 is the index of the Bessel mode associated
with the wider Montgomery ring of the set comprising the
tractor helix beam (l � −5.91) of this example. The set of
Montgomery rings transmitted by our objective lens (with
reff0,max � 2.66 mm) is also displayed in the third row of
Figs. 4(a) and 4(b), and they have the following radius:
r0,n�−10 � 1.86 mm and r0,n�−11 � 0.89 mm. The widest
Montgomery ring has a width dn�−11 � 96 μm (a size of
∼10 pixels of our SLM) and dn�−11 � 250 μm for each case,
in Figs. 4(a) and 4(b), respectively. Note that in Fig. 4(e) the
intensity profiles In�−11�R, z�∕In�−11�R, 0� have been repre-
sented for each case along with a green line indicating the
75% intensity threshold used for the estimation of Z eff .

Wider Montgomery rings allow the focus of more light into
the helix beam, which makes it easier to achieve stable optical
trapping and transport of particles along it. Nevertheless, it
would significantly decrease the axial extension Z eff of the helix
beam.

4. BIDIRECTIONAL OPTICAL TRANSPORT
OF MULTIPLE PARTICLES IN HELIX-SHAPED
BEAMS

A. Experimental Setup
As previously mentioned, the helix-shaped laser beam is created
by using the experimental setup sketched in Fig. 2 comprising a
near-infrared laser, an inverted bright-field microscope, and a
programmable SLM used for holographic beam shaping.
Specifically, the complex field amplitude given by Eq. (22) has
been encoded onto the SLM (reflective phase-only SLM-liquid
crystal on silicon, Meadowlark Optics, HSP1920-600-1300-
HSP8, 8-bit phase level, pixel size of 9.2 μm) as a phase-only
hologram by using a well-known encoding technique [32]. The
SLM modulates the input collimated infrared laser beam
(Azurlight Systems, ALS-IR-1064-10-I-CP-SF, λ0�1064nm,
maximum optical power of 10 W, power stability <� 0.3%,
pointing stability <� 0.5 μrad∕°C, linearly polarized), which
is then optically projected (by the 1× Keplerian telescope com-
prising the microscope tube lens and a relay lens RL1 as indi-
cated in Fig. 2) onto the back aperture of the microscope
objective lens (Nikon CFI Plan Apochromat Lambda 100×,
1.45 NA, focal length f � 2 mm, and oil immersion
nimm � 1.512). The laser beam has been circularly polarized
by using a quarter-wave plate for proper focusing of the trap-
ping beam.

Our experimental setup also comprises a high-speed op-
tical scanning system (OSS, see Fig. 2), enabling in situ dy-
namic 3D visualization of the sample almost in real time,

as reported in Ref. [34]. This OSS consists of a scientific
Complementary Metal-Oxide-Semiconductor (sCMOS) cam-
era (Hamamatsu, Orca Flash 4.0, 16-bit gray-level, pixel size of
6.5 μm, operating at 500 Hz with an exposure time of 1 ms)
and an electrically tunable lens (ETL, Optotune EL-10-30-C)
mounted in front of the camera (see Ref. [34]). The ETL is a
programmable varifocal lens that allows for high-speed optical
scanning of the sample without the need of mechanical axial
movement of the microscope sample stage. Here, we have used
the OSS to measure multiple stacks of bright-field images re-
quired for a video-rate 3D visualization (10 Hz) of the experi-
ments. Each stack has been measured in a time of 50 ms and
corresponds to a volume of 20 μm × 20 μm × 8 μm of the
sample, which is enough for dynamic 3D visualization of the
considered optical transport experiments. Nevertheless, faster
video-rate 3D visualization (e.g., at 30 Hz) is possible just
by using a high-speed sCMOS camera in the OSS [34].

