
Single-pixel imaging using physics enhanced
deep learning
FEI WANG,1,2 CHENGLONG WANG,1,2 CHENJIN DENG,1,2 SHENSHENG HAN,1,2,3 AND GUOHAI SITU1,2,3,*
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
*Corresponding author: ghsitu@siom.ac.cn

Received 16 August 2021; revised 3 November 2021; accepted 3 November 2021; posted 4 November 2021 (Doc. ID 440123);
published 13 December 2021

Single-pixel imaging (SPI) is a typical computational imaging modality that allows two- and three-dimensional
image reconstruction from a one-dimensional bucket signal acquired under structured illumination. It is in par-
ticular of interest for imaging under low light conditions and in spectral regions where good cameras are unavail-
able. However, the resolution of the reconstructed image in SPI is strongly dependent on the number of
measurements in the temporal domain. Data-driven deep learning has been proposed for high-quality image
reconstruction from a undersampled bucket signal. But the generalization issue prohibits its practical application.
Here we propose a physics-enhanced deep learning approach for SPI. By blending a physics-informed layer and a
model-driven fine-tuning process, we show that the proposed approach is generalizable for image reconstruction.
We implement the proposed method in an in-house SPI system and an outdoor single-pixel LiDAR system, and
demonstrate that it outperforms some other widespread SPI algorithms in terms of both robustness and fidelity.
The proposed method establishes a bridge between data-driven and model-driven algorithms, allowing one to
impose both data and physics priors for inverse problem solvers in computational imaging, ranging from remote
sensing to microscopy. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.440123

1. INTRODUCTION

Single-pixel imaging (SPI) is an emerging computational imag-
ing modality that utilizes the second-order correlation of quan-
tum or classical light to reconstruct a two-dimensional (2D)
image from a one-dimensional (1D) bucket signal [1–4]. As
most of the photons that interact with the object are collected
by the bucket detector, SPI has significant advantages in terms
of the detection sensitivity, dark counts, and spectral range.
Thus it has received increasing attentions over the past decade
for the people working in the divergent fields of remote sensing
[5,6], 3D imaging [7,8], spectral imaging [9,10], microscopy
[11], and of the sort [3,12]. However, in SPI, each single-pixel
measurement contains highly compressed information about
the object, and one needs a large amount of such measurements
to reconstruct an image with good resolution. This leads to a
trade-off between the acquisition time and the image quality
that hinders the practical application of SPI. Many studies have
been carried out to address this issue. The solutions proposed so
far can be categorized into two mainly aspects of strategies. The
first one is to design the encoding patterns that ensures each
single-pixel measurement contains as more information as pos-
sible [13–15]. The second one is to develop an optimization

algorithm to obtain better reconstruction using a smaller num-
ber of measurements [16,17].

Owing to its capability of solving various challenging prob-
lems in divergent fields [18,19], deep learning (DL) has also
been adopted for SPI recently. Previous studies have shown that
the DL-based SPI methods can dramatically reduce the sam-
pling ratio, promising real-time performance [17,20,21].
Specifically, Lyu et al. [17] proposed a physics-informed deep
learning method called ghost imaging (GI) using deep learning,
in which the input of the deep neural network (DNN) is an
approximant recovered using the conventional correlation algo-
rithm. This method allows the reduction of the sampling ratio.
However, as GIDL used speckle patterns to encode the
object information, the modulation efficiency is not very high.
Higham et al. [20] proposed a deep convolutional autoencoder
network (DCAN) for this task, in which the trained binary
weights in the encoding part of DCAN are used to scan the
target. This allows an efficient encoding-decoding strategy for
SPI. However, DCAN is a pure data-driven method, which
suffers from common issues such as generalizability and inter-
pretability [22]. Although our previous works [21,23] have
shown that end-to-end DNN can be used to recover the object
directly from the detected bucket signal without any physical
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priors, recent studies have shown that blending the physics of
the imaging system into DNN has the advantages in terms of
data acquisition [21,24], generalization [25,26], and interpret-
ability [27].

