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We address space–frequency domain coherence properties of broadband light-emitting diodes (white LEDs) and
fields radiated by them. Inverse-source techniques are employed to determine the spectral degree of spatial co-
herence of an effective planar source representing a real LED, and coherent elementary fields associated with it.
By fitting with experimental measurements, we formulate simple analytical coherence models that can be used as a
basis for theoretical and experimental studies of the coherence of polychromatic stationary light in free space and
in various optical systems. In particular, we find that radiation from white LEDs follows closely Wolf’s scaling law
for spectral invariance [Phys. Rev. Lett. 56, 1370 (1986)] in the blue and the phosphor-generated parts of the
spectrum separately, but not across the entire white-light spectrum. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.461314

1. INTRODUCTION

The progress in the development of white LEDs over the past
quarter of a decade has revolutionized lighting technology, in
particular, Refs. [1,2], but these compact and bright broadband
sources have a lot to offer also in other fields of optical science
and technology. The radiation from white LEDs is generally
understood to have low spatial coherence across the spectrum
and be more or less unpolarized. While this information may be
sufficient for most solid-state lighting applications, more quan-
titative information is required in other applications of low-co-
herence light, such as holographic displays [3]. More generally,
this is true for (LED-based) low-coherence imaging systems,
where the image properties and resolution are well known
to depend on the state of coherence of illumination [4]. It
is therefore important to characterize in detail the spectral
dependence of spatial coherence of these sources and of fields
radiated by them in homogeneous media and in passage
through optical systems. This is the main goal of the present
paper; we address it by both theoretical and experimen-
tal means.

Physically, a typical white LED consists of a primary blue
LED and a volume of phosphorous material for downconver-
sion of blue radiation into a wide band of frequencies that ap-
pears visually yellow. The light-emitting structure is enclosed
within a transparent dome with a hemispherical or aspherical
shape that allows some control over the directionality of radi-
ation. In our model, we treat the white LED as an effective
planar, quasihomogeneous, unpolarized source, whose coher-
ence properties are determined from its radiant intensity dis-
tribution by an inverse-source approach [5] summarized in
Sect. 5.3.3 of Ref. [6]. A variant of this inverse method is also
applied to find an “elementary” fully coherent source that, by

definition, produces the same distribution of radiant intensity
as the white LED itself. This permits us to model the LED
source by an incoherent superposition of laterally shifted rep-
licas of the elementary source field [7,8]. Such elementary-field
representations can significantly simplify the treatment of par-
tially coherent beam shaping and imaging problems [9,10].

Further, we consider secondary sources obtained by imaging
our planar, effective, model source using optical systems with
specified numerical apertures (NAs). The spatial scale of the
complex degree of coherence of this secondary source can be
controlled by the NA and the magnification of the imaging
system. On the other hand, the intensity distribution of the
secondary source can be controlled by spatial filtering (using,
e.g., a spatial light modulator), and its frequency content can be
controlled by spectral filtering. All this, put together, allows one
to realize bright broadband sources with tunable spatial (and
temporal) coherence properties.

The model is applied to real white LEDs with either near-
Lambertian or more directional distributions of radiant inten-
sity. We introduce space–frequency-domain coherence models
based on the inverse-source technique and fit the parameters to
experimental measurements. The results are sufficiently accu-
rate and simple to serve as a model for real white LEDs in both
theoretical and experimental studies of a multitude of phenom-
ena related to partially coherent beams. Special attention will be
paid to the question of whether radiation from white LEDs
follows Wolf ’s scaling law on spectral invariance [11].

2. THEORETICAL FRAMEWORK

Assuming scalar theory of light throughout this paper for sim-
plicity (c.f. Ref. [12] for an electromagnetic approach to LEDs),
we begin by establishing the theoretical background required to
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develop the procedure for determination of the spectral coher-
ence properties of quasihomogeneous sources such as white
LEDs. We make use of the inverse-source technique [6] to de-
termine the low-frequency (non-evanescent) part of the com-
plex degree of spatial coherence at the plane of an effective
(virtual) planar source from the radiant intensity distribution
produced by the real source. Since we are dealing with broad-
band (instead of quasimonochromatic) sources, the frequency
dependence of spatial coherence becomes significant and will
be shown explicitly in all expressions.

Referring to Fig. 1, the cross-spectral density (CSD) func-
tion [6] of any quasihomogeneous source at two transverse
points ρ1 and ρ2 at frequency ω, W �ρ1, ρ2,ω�, factors in aver-
age and difference spatial coordinates ρ̄ � �ρ1 � ρ2�∕2 and
Δρ � ρ2 − ρ1 as

W �ρ̄,Δρ,ω� � S�ρ̄,ω�μ�Δρ,ω�, (1)

where S�ρ̄,ω� is the spectral density, and μ�Δρ,ω� is the com-
plex degree of spectral coherence at the source plane. The spec-
tral angular cross-correlation function (ACF), defined as

T �κ1, κ2,ω� �
1

�2π�4
ZZ

−∞
W �ρ1, ρ2,ω�

× exp�i�κ1 · ρ1 − κ2 · ρ2��d2ρ1d2ρ2, (2)

takes on the form

T �κ̄,Δκ,ω� � 1

�2π�4
ZZ

−∞
W �ρ̄,Δρ,ω�

× exp�−i�Δκ · ρ̄� κ̄ · Δρ��d2ρ̄d2Δρ (3)

if we introduce average and difference spatial-frequency coor-
dinates κ̄ � �κ1 � κ2�∕2, Δκ � κ2 − κ1. On inserting from
Eq. (1) into Eq. (3), we find that the ACF of any quasihomo-
geneous source has a factored form [6]:

T �κ̄,Δκ,ω� � S̃�κ̄,ω�μ̃�Δκ,ω�, (4)

where we have defined Fourier transforms

S̃�Δκ,ω� � 1

�2π�2
Z

∞

−∞
S�ρ̄,ω� exp�−iΔκ · ρ̄�d2ρ̄ (5)

and

μ̃�κ̄,ω� � 1

�2π�2
Z

∞

−∞
μ�Δρ,ω� exp�−iκ̄ · Δρ�d2Δρ (6)

of the source-plane spectral density and complex degree of spec-
tral coherence, respectively.

In general, the CSD at distance r in the far zone is related to
the ACF by the formula [6]

W �∞��r ŝ1, r ŝ2,ω� �
�2πω

rc

�2
sz1sz2T

�
ω

c
s⊥1,

ω

c
s⊥2,ω

�
,

(7)

where ŝj � �s⊥j, szj�, j � 1, 2 are unit position vectors as illus-
trated in Fig. 1, and s⊥j are their transverse components. Using
average and difference coordinates s̄⊥ � �s⊥1 � s⊥2�∕2 and
Δs⊥ � s⊥2 − s⊥1, and Eq. (4), gives

W �∞��r ŝ1, r ŝ2,ω� �
�2πω

rc

�2
sz1sz2S̃

�
ω

c
Δs⊥,ω

�
μ̃

�
ω

c
s̄⊥,ω

�
:

(8)

Hence the spectral density and the complex degree of spectral
coherence in the far zone take the forms

S�∞��r ŝ,ω� �
�
2πω

rc

�
2

s2z S̃�0,ω�μ̃
�
ω

c
Δs⊥,ω

�
(9)

and

μ�∞��r ŝ1, r ŝ2,ω� �
S̃��ω∕c�Δs⊥,ω�

S̃�0,ω� , (10)

respectively. In view of Eq. (5), the quantity

S̃�0,ω� � 1

�2π�2
Z

∞

−∞
S�ρ,ω�d2ρ (11)

represents the source-integrated intensity at frequency ω.
Our purpose is to model broadband light sources (white

LEDs) on the basis of measurable quantities. To this end,
we need full information on the source-plane CSD; with that
available, we can readily model also the field in the far zone
using Eqs. (8)–(10). The source-plane spectral density can
be measured straightforwardly by (spectral) imaging, and this
allows us to determine the complex degree of angular spectral
coherence using Eq. (10). On the other hand, the spectral dis-
tribution of the radiant intensity

J�ŝ,ω� � lim
r→∞

rS�∞��r ŝ,ω�

� �2π�2s2z �ω∕c�2S̃�0,ω�μ̃
�
ω

c
s⊥,ω

�
(12)

is measurable by a goniometric setup involving a spectrum ana-
lyzer. This leads to knowledge on the source-plane complex
degree of spectral coherence as shown below.

By Fourier inversion of Eq. (6) and keeping in mind that
only the low-frequency (non-evanescent) part of the radiation
is observable in the far zone, we have

μ�Δρ,ω� �
Z
jκj<ω∕c

μ̃�κ,ω� exp�iκ · Δρ�d2κ: (13)

Setting κ � �ω∕c�s⊥ and inserting from Eq. (12), we obtain

Fig. 1. Geometry and notation relating to a quasihomogeneous pla-
nar source with an emitting area S far larger than the effective coher-
ence area C , and far-field radiation from such a source. Here ρ1 and ρ2
represent two arbitrary points in the source plane. The unit vector
ŝ � �s⊥, sz� refers to an arbitrary position r � r ŝ at a distance r in
the far zone.
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μ�Δρ,ω� � 1

�2π�2S̃�0,ω�

×
Z
LF

J�ŝ,ω�
1 − s2⊥

exp

�
i
ω

c
s⊥ · Δρ

�
d2s⊥, (14)

where LF means the low-frequency part of the field, js⊥j < 1.
Requiring that μ�0,ω� � 1, we have the final general result:

μ�Δρ,ω� �
R
LF �1 − s2⊥�−1J�ŝ,ω� exp�i�ω∕c�s⊥ · Δρ�d2s⊥R

LF �1 − s2⊥�−1J�ŝ,ω�d2s⊥
:

(15)

Assuming rotational symmetry and denoting s � js⊥j � sin θ,
Δρ � jΔρj, Eq. (15) takes the form

μ�Δρ,ω� �
R
1
0 s�1 − s2�−1J�s,ω�J0��ω∕c�Δρs�dsR

1
0 s�1 − s2�−1J�s,ω�ds

, (16)

where J0�x� is the Bessel function of order zero. This is the
inverse formula needed for the determination of the low-
frequency part of the spectral degree of coherence at the source
plane.