Here, we have used silica nano-spheres (Sphero Tech) of
radius a � 250 nm to study their transport driven by tractor
and repulsor helix-shaped laser beams with radius R � 4 μm
and pitch of 3.5 μm. In the experiment, the laser power mea-
sured at the back aperture of the objective lens is 360 mW
and 330 mW for the repulsor and tractor helix beams, respec-
tively. The considered dielectric NPs have been dispersed
in aqueous solution (water, nm � 1.33), and the sample has
been sandwiched between two glass coverslips (#1.5H,
170� 5 μm thickness, Thorlabs CG15KH1) separated by a
spacer ∼100 μm thick.

B. Experimental Results
To analyze the behavior of the repulsor and tractor helix-shaped
beams, we performed 3D particle tracking for each measured stack
of bright-field images recorded by the sCMOS camera of the OSS.
We have used the open source particle tracking software reported
in Ref. [35]. The tracking software provides both the particle po-
sition and speed data for each time value. It has been used to de-
velop a program to analyze and visualize in 3D the tracking data as
it is displayed in Figs. 5 and 6 for the particle position and speed,
respectively. A mean number of 28 particles have been simulta-
neously transported along the helix trap for a time of 16 s.

The positions of all the tracked particles reveal the helix shape
of the repulsor and tractor beams as observed in Figs. 5(a) and
5(b), respectively. These results confirm the stable confinement
of the particles optically transported along the circular helix beam
trap, downstream in Fig. 5(a) and upstream in Fig. 5(b). Note
that in the experiment the repulsor and tractor beams have been
switched each 2 s for alternating the optical transport between
downstream and upstream transport (see Visualization 3). The
particle positions observed in Fig. 5(c) correspond to this bidi-
rectional optical transport of the particles. This result makes it
clear that the repulsor and tractor helix beam can transport
multiple particles along the same helix keeping a stable optical
confinement, irrespective of the direction and strength of the
phase gradient force propelling the particles.

Let us underline that the trapped particles are almost uni-
formly distributed along the whole helix beam. Interestingly,
the particles trapped in a helix loop do not affect the confine-
ment and propulsion of their counterparts located in the rest of
the helix. These results show the robustness of the helix beam
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(a) (b) (c)

Fig. 5. Experimental results. (a) Time lapse representation of the silica NP positions transported downstream during 6.8 s by a repulsor helix
beam. (b) Time lapse representation of the NP positions transported upstream during 8.6 s by a tractor helix beam. (c) Time lapse representation of
the NP positions during alternate bidirectional transport. Downstream and upstream transport has been sequentially applied in 5 cycles for a time of
16 s; see Visualization 3. The values of the axial position z of each NP are indicated in the color bar. The particle trajectory fits well to the
experimental (d) repulsor and (e) tractor helix beams (volumetric intensity representation). (f ) The corresponding transverse and axial intensity
sections of the measured helix beams.

(a) (b) (c)

Fig. 6. Experimental results. (a) Time lapse representation of the positions and speed of the NPs transported downstream during 6.8 s by the
repulsor helix beam. (b) Same time lapse representation for the NPs transported upstream during 8.6 s by the tractor helix. (c) Time lapse rep-
resentation of the NP positions during alternate bidirectional transport. Downstream and upstream transport has been sequentially applied in five
cycles for a time of 16 s; see Visualization 3. The histogram of NP speed values for each case is displayed in the second row. The third row displays the
corresponding speed values given as a plot of the NP position z versus the polar angle θ, where the black dashed line corresponds to the helix curve.
The NP trajectory fits well to the helix curve, and the NP speed values are mostly uniformly distributed along it.
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for optical trapping and bidirectional transport of particles
en masse, which is the first experimental evidence of this fact.
The measured intensity distributions of the repulsor and tractor
helix beams used in this experiment are displayed in Figs. 5(d)–
5(f ), respectively. They are not completely uniform along the
helix because of residual spatial aberrations present in the laser
trapping beam. Nevertheless, there is a reasonably good agree-
ment with the theoretical intensity distribution of the helix
beam previously shown in Fig. 4(b).