In this work, we report a physics enhanced deep learning
technique for SPI. The physics prior we exploit mainly contains
two aspects that rely on the forward propagation model of the
SPI system, H , i.e., I � Hx. First, in contrast with end-to-end
learning algorithms [21,23], the bucket signal I is used to es-
timate xp with the knowledge of H ; the resulting xp is used as
the input of the DNN Rθ. This allows us to optimize the en-
coding patterns and add an interpretable physics decoding layer
before the DNN. Second, the difference between the acquired
bucket signal I and estimated one Î � HRθ�xp� is used to
finely tune the weights θ of the DNN model. This allows us to
correct the distortion of the DNN predictions due to insufficient
generalization of the model. Numerical simulations and experi-
ments are performed to demonstrate that the proposed strategy
brings advantages in terms of both robustness and fidelity.

2. METHODS

As schematically presented in Fig. 1, the proposed method
consists of two main steps: a physics-informed autoencoder
DNN that generates a set of optimal encoding patterns H�,
and a model-driven fine-tuning process that enhances the
reconstructed image.

As shown in Fig. 1(a), the physics-informed autoencoder
DNN contains three parts. The first part is a set of M patterns
Hm�u, v� that are used to encode an object x�u, v� to a 1D
bucket signal Im � Hm�u, v�x�u, v� with the length of M .
The second part is to reconstruct a rough estimation of the ob-
ject xp by using any conventional GI algorithm from I and H .
In this study, we employ differential ghost imaging (DGI)
[29,30] for this job:

xp � DGI�H , I� � hHmImi −
hHmi
hSmi

hSmImi, (1)

where h·i denotes the ensemble average approximately
defined as hHmi � 1

M

PM
m�1 Hm, hImi � 1

M

PM
m�1 Im, and

Sm � P
u,v Hm�u, v� is used to normalize the illumination pat-

terns so as to improve the robustness. To proceed, we need to
define the sampling ratio β � M∕N , where N represents the
number of pixels that represent x. The DGI algorithm de-
scribed in Eq. (1) is a noniterative one and is thus fast and ro-
bust to execute [31]. In this way, one can physically map the
features in the measurement space to the estimated image
space, which provides an interpretable feature extraction layer
without complicated calculations. The third part is a DNN
model Rθ that is used to perform further image enhancement.
It takes xp as its input and produces a high-quality estimation
Rθ�xp� at the output layer.

Apparently, both the DNN model Rθ and the encoding
patterns H should be trained, for example, on a set of training
data ST � fxkjk � 1, 2,…,K g. With random initialization,
the patterns H and the weights parameters θ in the DNN
model Rθ can be optimized by solving

fRθ� ,H�g � arg min
θ∈Θ,H∈H

∥Rθ�xkp� − xk∥
2
, ∀xk ∈ ST , (2)

where xkp � DGI�H ,Hxk�. One can see that the most signifi-
cant difference between the proposed framework and DCAN
[20] is that a physics informed layer (i.e., DGI [29,30]) is
blended into the DNN model. This generates a set of opti-
mized patterns H� that can be used to encode a real-world
object to be imaged.

Encoding a real-world target by using a typical SPI system
shown in Fig. 1(b), one can acquire a 1D raw bucket signal I .
This is the input of the second component of the proposed
method, a model-driven fine-tuning process, which essentially

Fig. 1. Schematic diagram of the physics enhanced deep learning approach for SPI. (a) The physics-informed DNN. (b) The SPI system. (c) The
model-driven fine-tuning process. The face images were taken from CelebAMask-HQ [28].
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consists of the DGI model, H�, and the trained DNNRθ� . As
both H� and Rθ� have been trained in the first step, one ex-
pects to have a good reconstructed image of the target [19].
However, since the network model Rθ� is trained on a data
set, it has a strong bias to reconstruct an image that is sta-
tistically similar to those in the training set [22]. We thus
hypothesize that one can get further image enhancement by
fitting the measurements as in conventional model-driven op-
timization methods [32]. This can be formulated as

