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Topological systems containing near-field or far-field couplings between unit cells have been widely investigated
in quantum and classic systems. Their band structures are well explained with theories based on tight-binding or
multiple scattering formalism. However, characteristics of the topology of the bulk bands based on the joint
modulation of near-field and far-field couplings are rarely studied. Such hybrid systems are hardly realized
in real systems and cannot be described by neither tight-binding nor multiple scattering theories. Here, we pro-
pose a hybrid-coupling photonic topological insulator based on a quasi-1D dimerized chain with the coexistence
of near-field coupling within the unit cell and far-field coupling among all sites. Both theoretical and experimental
results show that topological transition is realized by introducing near-field coupling for given far-field coupling
conditions. In addition to closing and reopening the bandgap, the change in near-field coupling modulates the
effective mass of photonics in the upper band from positive to negative, leading to an indirect bandgap, which
cannot be achieved in conventional dimerized chains with either far-field or near-field coupling only. © 2021
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1. INTRODUCTION

Inspired by the conception of topological insulators in electron
systems [1–4], topological photonics provide a new platform to
demonstrate the exotic electromagnetic (EM) wave transporta-
tion phenomena, such as reflection-free one-way edge modes
[5], non-Hermitian topological light steering [6], and topologi-
cal multifrequency trapping [7,8]. As a growing research field in
recent years, massive efforts have been devoted to uncovering
the untrivial topological properties [9–18]. The progress in
topological photonics covers a broad spectrum, such as high-
order topology [19–22], non-Hermitian topology [23,24],
nonlinear topological interface state [25], and Floquet topologi-
cal insulators [26]. Because of the topological protection
mechanism, it is demonstrated that topological edge modes
are robust against the imperfections of the materials and thus
can be applied to unidirectional transmission [5,27,28], topo-
logically protected optical delay line [29–31], and defect-im-
mune information transmission [32]. Especially, 1D
topological photonic systems have attracted a lot of attention
due to their clear physical concept and easy fabrication

[33–42]. According to the different coupling mechanism in
photonic topological insulators (PTIs), one can classified them
into two categories: near-field-coupling PTIs or far-field-cou-
pling PTIs. In near-field-coupling PTIs, for instance, the
Su–Schrieffer–Heeger (SSH) model describes topology in di-
merized 1D structures with alternating near-field evanescent
couplings [43–45]. In far-field-coupling PTIs, for example,
photonic crystals with periodic wavelength-scaled structures
give topological band inversion because of the far-field cou-
plings mechanism [18,46,47]. Although the coupling mecha-
nism is different, their systematic Hamiltonians are Hermitian.
Bloch bulk bands thus can be described by tight-binding or
multiple scattering theories to classify topological bands.

Recently, hybrid-coupling systems containing both near-
field couplings and far-field couplings have attracted ongoing
interest. These photonic structures introduced more degrees of
freedom to modulate the EM wave in new ways, such as bound
states in the continuum [48,49] and topological Fano resonan-
ces [50,51]. However, the topologies of the bulk bands of
hybrid-coupling PTIs are rarely studied because the band

Research Article Vol. 10, No. 1 / January 2022 / Photonics Research 41

2327-9125/22/010041-09 Journal © 2022 Chinese Laser Press

https://orcid.org/0000-0001-9774-7693
https://orcid.org/0000-0001-9774-7693
https://orcid.org/0000-0001-9774-7693
https://orcid.org/0000-0002-4139-9789
https://orcid.org/0000-0002-4139-9789
https://orcid.org/0000-0002-4139-9789
mailto:xishi@shnu.edu.cn
mailto:xishi@shnu.edu.cn
mailto:xishi@shnu.edu.cn
mailto:yongsun@tongji.edu.cn
mailto:yongsun@tongji.edu.cn
mailto:yongsun@tongji.edu.cn
https://doi.org/10.1364/PRJ.441278


structures of hybrid-coupling systems cannot be derived using
either tight-binding or multiple scattering theory. On the other
hand, it is difficult to have a photonic structure in which near-
field coupling and far-field coupling can be independently
adjusted.