3. ELEMENTARY-FIELD REPRESENTATION

It is well known that the CSD of any Schell-model field at fre-
quency ω can be represented as an incoherent superposition of
spatially shifted fully coherent elementary fields (see Ref. [8] for
a review). For quasihomogeneous sources defined in Eq. (1),
the complex degree of coherence takes the form [7]

μ�Δρ,ω� � 1

C2

Z
∞

−∞
f ∗�ρ̄ − ρ 0 − Δρ∕2,ω�

× f �ρ̄ − ρ 0 � Δρ∕2,ω�d2ρ 0, (17)

where f �ρ,ω� represents the elementary field, and

C2 �
Z

∞

−∞
jf �ρ,ω�j2d2ρ: (18)

The elementary field can be interpreted as a coherent field that
produces the same distribution of radiant intensity as the entire
partially coherent field does.

Considering a single (fully coherent) elementary field
f �ρ,ω�, we may write the CSD at the source plane in the
separable form

W �ρ1, ρ2,ω� � f ∗�ρ1,ω�f �ρ2,ω� (19)

and define the Fourier transform of f �ρ,ω� as

f̃ �κ,ω� � 1

�2π�2
Z

∞

−∞
f �ρ,ω� exp�−iκ · ρ�d2ρ: (20)

Then the radiant intensity reads as

J�ŝ,ω� � �2π�2s2z �ω∕c�2
����f̃
�
ω

c
s⊥,ω

�����
2

: (21)

Clearly the radiant intensity specifies f̃ only up to phase.
Choosing the phase as constant produces the most spatially
compact (transform-limited) solution for the elementary field.
In this case,

f �ρ,ω� � 1

2π

Z
LF

J1∕2�ŝ,ω�
�1 − s2⊥�1∕2

exp

�
i
ω

c
s⊥ · ρ

�
d2s⊥, (22)

and for rotationally symmetric radiant intensity distributions,
we get

f �ρ,ω� � f �0,ω�
R
1
0 s�1 − s2�−1∕2J1∕2�s,ω�J0��ω∕c�ρs�dsR

1
0 s�1 − s2�−1∕2J1∕2�s,ω�ds

,

(23)

where f �0,ω� represents the axial spectral distribution in the
elementary field.

Let us consider, as an example, well-known cosine-power
distributions for radiation from quasihomogeneous sources
[6] by writing the radiant intensity in the form

J�ŝ,ω� � J�ω�s pz � J�ω�cospθ, (24)

where p ≥ 0 is a real (but not necessarily integer) parameter.
The value p � 0 indicates an isotropically radiating source,
p � 1 a Lambertian source, p � 2 an incoherent source, and
larger powers describe sources with more directional radiation.

To determine the spectral degree of spatial coherence and
the functional form of the elementary field, we insert Eq. (24)
into Eq. (16) and Eq. (23), respectively. The integrals involving
the Bessel function can be evaluated with the formulas [13]Z

1

0

x�1 − x2�μJ0�ax�dx � 2μΓ�μ� 1� Jμ�1�a�
aμ�1 (25)

and Z
1

0

x�1 − x2�μdx � 1

2�1� μ� , (26)

where Γ is the gamma function, and Jμ is a Bessel function of
order μ. The formula Eq. (25) holds for μ ≥ −1. If we set
μ � p∕2 − 1, we get the well-known result [6]

μ�Δρ,ω� � 2p∕2Γ
�
1� p

2

�
Jp∕2��ω∕c�Δρ�
��ω∕c�Δρ�p∕2 (27)

for the complex degree of coherence, which is valid when
p ≥ 0. If we set μ � q∕4 − 1∕2, we obtain the expression

f �ρ,ω� � f �0,ω�2q∕4�1∕2Γ
�
3

2
� q

4

�
Jq∕4�1∕2��ω∕c�ρ�
��ω∕c�ρ�q∕4�1∕2

(28)

for the elementary field, which is valid for p ≥ −2.
It is immediately seen that the forms of μ�Δρ,ω� as a func-

tion of Δρ and f �ρ,ω� as a function of ρ are the same if
q � 2�p − 1�. Table 1 lists the explicit functional forms of
the degree of coherence and the respective elementary field
for some integer values of p and q. For brevity, we have written
k � ω∕c.

Figure 2 illustrates the spatial distributions of μ�Δρ,ω�
listed in Table 1. The distributions of f �ρ,ω�∕f �0,ω� are
identical if we set q � 2�p − 1�. The spatial scales of these
functions get narrower as the value of p is reduced. If we look
at the location of the first zero, the scale of the degree of co-
herence becomes sharper than that produced by an incoherent
source when 0 ≤ p < 2. Similarly, the elementary field be-
comes sharper than the classical Airy form when −2 ≤ q < 2.
However, this reduction in scale is achieved only at the expense
of increased sidelobe intensity, in analogy with the improved
spatial resolution achievable with coherent Bessel fields [14,15].
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4. COHERENCE OF SECONDARY SOURCES

Imaging systems with specified NAs are frequently used to gen-
erate secondary light sources. In numerous instances, such a
secondary source is assumed to be incoherent, though this is
always an idealization. The model developed in this paper al-
lows us to evaluate the spectral coherence properties of secon-
dary white-light sources by means of the standard theory of
image formation in an aplanatic system [16], illustrated in
Fig. 3 in a scalar form.