Rθ�� � arg min
θ�∈Θ

jjH�Rθ� �xp� − I jj2, (3)

where xp � DGI�H�, I�. By fine tuning the weights in the first
three layers in the pre-trained network Rθ� , the optimization
converges quickly along with the drop of error between the ac-
quired I and the estimated one Î . This yields a fine-tuned re-
constructed image Rθ�� �xp�. Compared with traditional
transfer learning [33], the proposed fine-tuning strategy does
not need to use any labeled training data. All it needs to input
is the raw bucket signal I , from which one expects to recon-
struct an image of the target of interest. We will show that this
target does not have to be similar to those in the training set ST
that is used to train Rθ� . In the case that H� cannot be ob-
tained precisely; one can also include parameters that represent
model uncertainty into the objective function Eq. (3) as train-
able weights as in Ref. [34]. Here we simply use the ideal
SPI model.

The network architecture we used to implementRθ is illus-
trated in Fig. 2. It actually has a U-net-like structure that con-
tains five downsampling layers and five upsampling layers. In
order to adapt to data/images of different lengths/sizes, one
does not need to change the network hyperparameters but
the size of the feature maps. We would also like to emphasize
that there is no limitation to choose the neural network archi-
tecture for the proposed physics-enhanced deep learning frame-
work, although properly adjusting of the network architecture
may get better results. In this work, we simply employ the one
shown in Fig. 2. In the implementation of the neural networks,
we used the following parameter setting: the learning rate was
0.0002, and the momentum and epsilon parameters in the
batch normalization were 0.99 and 0.001. The leaky ReLU

with the leak parameter of 0.2 was used as the activation
function. The training set for Rθ� was formed by using
29,000 128 × 128-pixel images from CelebAMask-HQ [28].
The training was conducted in a computer with an Intel
Xeon E5-2696 V3 CPU, 64 GB RAM, and an NVIDIA
Quadro P6000 GPU. It converged within 64 epoches.

3. RESULTS AND DISCUSSION

Here we perform a comparative study on the effectiveness of
the proposed method. For the sake of quantitative evaluation,
we first examine its performance by using simulation data.
Then we demonstrate its practical applications in laboratory
and outdoor experiments.

A. Simulations
First let us examine the effectiveness of the physics-informed
layer that we add to the DNN. The results are plotted at
the fifth column in Fig. 3(a). It is clearly seen that the DGI
reconstructed image with the learned patterns is far better than
the one with random illumination. This conclusion retains
even if Gaussian white noise (with the variance of δ ) is added
to the bucket signal. We use the signal-to-noise ratio (SNR �
10log10��I − Ī�2∕δ�) of the bucket signal to measure the noise
level. From the peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) of the reconstructed images are
plotted in Figs. 3(b) and 3(c) (the solid gray curves in contrast
to the dashed ones), respectively, and one can confirm that the
learned patterns are more effective.

One can also see that the two gray curves are fairly flat with
respect to noise level. This suggests that the DGI
reconstruction algorithm is immune to the additive noise
[29,30], no matter whether the physics-informed layer is used
or not. This robustness is important for the downstream decod-
ing DNN, as it takes the DGI reconstructed image as its input.

Now we proceed to compare the performance of the pro-
posed methods with some of the widespread SPI methods,
namely, DCAN [20], the reordering Hadamard SPI (HSI)
[14], the compressed sensing based total variation (TV) regu-
larization [31], and the Fourier domain regularized inversion
(FDRI) methods [35,36]. The results are plotted in Fig. 3.