In this paper, we propose a model of hybrid-coupling PTIs
based on a special quasi-1D dimerized chain with the coexist-
ence of near-field coupling within the unit cell and far-field
coupling among all sites. As a new controllable degree of free-
dom, the effect of the intracell near-field coupling on the band
structure is investigated using the Bloch band theory based on
temporal coupled-mode theory and transfer matrix method. A
topological transition of such hybrid-coupling PTIs is achieved.
It is noted that the joint modulation of both types of coupling
makes switching the band topology more flexible, compared
to that in the ordinary 1D systems with either far-field or
near-field coupling. In detail, the propagating phase (far-field
coupling) and the near-field coupling between two resonant
scatters in the same unit cell can be independently adjusted
by the distance along the backbone waveguide and their mutual
inductance, and the band topologies of the system, which
are characterized with Zak phases, can be controlled by these
two variables. The interface mode in the heterostructure com-
posed of a far-field-coupling PTI and a hybrid-coupling PTI
with distinguished band topology is demonstrated experimen-
tally by measuring the reflection and the field distribution.
Moreover, the change in near-field coupling in this hybrid-
coupling PTI modulates the effective mass of photonics in
the interested band from positive to zero (flat band) to negative,
and finally results in an indirect bandgap, which is impossible
in ordinary dimerized chains. We believe our results pave the
way to understand the unique role of hybrid coupling in band
topology, and may find applications in compact wave absorbers,
filters, and topological photonic devices.

2. TOPOLOGICAL PHASE TRANSITION IN THE
1D DIMERIZED FAR-FIELD-COUPLING PTIS

We start with a simple model to describe a dimerized 1D chain
with far-field coupling only. The scheme of the chain is shown
in Fig. 1(a). An and Bn represent two locally resonant scatters in
the nth unit cell. They have the same resonance frequency f 0,
and are coupled to the backbone waveguide at the same cou-
pling rate γ. The scattering waves of the resonant scatters are
radiated into the single-mode backbone waveguide; thus, the
far-field coupling among the scatters is achieved through the
backbone waveguide in indirect manners. In contrast, the near-
field coupling originates from the direct superposition of the
evanescent waves from the adjacent scatters. A parameter
Δ � d∕L is introduced to describe the dimerization, where
d is the distance between An and Bn along the waveguide,
and L is the period of the dimerized chain.

An and Bn in a compound unit cell can couple with all the
other resonant scatters through the propagating waves in the
backbone waveguide. For the nth compound unit cell shown
in Fig. 1(b), the dynamic equations for two resonance modes
(ãn � aneiωt and b̃n � bneiωt ) at An and Bn can be written as
[52,53]

_̃an � �iω0 − γ�ãn � Cb̃n � i
ffiffiffi
γ

p
e−ikL�1−Δ�∕2S̃�L

� i
ffiffiffi
γ

p
e−ikL�1�Δ�∕2S̃�R , (1)

_̃bn � �iω0 − γ�b̃n � Cãn � i
ffiffiffi
γ

p
e−ikL�1�Δ�∕2S̃�L

� i
ffiffiffi
γ

p
e−ikL�1−Δ�∕2S̃�R , (2)

where C � −γe−ikΔL (k � ω∕c is the propagation constant of
the backbone waveguide) indicates the far-field coupling
between two resonance modes, and S̃�L � S�L e

iωt and
S̃�R � S�R e

iωt denote the incoming waves from the left and
right sides, as shown in Fig. 1(b). ω0 � 2πf 0 is the resonance
angular frequency. Since the unit cell is reciprocal and mirror-
symmetrical, the output waves S−L and S−R at two sides are re-
lated to S�L and S�R by the scattering matrix�

S−L
S−R

�
�

�
t r
r t

��
S�R
S�L

�
: (3)

The transfer matrix of a unit cell in the EM system can be
obtained from Eq. (3) by rearranging the incidence waves and
outgoing waves as�

S�L
S−L

�
�

� 1
t − rR

t
rL
t

t2−rLrR
t

��
S−R
S�R

�
� T

�
S−R
S�R

�
: (4)