To model the coherence of secondary sources, we employ
the same process as in solving the inverse-source problem
above. However, we limit the upper integration in Eqs. (16)
and (23) only over the collection NA instead of the entire low-
frequency part of the angular spectrum. Considering the field
in the image space, we then have expressions

μ 0�Δρ 0,ω� �
R
NA 0
0 s 0�1 − s 02�−1J 0�s 0,ω�J0��ω∕c�Δρ 0s 0�ds 0R

NA 0
0 s 0�1 − s 02�−1J 0�s 0,ω�ds 0

(29)

for the complex degree of spectral coherence and

f 0�ρ 0,ω�
f 0�0,ω� �

R
NA 0
0 s 0�1 − s 02�−1∕2J 01∕2�s 0,ω�J0��ω∕c�ρ 0s 0�ds 0R

NA 0
0 s 0�1 − s 02�−1∕2J 01∕2�s 0,ω�ds 0

(30)

for the elementary field associated with the secondary source.
The function f 0�ρ,ω� defined in Eq. (30) can be considered as
the elementary-field spread (EFS) function of the optical sys-
tem under partially coherent illumination [10]. This concept
may be viewed as an extension of the standard point-spread
function (PSF) of an incoherent imaging system.

According to the sine condition, satisfied by any aplanatic
system, h � F sin θ � F 0 sin θ 0 in Fig. 3. Introducing the lin-
ear magnification M , we then have

M � F 0

F
� sin θ

sin θ 0 �
NA

NA 0 �
sin Θ
sin Θ 0 �

s
s 0
� Δρ 0

Δρ
� ρ 0

ρ
: (31)

It follows from energy conservation that the radiant intensities
J�θ,ω� on reference sphere S and J 0�θ 0,ω� on reference sphere
S 0 are related as

J�θ,ω� cos θ � J 0�θ 0,ω� cos θ 0 (32)

or

J 0�s 0,ω� � J�s,ω�
�

1 − s2

1 − �s∕M�2
�
1∕2

� J�s,ω�P�s�, (33)

where P�s� is a frequency-independent apodization factor.
With these notations, Eqs. (29) and (30) take the forms

μ 0�MΔρ,ω�

�
RNA∕M
0 s�1 − �s∕M �2�−1P�s�J�s,ω�J0��ω∕c�Δρs�dsRNA∕M

0 s�1 − �s∕M�2�−1P�s�J�s,ω�ds
(34)

and

f 0�Mρ,ω�
f 0�0,ω�

�
RNA∕M
0 s�1 − �s∕M �2�−1∕2P�s�J1∕2�s,ω�J0��ω∕c�ρs�dsRNA∕M

0 s�1 − �s∕M �2�−1∕2P�s�J1∕2�s,ω�ds
,

(35)

respectively.
Figure 4 illustrates the distributions of f 0�ρ,ω�∕f 0�0,ω� in

a unit-magnification (M � 1) imaging system. Here we fix the
value of q and plot the elementary-field response functions for
different values of NAs for systems illuminated by Lambertian
(p � 1, q � 0), isotropic (p � 0, q � −2), and more direc-
tional (p � 4, q � 6) primary sources. The distributions of

Fig. 2. Plots of the complex degree of coherence for sources with
different values of p. Black: p � 0. Red: p � 1. Green: p � 2.
Blue: p � 3.

Fig. 3. Aplanatic image formation in a system with object and image
planes O and O 0, principal planes P and P 0, numerical apertures
NA � sin Θ and NA 0 � sin Θ 0, and focal lengths F and F 0. Here
S and S 0 are the object and image-space reference spheres on which
J�θ,ω� and J 0�θ 0,ω� are defined, respectively.

Table 1. Expressions for the Complex Degrees of
Coherence and Elementary-Field Distributions for
Selected Sources with Radiant Intensities Following
the cospθ Law

p μ�Δρ,ω�
0 J0�kΔρ�
1 sin�kΔρ�∕kΔρ
2 2J1�kΔρ�∕kΔρ
3 3�sin�kΔρ� − kΔρ cos�kΔρ��∕�kΔρ�3
q � 2�p − 1� f �ρ,ω�∕f �0,ω�
−2 J0�kρ�
0 sin�kρ�∕kρ
2 2J1�kρ�∕kρ
4 3�sin�kρ� − kρ cos�kρ��∕�kρ�3
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μ 0�Δρ,ω� are of the same form when plotted as a function of
Δρ. The thin dashed lines in Fig. 4 show the results for an
incoherent primary source for comparison.

In general, the effect of reducing the NA leads to widening of
the scales of both the effective degree of coherence and the ef-
fective elementary field. This effect is, for the degree of coher-
ence, well known in the standard theory of incoherent imaging
[4]. Because of the intimate relation between the CSD and the
associated elementary field, expressed in Eq. (17), the scale of the
latter follows the same trend. It is seen that the distributions of
EFS for Lambertian and isotropically radiating primary sources
are narrower than those for incoherent sources, and the same
applies to the associated degrees of coherence. However, this nar-
rowing happens at the expense of increased sidelobe level. The
effect becomes less significant when the NA is reduced, since
then only a central region of the low-frequency part of the field
is collected and contributes to the EFS function.