Fig. 2. Diagram of the DNN structure we designed. It consists of an encoder path that takes the low-quality image reconstructed by DGI as its
input and a decoder path that outputs an enhanced one.
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As a learning-based end-to-end SPI method, DCAN [20]
outperforms the other existing methods (i.e., HSI, TV, and
FDRI) except for some high-noise-level cases. The proposed
physics-informed method has a similar performance to
DCAN when the SNR of the bucket signal is 20 dB and higher,
but is much better when the noise level increases. As the DNN
parts of the proposed physics-informed method and DCAN do
not have much difference, it must be the physics-informed layer
described by Eq. (1) that contributes to the high performance
[see, for example, the reconstructed images at row 3, columns 4
and 6, in Fig. 3(a)]. The reconstruction is quite time efficient. It
takes only 0.32 s to reconstruct a 128 × 128-pixel image using
the trained model. This includes the time for DGI and the
physics-informed DNN inferring. Note that the proposed al-
gorithm was implemented in Python. It can be sped up by, for
example, implementing it with a more efficient programming
language like C/C++. This suggests that the proposed method
has potential for SPI in real time, in addition to its robustness
against noise. However, we found that the image reconstructed
by the physics-informed DNN still has noticeable artefacts and
thus proceeded to further enhance it by the second step, the
model-driven fine-tuning process.

The results shown in Fig. 3 suggest that fine-tuning the
trained DNN model Rθ� helps enhance the image quality
when the SNR is high but is trivial otherwise. This is reasonable
as the fine-tuning may also fit the noise. To see how it happens,
one can examine the behavior of the objective function defined
in Eq. (3). Clearly, the error between the noisy bucket signal
Inoise and the estimated one Î � H�xi, where the subscript i
denotes the iteration step, does decrease as the iteration pro-
ceeds, no matter what the noise level is [Fig. 4(a)].
However, we observe an interesting turnover phenomenon:
the error function between the estimated image xi and the
ground truth x jumps steeply at the beginning and then turns
over to increase as the iteration proceeds. This enforces xi to
gradually step away from x. The better H�xi is fit to Inoise,
the larger the error ∥xi − x∥

2
. We observe that the turnover

occurs sooner when the SNR of the acquired bucket signal
is low [indicated by the arrow in Fig. 4(b)], and vice versa.

It takes a lot more iterations to occur when the SNR is high.
Such a turnover phenomenon is also observed in the error func-
tion between H�xi and the clean bucket signal I clean as shown
in Fig. 4(c). The main reason why the turnover phenomenon
happens is that a properly designed DNN inherently regularizes
the objective function because of the deep image prior [37].
That is, there is a competition for a DNN to fit the data be-
tween natural image-related content and noise (if it exists).
Apparently, natural image-related contents have the priority
at the beginning, but eventually the noise wins. So one can
set up a trick like early stopping to obtain a better reconstructed
image, in particular when the bucket signal SNR is low. More
details on this matter can be found in Visualization 1.

B. Experiments
Now we proceed to demonstrate the proposed method with in-
house experiments. We built a typical passive modulated SPI
system as the one schematically shown in Fig. 1(b). Three real-
world objects were used in our proof-of-principle experiments.
They were illuminated by a thermal light source and imaged by
an imaging optic with the focal length of 85 mm to a digital
micromirror device (DMD, DLP7000, TI). On the DMD, the
learned binary patterns H� were sequentially displayed so as to
encode the scenarios projected onto it. The encoded light
was then focused on a single pixel detector (H10721,
Hamamatsu) by using a 4f system composed of two lenses
whose focal lengths are f 1 � 75 mm and f 2 � 50 mm, re-
spectively. In all the three experiments, we acquired
M � 1024 measurements for each object. Each pattern in
H� has a pixel number of N � 128 × 128, meaning that
the sampling ratio β � M∕N � 6.25%.