We suppose S�R � 0. The output wave at the right side in
the waveguide is the superposition of the directly transmitted

Fig. 1. (a) 1D dimerized chain with the unit cell length L and the
distance d between two sites An and Bn. Δ � d∕L is the dimerized
parameter. Two sites An and Bn are both coupled to the backbone
waveguide at the same coupling rate γ, and they are directly coupled
to each other through near field at a coupling rate κ. (b) Schematic of
the unit cell excited by the left and right incident EM waves noted as
S�L and S�R . The output EM waves from two sides are noted as S−L and
S−R . (c) Reflectivity and (d) reflection phase for a semi-infinite 1D
chain modulated by the dimerized parameter Δ with the vanished
near-field coupling (κ � 0). The first and second band gaps are noted
as G1 and G2 in (c). The second and third pass bands are inversed for
the 1D dimerized chain with two different dimerized parameters
Δ � 0.165 and Δ � 0.25 (denoted by the white dashed lines).
The reflection phases of these two cases for the second band gap have
different signs.
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EM waves S�L e
−ikL, and the scattering waves from the resona-

tors i
ffiffiffi
γ

p
e−ikL�1�Δ�∕2an and i

ffiffiffi
γ

p
e−ikL�1−Δ�∕2bn. The reflection

wave at the left side is the superposition of the scattering waves
from two sites. Hence, the transmission and reflection coeffi-
cients for the unit cell can be obtained by
t � e−ikL � �i ffiffiffi

γ
p

e−ikL�1�Δ�∕2an � i
ffiffiffi
γ

p
e−ikL�1−Δ�∕2bn�∕S�L ,

(5)

r � �i ffiffiffi
γ

p
e−ikL�1−Δ�∕2an � i

ffiffiffi
γ

p
e−ikL�1�Δ�∕2bn�∕S�L : (6)

Then, we can calculate the band structures, as well as the
transmission and reflection coefficients for the 1D chains based
on the scattering matrix.

The topological phase transitions are commonly accompa-
nied by the closing and reopening of the band gaps, which cor-
respond to the total reflection bands for a semi-infinite
structure. We first calculate the reflectivity and reflection phase
of a semi-infinite dimerized chain with the help of impedance
boundary condition (see Appendix A), with the fitted param-
eters f 0 � 5.83 GHz, γ � 4.19 GHz, and L � 40 mm. The
reflectivity and the reflection phase as functions of Δ and ω are
shown in Figs. 1(c) and 1(d), respectively. Here, we focus on
the second band gap (G2) of the 1D chain. It gradually closes
and then reopens by continuously tuning the dimerized param-
eter from Δ � 0.165 to Δ � 0.25 [white dashed lines in
Figs. 1(c) and 1(d)]. The topological phase transitions occur
at Δ � 0.203 (or Δ � 0.797) at which the structure with
two adjacent scatters meets the Fabry–Perot (FP) cavity condi-
tions at the second Bragg frequency (ω � 0.8ω0). In addition,
the change of the sign of the reflection phase for this band gap
also confirms the topological phase transition [47].

3. TOPOLOGICAL PHASE TRANSITION IN THE
1D DIMERIZED HYBRID-COUPLING PTIS

Next, we extend the multiple scattering theory into the 1D
dimerized far-field coupling model with additional near-field
coupling between two scatters An and Bn in the unit cell.
The hybrid coupling in Eqs. (1) and (2) is rewritten as
C � −γe−ikΔL − iκ, where κ is the near-field coupling between
An and Bn. The calculated reflectivity as a function of Δ and ω
for κ � −0.044ω0 and κ � −0.137ω0 is plotted in Figs. 2(a)
and 2(c), and the corresponding reflection phase is shown in
Figs. 2(b) and 2(d), respectively. If we take a specific dimerized
parameter, for instance, Δ � 0.165, the second band gap closes
at κ � −0.044ω0 and reopens at κ � −0.137ω0 due to the
joint modulation of near-field and far-field coupling. It is no-
ticed that, in the purely far-field coupling condition [Fig. 1(c)],
the symmetry inversion of reflectivity happens as Δ � 0.5,
which corresponds to the case of a chain with a single
elementary unit cell of size L∕2. This symmetry inversion of
reflectivity breaks in the hybrid coupling conditions in
Figs. 2(a) and 2(c).