Note that the experimental helix beam can present some
intensity hot spots mostly arising from residual optical aberra-
tions of the optical system including the SLM display. Such
intensity hot spots might prevent particles from moving along
the helix or any other extended optical trap. Eventual collisions
among multiple trapped particles can help them to surmount
those hot spots. Thus, the transport of a single particle can be
technically more difficult than transporting multiple particles.
To address this possible technical difficulty, the intensity hot
spots in the beam can be mitigated by modifying the hologram
design (addressed onto the SLM) to account for residual op-
tical aberrations of the system as reported elsewhere [36].
The impact of this improvement on the quality of the optical
trap together with a proper phase gradient design can allow for
stable transport of a single particle. For instance, stable all-
optical transport of a single NP (gold nano-sphere of 100 nm
in diameter) along a ring-shaped optical trap with different

phase gradient profiles has been experimentally demonstrated
in Ref. [23].

The speed distribution of the particles optically transported
along the whole helix trap is displayed in Figs. 6(a) and 6(b) for
each case. The corresponding speed histograms are also dis-
played at the second row of Figs. 6(a) and 6(b). From these
histograms, one observes that the mean speed of the particle
is 4.5� 1.30 μm∕s and 4� 0.97 μm∕s for the case of the re-
pulsor and tractor helix beam, respectively. Moreover, these his-
tograms indicate that most of the particles are transported with
a speed close to the mean value in the whole helix, correspond-
ing to green-colored particle spots in Figs. 6(a) and 6(b), irre-
spective of the repulsor and tractor configuration. This result
shows that a nearly constant propulsion force has been applied
along the entire helix in both the repulsor and tractor cases.
Some of the particles eventually exhibit speed values around
7 μm/s (red-colored particle spots) and 2 μm/s (blue-colored
particle spots), probably due to the non-uniform intensity of
the experimental helix beam. Nevertheless, the observed trajec-
tory of the transported particles fits well with the expected he-
lix. This is also observed in the third row of Figs. 6(a) and 6(b),
where speed values given as a plot of the NP position z versus
the polar angle θ are represented along with a black dashed line
corresponding to the ideal helix. In the second and third rows
of Fig. 6(c), the particle speed data during alternate bidirec-
tional transport are displayed as well.

(a) (b) (c)

(d)

Fig. 7. (a) Bright-field images of silica NPs transported along a circular and triangular helix, shown as an example. (b) The time lapse 3D image
(time of 16 s) for each helix beam reveals the NPs optically trapped and transported along the helix as well as some of the free NPs. (c) A dynamic
time lapse in 3D (for a lapse time of 2 s) is displayed for each case; see Visualization 3 and Visualization 4. (d) Measured intensity distributions of the
repulsor and tractor triangular helix beams, displayed as volumetric representations along with transverse (x − y) and axial (y − z) sections.
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As we have previously mentioned, our OSS allows direct
video-rate 3D visualization of the particle motion just after
the measurement of the required stack of bright-field images.
In the considered experiments, each stack comprises 50 bright-
field images recorded in 50 ms as the images displayed in
Fig. 7(a) for the circular and triangular helices. We have used
an axial scanning step of Δz � 160 nm and an axial scanning
range 8 μm, which are sufficient to track the particles along the
considered helix. In general, a dynamic 3D visualization (see
Visualization 3) of the particle transport is good enough for
the experimental analysis, without the need of a time-consum-
ing particle tracking process. For example, a time lapse 3D rep-
resentation as the one shown in Figs. 7(b) and 7(c) allows fast
and easy visualization of the particle motion during the re-
corded experiment (see Visualization 3 and Visualization 4).
Specifically, the static time lapse 3D representation displayed
in Fig. 7(b) shows the positions of both the free and trapped
particles during the whole experiment for the circular and tri-
angular helices, corresponding to an elapsed time of 16 s in our
case. The dynamic time lapse 3D representation corresponding
to the circular and triangular helices [see Fig. 7(c)] is also pro-
vided in Visualization 3 and Visualization 4, respectively. This
type of dynamic time lapse analysis helps with the 3D visuali-
zation of the particle transport, where the particle trails for
every 2 s (as an example) are observed as indicated in Fig. 7(c).
Indeed, the particle trails draw their trajectory revealing the he-
lix as a flowtrace of particles driven downstream and upstream
by the repulsor and tractor helix beams, respectively. All these
dynamic 3D visualizations have been performed using open
source software Fiji-ImageJ [37].