We reconstruct the images following the aformentioned
pipeline. First we correlated H� and the three bucket signals
using the DGI algorithm according to Eq. (1). The three im-
ages reconstructed from DGI are shown in the top row of
Fig. 5. Given the fact that β is as low as 6.25%, the images
reconstructed by DGI alone are not too bad. But we can further
improve them by feeding them into the trained physics-
informed decoding network Rθ� . The corresponding outputs

(b)

(c)

10
dB

eerf esio
N

snretta
P

HSI DCAN InformedDGI Fine tune

GT

TV FDRI

(a)

Fig. 3. Comparative study of the proposed method with some other fast SPI algorithms with a low sampling ratio (β � 1024∕16384 � 6.25%).
(a) The images reconstructed by HSI [14], TV [31], FDRI [35], DCAN [20], DGI with and without learned patterns illumination, physics-in-
formed DNN, and the fine-tuning process. (b) PSNR and (c) SSIM of the reconstructed images are used to quantitatively evaluate the performance
of different methods under different SNR levels. The PSNR and SSIMmetrics were averaged over 30 randomly selected images from the test set. The
face image was selected from CelebAMask-HQ [28].
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of the neural network are shown in the second row of Fig. 5.
One can clearly see that the noise has been significantly reduced
and the contrast increased. However, as a data-driven method,
the physics-informed decoding network was trained on the
CelebAMask-HQ dataset [28] and thus could not recover
the object images with high fidelity in our experiments.
Indeed one can see that obnoxious artefacts appear in the re-
constructed images. These artefacts were eliminated via the
model-driven fine-tuning process according to Eq. (3) as shown
in the last row of Fig. 5. This suggests that the fine-tuning pro-
cess has great potential to address the generalization problem of
conventional data-driven DL methods [17,20,21].

Next we endeavor to demonstrate that the proposed fine-
tuning method outperforms the other widespread SPI algo-
rithms such as DGI [29,30], HSI [14], DCAN [20]; the total
variation minimization by augmented Lagrangian and alternat-
ing direction algorithms (TVAL3) [38]; and randomly initial-
ized fine-tuning on the same set of experimental data. The data
were acquired with the same SPI system we built. This time we
replaced the previous objects with the badge of our institute
printed on a white paper for the sake of quantitative analysis.
For this purpose, we took the image reconstructed by HSI with

full sampling (β � 100%) as the ground truth [Fig. 6(a)] be-
cause it in principle guarantees closed form solutions [14].
However, in the comparative study, only β � 6.25% out of
the 128 × 128 samples were used for image reconstruction.
The images reconstructed with all these algorithms are plotted
in Figs. 6(b)–6(h), respectively. Apparently, the proposed fine-
tuning approach has the best performance in terms of both
visual effect and quantitative metrics (PSNR and SSIM).
One can find more information about the iteration process
in Visualization 2.

To demonstrate the practical application of the proposed
method, we incorporated the proposed method into a sin-
gle-pixel LiDAR system upgraded from the one we built pre-
viously [5]. As schematically shown in Fig. 7(a), the upgrade
was mainly done by replacing the active modulation module
based on a rotating ground glass in Ref. [5] by a DMD-based
passive one. The light source is a solid-state pulsed laser with
the center wavelength of 532 nm and the pulse width of 8 ns at
the repetition rate of 10 kHz. The laser light was first colli-
mated and expanded, and then it was sent out to illuminate
a remote target. The echo light scattered back from the target
was collected by an imaging optic (f � 313 mm) with the an-
gular field of view (FOV) of 1.5° and projected onto the DMD,
on which it was encoded by the learned patterns H�. Finally,
the encoded light was focused to a photomultiplier tube (PMT,
H10721-01, Hamamatsu). The PMT provides a time-resolved
signal that can be used to calculate each depth slice of a 3D
object. The single-pixel LiDAR experiment was performed
in an outdoor environment. As shown in Fig. 7(b), the object
to be imaged was a TV tower located at about 570 m away from
the LiDAR system. It is practically reasonable to assume that
different depth slices of the object do not have spatial overlap,
and the reflectivity is real and non-negative.