5. RELATION TO WOLF’S SCALING LAW

The normalized spectrum s�∞��r ŝ,ω� of the field in the far zone
is defined by dividing the spectrum by its frequency integral.
In view of Eq. (8), we therefore have

s�∞��r ŝ,ω� � S�∞��r ŝ,ω�R∞
0 S�∞��r ŝ,ω�dω � J�θ,ω�R

∞
0 J�θ,ω�dω : (36)

The normalized spectrum generally varies as a function of di-
rection θ, but if the radiant intensity is of the separable form
J�θ,ω� � J�θ�J�ω�, we immediately see that

s�∞��r ŝ,ω� � J�ω�R
∞
0 J�ω�dω , (37)

i.e., the normalized spectrum is independent of the propagation
direction. The field is then said to be spectrally invariant in the
far zone [11]. It now follows from Eq. (16) that the source-
plane complex degree of coherence has the form

μ�Δρ,ω� � H
�
ω

c
Δρ

�
�

R
1
0 s�1 − s2�−1J�s�J0��ω∕c�Δρs�dsR

1
0 s�1 − s2�−1J�s�ds :

(38)

This specific form of the functionH is known as Wolf ’s scaling
law for spectrally invariant fields [11]. The normalized source-
integrated spectrum at the source plane,

s�ω� � S̃�0,ω�R
∞
0 S̃�0,ω�dω , (39)

with S̃�0,ω� defined in Eq. (11), satisfies s�ω� � s�∞��ω�.
Considering the elementary-field representation of primary

sources and assuming a separable distribution of the radiant
intensity, it follows from Eq. (23) that

f �ρ,ω�
f �0,ω� � F

�
ω

c
ρ

�
�

R
1
0 s�1 − s2�−1∕2J1∕2�s�J0��ω∕c�ρs�dsR

1
0 s�1 − s2�−1∕2J1∕2�s�ds

,

(40)

i.e., the function F is of a specific form that ensures the direc-
tional invariance of the radiant intensity. Corresponding results
can also be obtained for secondary sources produced by imag-
ing systems, showing that they also obey Wolf ’s scaling law and
thereby produce directionally invariant far-zone distributions if
the radiant intensity is separable.

6. COHERENCE OF WHITE LEDS

Our experimental setup for measuring the spectral coherence
properties of real white LEDs is shown in Fig. 5. To measure
these properties over the full low-frequency region, we place the
LED on a rotation stage and any detector D on a fixed spatial
position. Three types of measurements have been performed.

1. In measurements of the radiant intensity, D is a fiber
spectrometer (AvaSpec-2048), with spectral resolution
0.56 nm, and the rotation stage is scanned over the range
0° < θ < 90° with 5° intervals for the “Lambertian” LED
and 0° < θ < 51° with 3° intervals for the “directional” LED.

2. In measurements of the spectral distributions of source-
plane intensity, D is an imaging system in which we use nar-
rowband (FWHM of 2–4 nm) spectral filters centered at
wavelengths 488, 515, 532, and 633 nm.

3. In measurements of the far-zone degree of spectral coher-
ence, we employ a 1D wavefront-folding interferometer [17]
with a grating (Thorlabs GR25-0310, having 300 lines/mm),
a cylindrical lens of focal length 10 cm, and a camera
(CMOS, Thorlabs DCC1545M-GL); see Fig. 6.

Fig. 4. Effect of the finite numerical aperture of the imaging system
in the elementary-field spread function for (a) Lambertian primary
sources with q � 0, (b) isotropically radiating sources with q � −2,
and (c) more directional sources with q � 6. Black: NA � 1. Red:
NA � 0.85. Green: NA � 0.7. Blue: NA � 0.5. Dashed black: in-
coherent primary source (q � 2).
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Moderate spectral (and angular) resolution is needed in radi-
ant-intensity measurements. However, the source-plane intensity
distribution depends only weakly on wavelength, which justifies
the use of bandpass filters in these measurements. In the setup
of Fig. 6, spectral interference fringes formed at CAM in the
direction perpendicular to the plane of the paper allow the
measurement of μ�∞��r ŝ1, r ŝ2,ω� in Eq. (10) over a range
Δθ ∼ �−0.2°, �0.2°� around any chosen angle θ. This is suffi-
cient since μ�∞� is a narrow function of Δs⊥, which is the same
for all s̄⊥. In the experiments, we therefore chose θ � 0°.

We consider in detail the results for two representative white
LEDs. The first (ProLight Opto, PM2E-3LWS-SD cool white)
is nearly Lambertian because the dome that encloses the active
LED structure is more or less hemispherical. We will refer this
as a “Lambertian” LED. The second LED (SLOAN, L5-W602-
PQBC, cool white) has a collimating dome, and it therefore has
a more directional radiant intensity pattern.

Figures 7(a) and 7(b) show the directly measured far-
field spectra as a function of the diffraction angle for the
Lambertian and directional LEDs in arbitrary units, respectively.

Both spectra consist of a blue peak due to the primary LED and
a wider yellow peak due to fluorescence, which are at approx-
imately the same positions on the wavelength scale for both
LEDs. Looking along the θ axis, the frequency-integrated dis-
tributions of the radiant intensity are shown on the right in
Figs. 7(a) and 7(b) as black lines, along with the closest
cospθ fits shown in red. The Lambertian LED indeed follows
Lambert’s law quite well up to angles close to ∼80°, the failure
beyond that being due to packaging issues. The radiant inten-
sity of the directional LED can be approximated with p � 56
in Eq. (24).

Figures 7(c) and 7(d) show the normalized spectra
s�∞��r ŝ,ω�, calculated from the directly measured spectra using
Eq. (36), for several discrete values of θ. For the radiation to be
spectrally invariant in the far zone, these should be the same;
however, they are not for either the Lambertian or directional
LED. The effect is particularly clear for the Lambertian LED:
the contribution of the blue part reduces relative to the yellow
part as θ increases. In the directional LED, the trend is the same
but less obvious, not only because of the higher directionality,
but most likely also because of chromatic effects in the dome.