The optical transport of the particles in the triangular helix
(see Visualization 4) is more irregular than in the circular helix
trap. This is due to the fluctuation of the experimental intensity
distribution along the triangular helix as observed in Fig. 7(d).
This effect is explained by the increased complexity of the holo-
graphic encoding of the triangular helix beam onto our SLM
device. There are several intensity hot spots along the triangular
helix where the optical transport is eventually interrupted. In
contrast to the circular helix trap, where bidirectional stable
optical transport is observed in the whole helix, the triangular
helix only shows stable bidirectional transport in one helix loop
due to such intensity hot spots. Nevertheless, overall, the 3D
intensity distribution of the triangular helix beam is in good
agreement with the expected shape.

5. CONCLUSION

We have considered the challenging problem of the design and
generation of helix-shaped repulsor and tractor laser beams
suited for simultaneous transport of multiple particles. The
theoretical background for the design of ideal (infinite axial ex-
tension) and physically realizable helix-shaped beams enabling
bidirectional optical transport of particles en masse along the
helix has been established. We have found that the ideal helix
beam as well as its physically realizable counterpart can be con-
structed only for certain values of the winding number l, which
controls the beam phase distribution along the helix and, there-
fore, the optical propulsion force driving the particle transport.
An algorithm to find the allowed values of the winding number

l res for helices of any radius and pitch has been proposed and
demonstrated.

The characteristics of the optical system, numerical aper-
ture, and focal length of the objective lens, as well as the re-
fractive index of the mounting medium where the helix
beam is focused, play a crucial role, and they have been taken
into account for the design and creation of physically realizable
repulsor and tractor helix beams. The limitations of the holo-
graphic encoding and spatial resolution have been also consid-
ered to predict the axial extension of the helix beams.

The method for the design of helix-shaped beams of differ-
ent geometries with a tunable phase gradient on demand has
been proposed and experimentally demonstrated on the exam-
ple of bidirectional particle transport along circular and triangu-
lar helices.

The experimental results prove that the transport of particles
en masse is indeed possible in the same helix for repulsor and
tractor modes, which has not been previously demonstrated
elsewhere. Specifically, the particles can simultaneously occupy

Fig. 8. Distribution of amplitude weights jn − l jjJn�k⊥nR�j∕γ2 of
the helical Bessel modes Jn�k⊥nr� exp�inϕ� comprising the beam de-
scribed by Eq. (6) for a helix of radius R � 4 μm and pitch of
2πjγj � 4.4 μm. The regions where repulsor and tractor beams can
be found for γ > 0 and γ < 0 have been indicated as well. A zoom
inset is also displayed to help the visualization.
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different loops of the helix without deterioration of the confine-
ment and propulsion conditions required for their optical trans-
port along the helix. This is the first evidence of the robustness
in both the structure and function of the helix beam, which is
due to its self-reconstructing character arising as a heritage of
the Bessel modes [38,39] participating in the beam formation.
Thus, the ability of helical repulsor and tractor beams to trap
multiple particles relies on the self-reconstructing or self-
healing nature of Bessel beams [38].

We have considered dielectric NPs (silica spheres of 500 nm
in diameter) to experimentally test the proposed helix-shaped
repulsor and tractor beams. Optical transport of smaller NPs is
also possible by proper tuning of the optical power and phase
gradient force exerted by the trapping beam [18,23]. For in-
stance, all-optical transport of metal NPs (gold and silver
nano-spheres of 100 nm and 60 nm in diameter) driven by
a phase gradient force prescribed along different 3D trajecto-
ries, including a ring-shaped tractor beam, has been experimen-
tally demonstrated in Ref. [23] by using the same laser
wavelength and experimental conditions. Thus, it is expected
that those metal NPs can be also transported by the considered
helix-shaped laser beams. Here, we have considered larger NPs
because they can be easily visualized and their possible destruc-
tion effect on the helical trapping beam can be more noticeable.