To obtain a more general model for the remote sensing task,
we retrained the same decoding DNN on a training set com-
posed of 90,000 images (64 × 64 pixels in size) taken out of the
STL10 dataset [39]. In this DNN, the size of the feature maps
should be changed in accordance to the image size. Thus, the
pattern H� generated by the DNN to encode the echoed light
has the dimension of 64 × 64 × 1024.

For each measurement, the PMT was triggered with a time
delay of 3700 ns with respect to that of the laser emission so

(a) (b)

Iteration step Iteration step Iteration step

M
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E

M
S

E

M
S

E
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Fig. 4. Convergence behavior of different error functions that mea-
sure (a) the objective function, (b) the prediction error, and (c) the
error between the estimated bucket signal and the ideal one.
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Fig. 5. Experimental results. The images reconstructed by DGI
alone, DGI with physics-informed DNN, and the fine-tuning
method. The sampling ratio β � 6.25%.
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Fig. 6. Experimental results: images of the badge of our institute
reconstructed by (a) HSI with β � 100% (it serves as the ground
truth), (b) HSI with β � 6.25%, (c) DCAN, (d) TVAL3, (e) fine-tun-
ing with random initialization, (f ) DGI with learned patterns, (g) DGI
with physics-informed DNN, and (h) the fine-tuning process.
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that the echoed light contains the reflectivity information of the
object within the FOV. The echoed signal measured by the
PMT has the dimension of 1 × 256. This corresponds the im-
aging range from 555 to 593.4 m, which is enough to contain
the whole 3D volume of the object within the FOV. The PMT
measurements produced 256 1 × 1024 bucket signals, from
each of which one can recover a depth slice of the 3D object.
We plot 6 out of them in Fig. 7(c), corresponding to the time
bins marked in the echoed light in the inset of Fig. 7(b).
Stacking all the depth slices together, one can reconstruct
the 3D image of the object [Fig. 7(d)].

For comparison, we also plot the images reconstructed by
DGI with learned pattern illumination, ghost imaging via spar-
sity constraint (GISC) [5] side by side in Figs. 7(c) and 7(d).
These two images were post-processed by use of median filter-
ing and non-negative constraint. It is apparent that the pro-
posed method has the best performance as evidenced by the
clean background, high contrast, the fine details of the recon-
structed image.

Finally, let us analyze the time efficiency. First we note that
the time period to display all the 1024 learned patterns on
DMD, and the DGI reconstruction for each depth-slice image
is at the scale of tens of milliseconds. It is therefore in principle
possible to perform 3D LiDAR imaging in real time.
Comparing with the scanning imaging LiDAR [40], the pro-
posed method has the potential to operate in a more time-
efficient way.

4. CONCLUSION

We have proposed a physics enhanced deep learning framework
for SPI. The incorporation of physics mainly brings two aspects
of advantages. First, the physics informed decoding layer allows
us to optimize the illumination patterns and improve the per-
formance of the decoding DNN. Second, the model-driven
fine-tuning process imposes an interpretable constraint to
the DNN output, so that it is not restricted by the issue of
generalization.

We have demonstrated the proposed methods with simula-
tion, in-house, and outdoor experimental data. In particular, we
have shown that it allows high quality SPI with β as low as
6.25%. The 3D SPI LiDAR experiment demonstrated that

the proposed framework has great potential for 3D remote
sensing in real time.

In comparison to conventional data-driven deep learning
[20,21] and physics-driven [26,27] optimization approaches,
the proposed fine-tuning process takes advantage of both of
them, making it possible to use data prior information, i.
e., characteristics of the objects, for solving ill-posed inverse
problems. Besides, the issue of generalization in conventional
learning-based methods can be eliminated at the cost of iter-
ative calculations. As a result, the proposed framework should
be applicable for diverse computational imaging systems, not
just limited to the SPI we discussed here.

However, it is worth pointing out that the proposed method
relies on the accurate model of the forward propagation, mak-
ing it difficult to use in the cases that the physical model cannot
be accurately modeled, e.g., imaging through optically thick
scattering media. Further efforts should be made to solve this
problem.
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