To investigate in detail the modulation of topological prop-
erties in the presence of near-field coupling, the reflectivity and
reflection phase are given in Fig. 3 as functions of near-field
coupling κ and ω for Δ � 0.165. The near-field coupling is
physically different from the far-field coupling. The far-field
coupling stems from multiple scattering, which means that
shifting the dimerized parameters will affect the physical

properties for all passbands, whereas the near-field coupling
modulates only limited bands near the resonant frequency of
the units. The first band gap in Fig. 3(a) keeps almost un-
changed as it is away from the resonance frequency and is
not influenced by the near-field coupling. For the second band
gap, the band inversion is observed with the increasing strength
of near-field coupling. Hence, the near-field coupling, serving
as a new degree of freedom, is an effective parameter to control
topological properties of the dimerized 1D chain.

To fully uncover the topological properties of this hybrid
coupling 1D model, we give the band structures of hybrid sys-
tems. In the condition of the Bloch boundary condition
S−R � eiqLS�L and S−L � eiqLS�R , the scattering matrix

S �
�

t rL
rR t

�
in Eq. (3) can transform to

����S −
�
e−iqL 0
0 eiqL

����� � 0, (7)

where q denotes the Bloch wave vector.

Fig. 2. (a) Reflectivity and (b) reflection phase of the semi-infinite
1D dimerized chain with intracell near-field coupling κ � −0.044ω0.
Similarly, (c) and (d) are the reflectivity and reflection phase of the 1D
chain with the near-field coupling κ � −0.137ω0. For a fixed dimer-
ized parameter Δ � 0.165 indicated by the white dashed lines in
(a)–(d), the second band gap closes in (a) and reopens in (c).

Fig. 3. (a) Reflectivity and (b) reflection phase of the semi-infinite
1D dimerized chain as functions of near-field coupling and frequency
for a specific dimerized parameter Δ � 0.165. The gradually increased
near-field coupling strength leads to the band inversion for the second
and third bands. The second band gap closes at κ � −0.047ω0.
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The dispersion relation cannot be presented as an elegant
analytical solution because of the complexity of this model.
But we can numerically calculate the band structures for differ-
ent near-field coupling strengths κ with the fixed dimerized
parameter of Δ � 0.165, as shown in Fig. 4. We mark the first
four bands and first four (or three) band gaps as B1–B4 and
G1–G4 (G3), respectively. As the near-field coupling strength
jκj increases, the bands B2 and B3 touch each other at
κ � −0.044ω0 in Fig. 4(b), and then separate again [see
Figs. 4(c)–4(f )].

We calculate the Zak phases of the first few bands to de-
scribe the topological transition quantitatively. Zak phases
are initially defined as the characteristic quantity to describe the
electron movement in a 1D periodic solid system [54] and then
extended to a 1D photonic system with mirror symmetry to
depict the topological properties of pass bands. Generally,
the Zak phase can be calculated based on the original defini-
tion. First, one can find the period part un,q of the Bloch wave
En,q that meets the relation En,q � un,qeiqx . The Bloch wave
can be obtained from the eigenvector of the transfer matrix of
the entire unit cell and thus we define the Zak phase as [18]

θZakn �
Z

π∕L

−π∕L

�
i
Z

L∕2

−L∕2
dxε�x�u�n,q�x�∂qun,q�x�

�
dq, (8)

where i
R L∕2
−L∕2 dxε�x�u�n,q�x�∂qun,q�x� is the Berry connection,

ε�x� represents the dielectric function of the transmission

channel, and the EM waves propagate along the x direction.
For this dimerized chain, one can quantize the Zak phase at
either 0 or π. However, the Zak phase is ill-defined for the case
where two pass bands are crossed. This issue can be overcome
by bringing in the surface bulk correspondence in the 1D sys-
tem. The rigorous relation between the sign of the reflection
phase in the nth gap and the sum of Zak phases of all the iso-
lated bands below the band gap can be described as

sgn�arg�rn�� � �−1�n�−1�p exp
�
i
Xn
m�1

θZakm

�
, (9)

where p is the number of band crossing points below the nth
band gap.