Another achievement of this work is the development of a
system for video-rate 3D visualization of the experiment ena-
bling in situ analysis of the optical trapping and transport of the
particles.

These findings provide a new insight into the behavior and
practical generation of repulsor and tractor helix beams suited
for optical manipulation. The direct application of helix-shaped
repulsor and tractor beams is the optical transport and delivery

of micro- and nano-objects in both upstream and downstream
directions. The easily reconfigurable helix trajectory and the
switching between repulsor and tractor mode provide addi-
tional degrees of freedom for particle transport. We envision
that these achievements could pave a way for widespread ap-
plication of helix-shaped beams for optical manipulation [5,38]
as well as in other active research and technological areas, such
as microscopy imaging [39], laser micro/manufacturing [40],
and material processing [41]. For instance, the proposed helix-
shaped beams can be used for photopolymerization-based
fabrication of complex structures and extended helical micro-
fibers [42].

APPENDIX A: CIRCULAR HELIX BEAM WITH
INFINITE AXIAL EXTENSION

Let us recall that the set of indices n is defined in the main text
for each case (γ > 0 and γ < 0). As an example, in Fig. 8, the
weight amplitude of the Montgomery rings [δ�k⊥ − k⊥n�] [28]
in Eq. (6) is displayed for the helix considered in the main text
(with radius R � 4 μm and pitch of 4.4 μm), whereas the light
wavelength is λ � 800 nm in the medium (water). This map
corresponds to the amplitude weights jn − l jjJn�k⊥nR�j∕γ2 of
the helical Bessel modes Jn�k⊥nr� exp�inϕ� comprising the
beam described by Eq. (6). Note that regions corresponding
to possible tractor and repulsor helix beams are indicated in
Fig. 8 for γ > 0 and γ < 0. A zoom inset is also displayed
in Fig. 8 to help the visualization of the amplitude weights,
which may be zero or be very small to participate in the helix
formation as observed. This limitation also indicates that not all
the values of the winding number l can be used to create a
helix beam.

(a)

(b)

Fig. 9. The normalized intensity profile W �l , x� (as in the main text, Fig. 1) of the beam resulting from the resonance search algorithm is
displayed in (a) and (b) for the repulsor and tractor modes (helix radius R � 4 μm and helix pitch of 9.1 μm), respectively. The intensity dis-
tributions jEl �x, y; 0�j2 of the repulsor and tractor helix beams are also displayed for several values of the resonant winding numbers l � l res as an
example.
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The resonance search algorithm described in the main text
allows us to find the resonant values of the winding number l
required for the creation of the helix beam. To illustrate its per-
formance, in the main text, we have shown in Fig. 1 the res-
onances for the helix with radius R � 4 μm and pitch of
4.4 μm (γ > 0) corresponding to a helix slope angle
β � 10°. In this case, kγ � 5.5; thus, five Bessel modes par-
ticipate in the helix beam formation. For instance, the resonant
values l res � 17.9 and l res � −5.91 correspond to the repulsor
(with phase gradient ξt � 4.4 μm−1) and tractor (with phase
gradient ξt � −1.46 μm−1) helix beams whose intensity distri-
butions have been displayed in Fig. 1 of the main text. Here, for
comparison, we show in Fig. 9 the map for l res corresponding to
a helix with the same radius R � 4 μm but larger pitch of
9.1 μm (γ > 0, helix slope angle β � 20°). The resonant values
l res � 19.75 and l res � −16.03 correspond to the repulsor
(with phase gradient ξt � 4.64 μm−1) and tractor (with phase
gradient ξt � −3.77 μm−1) as indicated in Figs. 9(a) and 9(b),
respectively. These results illustrate the behavior of the resonan-
ces for a significantly increased helix pitch. In this case,
kγ � 11.4; thus, 11 Bessel modes participate in the helix beam
formation.
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