With all this being said, it is interesting to consider the case
of low- or high-pass filtering of the spectrum. If we filter out the
blue part at ω > 3.7–3.8 rad∕fs, we still have the yellow part
left, which has a sufficient bandwidth for representing truly pol-
ychromatic sources in studies of most phenomena related to
partially coherent polychromatic fields. As will be discussed in
more detail below, this filtered spectrum is essentially direction
invariant. The same is true if we filter out the yellow part. It can
therefore be concluded that the two filtered contributions are
individually spectrally invariant but their superposition is not.

Finally, Figs. 7(e) and 7(f ) show the source-plane distribu-
tions of the absolute values of the complex degree of coherence
μ�Δρ,ω�, determined numerically from the measured radiant
intensities using Eq. (16). The transverse �Δρ� scales are chosen
the same for both the Lambertian and directional LEDs to em-
phasize how much the effective spatial coherence area of the
source depends on the directionality. On the other hand, the
horizontal scale shows its frequency dependence across the vis-
ible spectrum, which is far from negligible.

Measured source-plane distributions of the spectral density
across the Lambertian LED through different narrowband fil-
ters are shown in the top row of Fig. 8. These measurements
were done by adjusting the imaging system to produce the most
compact image obtainable through the aberrated dome; hence,
the results should be considered as images of a virtual planar
source. Although the true emitting area of the blue primary
LED is probably square shaped, we see blurring due to the
3D structure of the phosphor region and aberrations of the
dome. For the directional LED, the results are qualitatively
similar (though even more blurred), but the effective source
size is larger due to the collimation effect of the dome. As ex-
pected, the results show only weak frequency dependence.
However, the effective size of the virtual source nevertheless
increases with the wavelength.

The second row in Fig. 8 shows the absolute values of the
far-field complex degree of spectral coherence μ�∞��r ŝ1, r ŝ2,ω�
calculated from Eq. (10). These results show very little

Fig. 5. Goniometric experimental setup used for the measurements,
with the white LED mounted on a rotation stage R, and a detector D
in a fixed position. Polar plots of Lambertian (p � 1, black), incoher-
ent (p � 2, red), and more directional (p � 6, blue) distributions of
J�θ,ω� are also shown.

Fig. 6. Schematic of the detector setup used for far-field spectral
coherence measurement. The solid red line shows the principle ray.
BS, beam splitter; LM, corner mirror; G, grating of 300 lines/mm;
L, cylindrical lens of focal length f ; CAM, CMOS camera. The lens
collects the �1st diffraction order.
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wavelength dependence and almost no sidelobes. To explain
the results, we consider a “bare” LED with no dome and a
square emitting area of size L × L. In view of Eq. (10), we would
then have

μ�∞��r ŝ1, r ŝ2,ω� �
sin��ω∕c�LΔsx∕2�
�ω∕c�LΔsx∕2

sin��ω∕c�LΔsy∕2�
�ω∕c�LΔsy∕2

,

(41)

indicating a linear frequency dependence of the scale of the far-
zone coherence. However, according to the results in the top
row of Fig. 8, the effective value of L decreases with ω, thus
more or less making the final result frequency independent.
While Eq. (41) also predicts strong sidelobes, the blurring
of the source-place profiles reduces them significantly.

The final two rows of Fig. 8 illustrate the results more quan-
titatively, by means of cross sections. The third row shows the

(normalized) interference patterns recorded with the wavefront-
folding interferometer in Fig. 6, and their envelopes. Indeed,
the wavelength dependence of these results is weak. In Figs. 8(m)
and 8(n), we plot collectively the cross-sectional profiles
μ�∞��rsx1, rsx2,ω� as functions of Δθ: in Fig. 8(m) calculated
from the measured profiles in the top row, and in Fig. 8(n) the
directly measured far-zone results. Also these results demonstrate
only weak wavelength dependence and sidelobes. The transverse
widths of the profiles in Figs. 8(m) and 8(n) are in decent agree-
ment, given that the calculated profiles in Fig. 8(m) depend to
some degree on which image plane of the virtual source we choose.

7. ANALYTICAL COHERENCE MODELS

We proceed to develop analytical models for the spectral dis-
tribution of spatial coherence properties of white LEDs, based
on measurements of the type described in the previous section.

Fig. 7. Measured radiant intensities as a function of wavelength and θ for (a) Lambertian and (b) directional LEDs (in the latter case, the spectral
data were averaged over an interval Δλ � 5.3 nm to reduce experimental noise). Moreover, for theoretical comparison, the respective frequency-
integrated radiant intensities are plotted as a function of θ on the right side of (a) and (b) in red [using Eq. (24)] and in black (measured). The
normalized spectra are shown in (c) and (d), and the numerically calculated complex degree of coherence at the source plane in (e) and (f ).
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In view of Figs. 7(c) and 7(d), we have two distinct spectral
peaks in the normalized far-field spectra, which suggests that
the spectral model should be expressed as a sum of blue (B)
and yellow (Y) contributions. On the other hand, in view of
Figs. 7(a) and 7(b), we see that the angular distribution of
J�θ,ω� can be well approximated by the model in Eq. (24)
at least if we choose the power p separately for B and Y con-
tributions. Based on these observations, we consider models of
the type

J�s,ω� � SB�ω�H �s,ωB� � SY�ω�H �s,ωY�, (42)

where SB�ω� and SY�ω� are the spectral distributions of
the B and Y parts, whereas H �s,ωB� and H �s,ωY� are the

angular distributions at the center positions of the B and Y
contributions.