The Zak phase of an isolated band can also be determined
by identifying all zero-reflection states of the semi-infinite 1D
chain (or a single unit cell). It has been demonstrated that each
zero-reflection state corresponding to a singular point of zero
reflection in reflection spectrum contributes π to the Zak
phase. The Zak phase of each isolated band obtained by this
method is given in Fig. 4 for different Δ. The singular points in
the studied frequency bands originate from two different mech-
anisms [47]. One is the nonresonance point, which means no
scattering wave from side branches; i.e., the frequency of inci-
dent wave ω � 0. The other type of singular points stems from
the destructive interference of multiple backscattering from the
resonant units. For the former singular point, it always keeps at
the origin for different setups of near-field coupling κ and di-
merized parameter Δ. For the latter, however, the singular point
moves in the parameters space composed of κ and Δ, which
induces the band inversion when the singular point shifts from
one pass band to another one.

The band inversion leads to contributing π (or −π) to the
Zak phase of two adjacent pass bands. It has been also argued
that two kinds of single negative materials are appropriate to
describe the trivial and nontrivial topological materials. The
single negative materials are defined as εeffμeff < 0, where
εeff and μeff are the effective relative permittivity and relative
permeability. Concretely, the materials satisfying the conditions
εeff < 0 and μeff > 0 are εeff -negative materials (ENG), while
the ones satisfying εeff > 0 and μeff < 0 are μeff -negative ma-
terials (MNG) [55–58]. εeff and μeff of the studied 1D dimer-
ized chain within the band gaps can be retrieved by using the
standard method of the retrieval of the effective permittivity
and permeability of metamaterials from the reflection and
transmission coefficients [55,59], as shown in Fig. 4 with
red dots and orange rhombus, respectively (see Appendix B).
For the considered system above, the chains are, respectively,
MNG and ENG in G2 for κ � 0 and κ � −0.137ω0 [see
Figs. 4(a) and 4(f )]. The change of topological properties in
G2 is consistent with the results of the band inversion analysis.
When the EM wave is incident from the vacuum to a semi-
infinite 1D dimerized chain, the reflection phase is positive
for ENG and negative for MNG. These theoretical results pro-
vide more evidences to classify PTIs.

It should be mentioned that all band gaps are direct band
gaps for the previously studied 1D dimerized chains with either
far-field or near-field coupling only. Figure 4(a) shows an ex-
ample of far-field coupling PTIs, where the momenta of the
bottom of the upper band and the top of the lower band

Fig. 4. Band structures of infinite 1D dimerized chain for a fixed
dimerized parameter Δ � 0.165, but different near-field coupling
strengths. The gray shadows in (a) indicate band gaps marked as
G1–G4, and the pass bands represented by the black lines are noted
as B1–B4. The Zak phases for each band are marked. For other cases
from (b) to (f ), only the Zak phases are noted in the diagrams. The
effective permittivity εeff and permeability μeff for the band gaps are
plotted. The materials with εeff < 0 are the epsilon-negative materials
(ENG) while the materials with μeff < 0 are mu-negative materials
(MNG). ENG and MNG own different topological properties.
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are always the same [47]. This situation has changed with the
introduction of hybrid coupling. It has been shown in Figs. 4
(b)–4(f ) that an indirect band gap appears in the band diagram
for the hybrid-coupling PTIs. For example, the gap G3 be-
comes an indirect gap when the near-field coupling is small
(κ � −0.109ω0), as shown in Fig. 4(c). More interestingly,
the dispersion of some bands (e.g., B1 and B2) seems unaf-
fected by near-field coupling, whereas the dispersion of some
other bands (e.g., B3 and B4) could be modified strongly with
the increase of the near-field coupling strength [Figs. 4(a)–4
(f )]. Comparing Fig. 4(e) with Fig. 4(c), it is obvious that
the effective mass of photon at Γ point (q � 0) for B3 changes
from positive to negative. It is worth noting that in Fig. 4(d),
B3 becomes a flat band with a critical near-field coupling of
κ � −0.117ω0, at which the two adjacent unit cells act as
two perfectly reflecting mirrors at the flat band frequency.
Thus, the waves can be completely localized between two unit
cells. This behavior comes from the fact that the mechanisms of
band generation for near-field coupling and far-field coupling
are different. In the near-field model, the number of the bands
is relevant to the number of the resonator sites in a unit cell,
and band widths are dependent on the near-field coupling
strength. For the far-field coupling case, however, the origina-
tion of the band gaps is caused by the destructive interference of
multiple scattering; thus, we have infinite bands for the far-field
coupling model due to periodic scattering. This is the reason
why only limited bands, whose frequencies are near the reso-
nance frequency, are modulated by the near-field coupling. The
band dominated by the near-field coupling [B3 in Fig. 4(e)]
shows distinguished dispersion relation compared to the band
dominated by far-field coupling [B3 in Fig. 4(a)]. Such com-
petition between far-field coupling and near-field coupling in
the unit cell is absent in purely far-field coupling or near-field
coupling systems. This unique characteristic may have applica-
tions in slow light photonic devices, as well as a nonlinear mul-
tiphoton process.

