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We study the problem of a temporal discontinuity in the permittivity of an unbounded medium with Lorentzian
dispersion. More specifically, we tackle the situation in which a monochromatic plane wave forward-traveling in a
(generally lossy) Lorentzian-like medium scatters from the temporal interface that results from an instantaneous
and homogeneous abrupt temporal change in its plasma frequency (while keeping its resonance frequency con-
stant). In order to achieve momentum preservation across the temporal discontinuity, we show how, unlike in the
well-known problem of a nondispersive discontinuity, the second-order nature of the dielectric function now
gives rise to two shifted frequencies. As a consequence, whereas in the nondispersive scenario the continuity
of the electric displacement D and the magnetic induction B suffices to find the amplitude of the new forward
and backward wave, we now need two extra temporal boundary conditions. That is, two forward and two back-
ward plane waves are now instantaneously generated in response to a forward-only plane wave. We also include a
transmission-line equivalent with lumped circuit elements that describes the dispersive time-discontinuous
scenario under consideration. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.427368

1. INTRODUCTION

In the past few years, time-variant metamaterials/metasurfaces
have become a hot research topic within the photonics
community, given their potential to boost the degree of manipu-
lation of light–matter interactions achieved by their time-
invariant predecessors. The latter, through the subwavelength
space modulation of the electric and/or magnetic response [1],
allow for alluring possibilities in the way light is controlled and
thus enable a vast range of interesting phenomena and promising
applications from strengthened nonlinearities [2] and ϵ-near-
zero (ENZ) propagation [3,4] to artificial Faraday rotation [5]
and optically driven topological states [6]. On the other hand, an
externally induced time modulation in some of the properties of
these engineered structures largely broadens the degree of
harnessing of light manipulation, in which case we have a time-
varying metamaterial. This spatiotemporal modulation is the
supporting platform of such fascinating effects as magnetless
nonreciprocity [7] or time reversal [8], just to name a few. In
this regard, the research on active metasurfaces has gained a
lot of momentum in the past few years [9–12].

One avenue to induce this temporal variation is the time
modulation of a medium’s dielectric function, e.g., electro-
optically. In Ref. [13], a nonstationary interface was reported

from plasma ionization by a high-power electromagnetic pulse.
The problem of wave propagation in an unbounded medium
with a rapid change—and, to a lesser extent, a slab with sinus-
oidal time variation—in its constitutive parameters was first
theoretically studied in Ref. [14] for the case of nondispersive
permittivity and/or permeability. These nondispersive step
transients, further explored in Refs. [15,16], effectively produce
a “time interface”: based on the continuity of D and B, an in-
stantaneous frequency shift occurs to accommodate the new
permittivity while preserving the wave momentum, and a for-
ward wave and a backward wave arise whose amplitudes are
quantified by what can be seen as the temporal dual Fresnel
coefficients. These step-like discontinuities were later analyzed,
e.g., in a half-space [17] and a dielectric layer [18]. Moreover,
Refs. [19,20] addressed the adiabatic frequency conversion of
optical pulses going through slabs with arbitrarily time-varying
refractive index, while Refs. [21,22] reported wave solutions for
a smooth or arbitrary transition of the refractive index, respec-
tively. Wave propagation undergoing periodic temporal inho-
mogeneities of the permittivity has also been investigated in a
half-space [23], a slab [24–29], or a space-time-periodic (trav-
eling-wave modulation) medium [30–33]: time-periodic varia-
tions exhibit frequency-periodic band-structured dispersion
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relations that include wave vector gaps [26], dual bandgaps of
space-periodic media. As shown in Refs. [24,25,29,34–37], this
time-Floquet modulation can be harnessed to achieve paramet-
ric amplifiers.

Nonetheless, most of the aforementioned works consider
nondispersive susceptibilities only (excepting Refs. [17,18],
where a plasma is parameterized with a nonstationary electron
density, and Ref. [23], where the time-varying parameter is con-
ductivity). In Ref. [38], on the contrary, closed-form Green’s
functions are obtained for pulsed excitations within spatially
homogeneous media with abrupt or gradual temporal changes,
either without dispersion or considering a cold ionized lossless
plasma described with Drude dispersion. Very recently, the
question of time-varying dispersion has been studied from dif-
ferent angles, namely, a transmission line [39] and a meta-atom
[40] with time-modulated reactive loads, and the analysis of the
instantaneous radiation of nonharmonic dipole moments [41]
and nonstationary Drude–Lorentz polarizabilities [42].

In the present work, we assume an initial plane wave at t < 0
with frequency ω− and bring in the effects of Lorentzian
dispersion when considering a step-like change in the plasma
frequency ωp with otherwise constant resonance frequency
ω0. Unlike in Refs. [14–16], this abrupt change gives rise to
two shifted frequencies (in the simplified lossless case, a lower
frequency ω1 < ω0 and an upper frequencyω2 > ω0) that bear
the following interpretation whenω0 is considerably larger than
ω−: while ω1 reflects in essence the change in permittivity sim-
ilarly to the nondispersive case, ω2 characterizes a wave of a dif-
ferent nature, viz. one that has a negligiblemagnetic component;
the medium at ω2 thus possesses ENZ characteristics.