Motivated by the approach in Ref. [6], we express the func-
tions H �s,ωB� and H �s,ωY� as

H �s,ωB� � H �0,ωB�cosmθ � CB�1 − s2�m∕2, (43)

H �s,ωY� � H �0,ωY�cosnθ � CY�1 − s2�n∕2, (44)

where CB � H �0,ωB�, CY � H �0,ωY�, and m and n are real-
valued fitting constants. Using Eq. (16), we can write the
source-plane complex degree of coherence given by this model
in the form

Fig. 8. Top row (a), (c), (e), (g): measured source-plane intensity distributions through spectral filters with central transmission wavelengths at
488, 515, 532, and 633 nm, respectively. Second row (b), (d), (f ), (h): numerically calculated absolute values of the complex degree of angular
spectral coherence. Third row (i)–(l): cross sections of measured interference patterns (blue) and their envelopes (red) in the far field. Bottom row:
comparison of numerically calculated (m) and measured (n) angular spectral coherence.
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μ�Δρ,ω� � m−1CBSB�ω�LB�Δρ,ω� � n−1CYSY�ω�LY�Δρ,ω�
m−1CBSB�ω� � n−1CYSY�ω�

,

(45)

where

LB�Δρ,ω� � 2m∕2Γ
�
1� m

2

�
Jm∕2��ω∕c�Δρ�
��ω∕c�Δρ�m∕2 , (46)

LY�Δρ,ω� � 2n∕2Γ
�
1� n

2

�
Jn∕2��ω∕c�Δρ�
��ω∕c�Δρ�n∕2 : (47)

On the other hand, using Eq. (23), we have the elementary-
field model

f �ρ,ω�
f �0,ω� �

�1� m∕2�−1CBSB�ω�K B�ρ,ω� � �1� n∕2�−1CYSY�ω�K Y�ρ,ω�
�1� m∕2�−1CBSB�ω� � �1� n∕2�−1CYSY�ω�

, (48)

with

LB�ρ,ω� � 2m∕4�1∕2Γ
�
3

2
� m

4

�
Jm∕4�1∕2��ω∕c�ρ�
��ω∕c�ρ�m∕4�1∕2 , (49)

LY�ρ,ω� � 2n∕4�1∕2Γ
�
3

2
� n

4

�
Jn∕4�1∕2��ω∕c�ρ�
��ω∕c�ρ�n∕4�1∕2 : (50)

It may be worth stressing at this point that the model given
by Eq. (44) no longer assumes the separability of the radiant
intensity in angular and spectral contributions in the sense
of Eq. (24). It now remains to find analytical expressions for
the spectral contributions SB�ω� and SB�ω� to complete the
model. Among numerous possible options, we consider those
with the simplest analytical forms that yet reflect the main
physical properties of the spectrum. In particular, we consider
two cases:

Sj�ω� � exp

�
−
2

Ω2
j
�ω − ωj�2

�
(51)

and

Sj�ω� � exp

�
−
2

Ω2
j

�
ω − ω0

ωs

− ωj

�
2
�
, (52)

where j � B,Y. This approach is realistic because it is evident
from Figs. 7(c) and 7(d) that the spectrum has two Gaussian-
type distributions centered at two frequencies. In the latter
model,

ω0 �
R
∞
0 ωJ�0,ω�dωR
∞
0 J�0,ω�dω (53)

is the mean frequency of the measured axial radiant intensity,
and ωs is a scaling parameter. While the model in Eq. (51) is
mathematically simpler, the one in Eqs. (52) and (53) gives a
better fit with the aid of the extra parameter ωs.

The model parameters obtained for the angular distributions
of the radiant intensity, given by H �θ,ωB� and H �θ,ωY), by
least-squares fitting to the experimental results are listed in
Table 2 for both the Lambertian and directional LEDs.
In the case of the Lambertian LED, the Y part of the radiant
intensity is sub-Lambertian, whereas the B part is super-
Lambertian (close to the case of an incoherent planar source).
This is also qualitatively evident from Fig. 7, as already men-
tioned. For the directional LED, m and n are closer to each
other, but still clearly different.

The parameters obtained by least-squares fitting for J�0,ω�
using both models are given in Table 3 for the Lambertian and
directional LEDs. The standard deviations of the two models
Eqs. (51) and (52) are 0.339 and 0.089 for the Lambertian

source, and 0.302 and 0.181 for the directional source, respec-
tively. Hence we may conclude that the model in Eq. (52) is
indeed superior, in particular for the Lambertian LED.