For a clearer insight into the effects of joint modulation of
near-field and far-field couplings on the topological properties,
the Zak phase diagram of the second pass band in the param-
eters space composed of κ and Δ is plotted in Fig. 5. The first
band gap is closed for certain κ and Δ along the black dashed

line and the second band gap is closed for κ and Δ along the
white lines. The diagram is divided into four regions due to the
competition of near-field and far-field coupling and the rel-
evant Zak phases are noted in Fig. 5. The Zak phase diagram
is available for designing the 1D dimerized chain with specific
topological properties.

4. EXPERIMENTAL DEMONSTRATION OF
TOPOLOGICAL INTERFACE STATE WITH
HYBRID COUPLING PTIS

Microwave experiments based on microstrip transmission line
are conducted to demonstrate the hybrid-coupling-induced
topological transition by measuring the reflection or transmis-
sion coefficients of the samples. The topologically distinguished
two chains are composed of five unit cells with κ � 0 and
κ � −0.12ω0, respectively (see Appendix C). The samples
are fabricated on a 0.787 mm thick Rogers RT 5880 substrate
(relative permittivity εr � 2.2) using printed-circuit-board
technology [60], as shown in Fig. 6(a). We take the same width
of side branch h � 0.2 mm, the same total length of side
branch l � 11.5 mm (which determines the resonance fre-
quency of the bare scatter), the same length of unit cell
L � 40 mm, and the same dimerized parameter Δ � 0.165
for the two samples. The intracell near-field coupling in hybrid
PTI (sample II) is realized by bending the side branches toward
each other in the same unit cell, where the gap g � 0.2 mm
and the coupling length of the side branches l1 � 2.8 mm.

We can theoretically calculate the reflection coefficient of
the EM wave incident to the quasi-1D chain to compare it with
the experimental results. The transfer matrix of a unit cell in the
EM system is noted in Eq. (4). For five unit cells, the total
transfer matrix T �5� � T 5. The transmission and reflection co-
efficients are expressed in terms of the total transfer-matrix el-
ements as t � 1∕T �5�

22 and r � −T �5�
21 ∕T

�5�
22 .

The experimental and theoretical results of the reflection
coefficients are shown in Fig. 6. The reflection spectra for sam-
ple I and sample II in Fig. 6(a) are plotted in Figs. 6(b) and 6(c),
respectively. Three band gaps with high reflectivity represented
by the gray area are shown in Figs. 6(b) and 6(c). The calcu-
lation results (black lines) of reflection amplitude agree well
with the measurements (red dots). For the 2nd band gaps
(G2), the reflection phases of the two samples are with opposite
signs. The different sign of reflection phases for the 2nd band
gaps indicates the topological transition induced by hybrid cou-
pling in this 1D structure.