Figure 9 shows a quantitative comparison of certain cross
sections of experimentally measured radiant intensities and
those given by the analytic models. In the top row, we illustrate
the angular distributions of radiant intensity, and in the bottom
row, the axial spectral distributions. The axial spectra are indeed
represented well, especially by Eq. (52). The angular distribu-
tions match well for the Lambertian LED, and also for the

Table 2. Model Parameters for the Angular Distribution
of Radiant Intensity of the Lambertian and Directional
LEDs

Model [Eq. (51)] CB CY m n

Lambertian 1.65 1.20 1.97 0.77
Directional 1.45 0.77 49.9 57.1

Model [Eq. (52)] CB CY m n

Lambertian 1.46 1.17 1.44 0.94
Directional 1.47 0.67 49.5 59.5

Table 3. Model Parameters for the Spectral Distribution
of Lambertian and Directional LEDsa

Model [Eq. (51)] ωB ΩB ωY ΩY

Lambertian 4.17 0.21 3.37 0.23
Directional 4.17 0.14 3.35 0.21

Model [Eq. (52)] Lambertian Directional

ωB 0.23 0.23
ΩB 0.078 0.069
ωY −0.15 −0.16
ΩY 0.18 0.15
ω0 3.68 3.68
ωs 2.07 2.07

aAll angular frequencies are in units rad/fs.
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directional LED in the yellow region. In the blue region, there
is some mismatch, indicating that a single cosine power does
not represent the radiant intensity accurately. The match could
be improved by using a second cosine term as in Eq. (5-3-54) of
Ref. [6].

Finally, in Fig. 10, we present a comparison between the nu-
merically calculated distribution of the source-plane complex de-
gree of coherence, and the same calculated using Eq. (52), for the
Lambertian LED. The numerically calculated absolute value and
phase of the complex degree of coherence are shown in (a)
and (b), and the model results given by Eq. (52) are
illustrated in (c) and (d). We find that the prediction of the spec-
tral degree of spatial coherence by the model is excellent.
Moreover, the width of spatial coherence at the source plane de-
creases as the optical angular frequency increases except around
ω ∼ 3.8–3.9 rad∕fs. In this frequency range, where the B and Y

contributions of the model overlap, the width of the coherence
function is nearly constant. This behavior is also seen in Fig. 7(c).
The spectral fields on either side of this band individually follow
Wolf ’s scaling law to a good accuracy.

8. DISCUSSION AND CONCLUSION

Most of the work on spatially partially coherent fields, and on
radiation that they emit, has over the past decades been mainly
concentrated on quasimonochromatic sources and fields. While
real sources of thermal or quasi-thermal light were of primary
concern in the past, the advent of lasers changed the situation
rather dramatically: it was no longer necessary to worry about
the low brightness of previously available sources. Moreover,
partial spatial coherence could be introduced artificially, e.g., by
passing a single-mode laser beam through a rotating diffuser.
With the advent of bright LEDs, we are now again in a
new situation, having a class of bright sources available that
are inherently partially spatially coherent and, moreover, an in-
tegral part of present-day life. However, these sources are broad-
band, not quasimonochromatic.

In our opinion, white LEDs should not be considered
merely as lighting devices but be taken under consideration as
light sources in near-future (theoretical as well as experimental)
scientific studies on coherence properties of light. Thorough
understanding of the spatial coherence of white LEDs becomes
vital at this stage. In this paper, we have taken some steps in this
direction by presenting simple analytical models for their spec-
tral coherence. Our formulation could be readily extended in
several ways, such as increasing the number of cosine terms in
Eq. (42) in analogy with Eq. (5-3-54) of Ref. [6]. One could
also introduce better fits into the spectral distributions of the
blue and yellow parts, for instance, by replacing the Gaussian
profile assumed here with more sophisticated asymmetric pro-
files or adding extra Gaussian profiles centered at different
frequencies and then fitting them in experimental results.
However, the spectral model in Eq. (52) is sufficient for most
purposes.

To conclude, we started from theoretical considerations
based on the inverse-source problems in partially coherent op-
tics, taking the field to have a finite bandwidth instead of being
quasimonochromatic. With the aid of measurements of real
white LEDs, we developed models that are sufficiently simple
to be used as a starting point of theoretical or experimental
analysis of many phenomena or systems related to partially co-
herent light. Yet the models are sufficiently accurate to reflect
the properties of real white LEDs. One of our key findings is
that the LED with a near-Lambertian frequency-integrated
radiant intensity has a super-Lambertian (m > 1) blue part
and a sub-Lambertian (n < 1) yellow part of the spectrum.
Hence, these two parts follow Wolf ’s scaling law [11] sepa-
rately, while the entire LED radiation does not.

Finally, the identification of the sub-Lambertian radiation,
which in our opinion originates from the volume nature of the
fluorescence radiation from the true 3D physical source, could
benefit microscopy. The resolution in microscopy is limited by
the coherence area of the illumination [4], which is below that
of the conventional limit (for critical and Köhler illumination)
already for the Lambertian source. The reduction is enhanced

Fig. 9. Top row: distributions of J�s,ωB� and J�s,ωY� for
(a) Lambertian and (b) directional LEDs. Solid lines: measured.
Dotted lines: model [Eq. (51)]. Dashed lines: model [Eq. (52)].
Blue: J�s,ωB�. Red: J�s,ωY�. Bottom row: distributions of J�0,ω�
for (c) Lambertian and (d) directional LEDs. Black: measured.
Blue: model [Eq. (51)]. Red: model [Eq. (52)].

Fig. 10. Comparison between the numerically calculated distribu-
tion of the source-plane complex degree of coherence and from ana-
lytical model [Eq. (52)] for Lambertian LED. (a), (c) Absolute value.
(b), (d) Phase. Calculated using Eq. (42).

Research Article Vol. 10, No. 11 / November 2022 / Photonics Research 2469



further for sub-Lambertian sources, though only at the expense
of increased sidelobe level.
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