To further verify the different topological properties of these
two dimerized chains, the topological interface state in sample
III [see Fig. 6(a)] is investigated. The sample III is composed by
two paired chains with a total length of 240 mm. According to
surface bulk correspondence, there will be an interface mode
emerging in the original gap G2 because of the opposite signs
of the reflection phase. As shown in Fig. 6(d), a reflection valley
indeed appears in the gap G2 region for the sample III in both
calculated and measured reflection spectra. Moreover, the mea-
sured and simulated (CST MICROWAVE STUDIO) electric
field distribution (in the backbone waveguide) at this reflection
valley frequency (f � 4.53 GHz) is given in Fig. 6(e). Field
enhancement at the interface (x � 120 mm) is observed.

Fig. 5. Zak phase diagram of the second band under the joint
modulation of near-field coupling κ and the far-field coupling (dimer-
ized parameter Δ). The first band gap is closed for the κ and Δ in-
dicated by the black dashed line while the second band gap is closed for
the κ and Δ represented by the two white dashed lines.
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The maximum electric field strength at the interface indicates
that it is a topological interface mode.

5. CONCLUSION

In summary, we theoretically and experimentally investigate the
topological properties of a dimerized 1D chain modulated by
hybrid coupling. The introduced intracell near-field coupling
in a far-field coupling dimerized chain can induce band inver-
sion without tuning the dimerized parameter. Zak phases in
this hybrid coupling model for different near-field couplings
are investigated in detail. The interface mode is realized by pair-
ing two dimerized chains with opposite reflection phases in the
second band gaps to further confirm the topological phase tran-
sition. In addition, we notice that there are indirect band gaps
in the hybrid coupling PTIs, and the near-field coupling only
modulates the dispersion of the bands around the scatter res-
onance frequency. A flat band can be achieved by properly
choosing the coupling parameters. The unit, which is near-field
and far-field coupled to the other unit, is an analogue to the

giant atom with multiple coupling channels in a quantum-
waveguide system [61–63]. Hence, our model may provide
a potential platform to study the interplay between giant atoms
and topology. The results in our paper can be extended to a 2D
case and even higher dimension.

APPENDIX A: CALCULATION OF THE
REFLECTION COEFFICIENT FOR THE SEMI-
INFINITE 1D CHAIN

In this appendix, the calculation of the reflection coefficient for
the semi-infinite dimerized 1D chain is shown. The transfer
matrix related to the incoming wave and outcoming wave
for the nth unit cell is given in the main text by� S�n,L
S−n,L

	
� T

� S−n,R
S�n,R

	
. The elements in T can be obtained from

Eq. (4). In another definition, the transfer matrix is defined by�
En�1

Hn�1

�
� M

�
En
Hn

�
, (A1)

which relates the electric and magnetic fields at two sides of the
unit cell. The two transfer matrixes can linearly transform to
each other in the form

M � PTP−1, (A2)

where P �
�

1 1
1∕Z 0 −1∕Z 0

	
and Z 0 is the characteristic

impedance of the microstrip transmission line. Here, we have
Z 0 � 50 Ω. The impedance boundary condition requires that
in the periodic structure, the impedance at all interfaces be-
tween unit cells should be the same, and we have

En�1

Hn�1

� En

Hn
� Z : (A3)

From Eqs. (A2) and (A3), the solution for Z is

Z � M 11 −M 22 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M 11 −M 22�2 � 4M 21M 12

p
2M 21

: (A4)

As our system is passive, the real part of impedance Z must
be greater than zero. The reflection coefficient can thus be ob-
tained by

r � Z − Z 0

Z � Z 0

: (A5)

APPENDIX B: DETERMINATION OF EFFECTIVE
PERMITTIVITY AND PERMEABILITY OF THE 1D
PHOTONICS METAMATERIALS

In this appendix, we show that the effective relative permittivity
(εeff ) and relative permeability (μeff ) are determined from the re-
flection and transmission coefficients of a single unit cell. εeff and
μeff are related to the normalized impedance Z and refractive in-
dex n by εeff � n∕Z and μeff � nZ ; therefore, we can obtain the
values of εeff and μeff by retrieving Z and n. Next, we show how
to calculate Z and n from reflection and transmission coefficients.

For a 1D metamaterial with length L, the transmission
coefficient is related to Z and n by

t−1 �
�
cos�nkL� − i

2

�
Z � 1

Z

�
sin�nkL�

�
eikL, (B1)

Fig. 6. (a) Three samples of 1D chain for (I) dimerized parameter
Δ � 0.165, near-field coupling κ � 0, (II) dimerized parameter
Δ � 0.165, near-field coupling κ � −0.12ω0, and (III) pairing of
two aforementioned samples to demonstrate the topological interface
state. The samples are fabricated on the Rogers RT 5880 double-side
copper-clad board. The reflectivity and reflection phases for sample I
and sample II are experimentally and theoretically shown in (b) and
(c), respectively. The gray shadows indicate the band gaps. The reflec-
tion for the sample III is shown in (d), where the shadows are band
gaps. There is a small valley only in the second band gap, which in-
dicates the existence of an interface state. The electric field amplitude
distribution of the interface state is measured and compared to the
simulation results in (e).
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where k � ω∕c is wavenumber of the incident wave. On the
other hand, the reflection coefficient r is also related to Z and
n by

r
t 0
� −

i
2

�
Z −

1

Z

�
sin�nkL�: (B2)

Here, t 0 � teikL. Z and n can be found by inverting
Eqs. (B1) and (B2). The expression of Z is given as

Z � 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� r�2 − t 02
�1 − r�2 − t 02

s
: (B3)

For the passive materials, the requirement that Re�Z � > 0
should guarantee the choice of Z . For refractive index n, we
have the imaginary and real parts

Im�n� � 	Im



arccos

�
1
2t 0 �1 − �r2 − t 02��

�
kL


, (B4)

Re�n� � 	Re



arccos

�
1
2t 0 �1 − �r2 − t 02��

�
kL


� 2πm

kL
, (B5)

where m is an integer. Similarly, the passive materials require
Im�n� > 0, which leads to the definite results of Im�n� and
Re�n�. In our system, L is smaller than the wavelength in
the studied frequency band. The cumulative phase when the
EM wave propagates through a unit cell does not surpass 2π
and therefore we take m � 0 in our calculation.

APPENDIX C: DETERMINATION OF THE
PARAMETERS THROUGH CURVE FITTINGS

In this appendix, the fitted parameters of far-field coupling γ,
resonant frequency f 0 of the resonant sites, and near-field cou-
pling κ are obtained by curve fittings.

First, we show how to obtain the values of far-field coupling
γ and resonant frequency f 0. For a side resonant branch excited
by the EM wave from Port1 through the transmission channel
as shown in Fig. 7(a), the dynamics equation of the resonant
mode (ã1 � a1eiωt ) at the side branch can be written as

_̃a1 � �iω0 − γ − Γ�ã1 � i
ffiffiffi
γ

p
e−ikL∕2S̃�L , (C1)

where ω0 � 2πf 0 and Γ is the intrinsic loss of the side branch.
The parameters in Fig. 7(a) are L � 40 mm, h � 0.2 mm, and
l � 11.5 mm. The reflection at Port1 reads

r1 � i
ffiffiffi
γ

p
e−ikL∕2a1∕S�L : (C2)

By fitting the reflectivity obtained from the simulation with
Eq. (C2), where γ, f 0, and Γ are three parameters to be de-
termined [shown in Fig. 7(b)], we have γ � 4.19 GHz,
f 0 � 5.83 GHz, and Γ � 0.023 GHz. The intrinsic loss Γ
is negligible compared to γ. Thus, the effect of intrinsic loss
is not considered in the main text.

Next the same method is used to find out the value of near-
field coupling κ. The schematic of a unit cell with near-field
coupling and far-field coupling existing simultaneously be-
tween two resonant modes is given in Fig. 7(c). Here,
d � 6.6 mm corresponding to Δ � 0.165, g � 0.2 mm,
and l 1 � 2.8 mm. Using Eq. (6) to fit the reflectivity from
simulation, we have κ � −4.4 GHz.
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