We begin by defining in Section 2 the differential equation
describing the Lorentzian-like dielectric response characterizing
our time-varying medium to further derive the initial condi-
tions across the temporal change in ωp at t � 0. This transition
is perceived as abruptly varying the volumetric density of ω0-
resonating dipoles N � N �t�, our control parameter. As a
starting point, we mainly look into the case where this number
changes from zero to a specified value N�. From the differen-
tial equation relating the polarization vector P to the electric
field E, we show that E, P, and dP

dt are all continuous across
the temporal discontinuity at t � 0. In Section 3 we use pres-
ervation of momentum to analytically find ω1 and ω2 and also
give a detailed numerical account for the evolution of the fre-
quency split over time when the transition is gradual rather
than abrupt. A dynamic analysis toward a full-wave solution
is developed in Section 4 for a lossless scenario. The approach
is first based, in Section 4.A, on the scattering-parameter model
from Ref. [16]. It is further substantiated—and confirmed—in
Section 4.B by a Laplace-transform-based first-principles solu-
tion to the amplitudes for the forward and backward propagat-
ing constituents at ω1 and ω2; this comprehensive development
also recovers ω1 and ω2. Furthermore, we developed a finite-
difference time-domain (FDTD) [43] solver whose simulation
results perfectly agree with our analytical predictions. In
Section 5, we show how this one-dimensional spatial problem
may be likened to a transmission line equivalent that is relatively
simple to use. Further phenomena related to losses are described
in Section 6. Finally, conclusions are drawn in Section 7.

2. TIME-VARYING LORENTZIAN DISPERSION:
INITIAL CONDITIONS

Let us consider, for t < 0, an x-polarized electric field plane
wave traveling in the �z direction and oscillating at a purely
real frequency ω− in an unbounded dispersive medium (for
simplicity, we will assume it lossless for now) whose electric
polarization charge P responds to the electric field E following
a susceptibility χ that can be described in the frequency domain
by a Lorentzian resonance centered at ω0, such that

P�ω� � ϵ0χ�ω�E�ω� � ϵ0
ω2
p

ω2
0 − ω

2 E�ω�, (1)

where ωp � qe
ffiffiffiffiffiffiffi
N

ϵ0me

q
is the plasma frequency, and N is the

volumetric density of polarizable atoms, with me and qe the
electron’s mass and charge, respectively. In the time domain,
this relation adopts the form of the following second-order dif-
ferential equation:

d2P�t�
dt2

� ω2
0P�t� � ϵ0ω

2
pE�t�, (2)

which can be also written as the convolution P�t� �
ϵ0χ�t� �t E�t�, where χ�t� � ω2

p

ω0
sin�ω0t�U �t� is the system’s

impulse response, U �t� is the step function, and �
t
denotes

the linear time-invariant (LTI) convolution operation with re-
spect to t.

Now, let us allow N—and thus ωp—to be time dependent
and consider a scenario where it abruptly changes—
instantaneously and homogeneously—at t � 0 as N �t� �
N − � �N� − N −�U �t�, with N − and N�, some arbitrary pos-
itive constants. After defining A�t� � ω2

p�t�, Eq. (2) becomes

d2P�t�
dt2

� ω2
0P�t� � ϵ0A�t�E�t�, (3)

where we have indicated that the resonance frequency ω0 is
time invariant. Moreover, despite our linear system now being
time variant (LTV), one can still use the convolution operator
and write P�t� � ϵ0χn�t� �t � A�t�E�t�� [44], where we

have defined the normalized impulse response χn�t� �
1
ω0

sin�ω0t�U �t�, or, in the frequency domain,

P�ω� � ϵ0

1
2π A�ω� �ω E�ω�

ω2
0 − ω

2 , (4)

with χn�ω� � 1
ω2
0−ω

2. In short, the dielectric response to an im-

pulse applied at time τ is only a function of N �t � τ� and not
of N �t > τ�: intuitively, any new dipoles brought into the
medium after the electric-field impulse at t � τ simply have
no excitation to respond to; mathematically, this can be traced
back to the invariance of the coefficients in the left-hand side of
Eq. (3) and gives us one key piece of information: regardless of
the step-function discontinuity in N �t�, P�t� is continuous
[note that χn�t � 0� � 0], and so is dP�t�

dt (only a spike in E
would determine otherwise). In the more general framework
of LTV systems, the response observed at time t due to an
impulse at time τ can in this case be recast as h�t, τ� �
ϵ0A�τ�χn�t − τ�, which allows us to write
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P�t� �
Z

t

−∞
h�t, τ�E�τ�dτ: (5)

Importantly, the depicted situation differs from the model
assumed in Ref. [42], where h�t, τ� � ϵ0A�t�χn�t − τ�.
Formally, our continuity of both P�t� and dP

dt across t � 0
can be substantiated as follows. Applying the one-sided
Laplace transform Lff �t�g � f̃ �s�, defined over the temporal
interval t:�0−,∞�, to Eq. (3), and solving for P̃�s�, we have

P̃�s� � ϵ0LfA�t�E�t�g � sP�0−� � dP
dt �0−�

s2 � ω2
0

, (6)

where, e.g., P�0−� stands for P�t � 0−�. A direct application of
the initial value theorem (IVT) [45]

P�0�� � lim
s→∞

sP̃�s� (7)

provides the continuity condition for P:

P�0�� � P�0−�: (8)

Similarly, for dP
dt ,

dP
dt

�0�� � lim
s→∞

�s2P̃�s� − sP�0���: (9)

However, by virtue of Eq. (8) and substituting Eq. (6) with
the understanding that lims→∞LfA�t�E�t�g � 0, we find that
dP
dt is continuous as well:

dP
dt

�0�� � lim
s→∞

�s2P̃�s� − sP�0−�� � dP
dt

�0−�: (10)

Finally, the Laplace-domain polarization emerges when
N − � 0 as

P̃�s� � ϵ0LfA�t�E�t�g
s2 � ω2

0

, (11)

which immediately connects with Eq. (4).

3. KINEMATICS: PRESERVATION OF
MOMENTUM

The existence of dispersion does not change the fact that, as
dictated by electromagnetic momentum conservation, the
new waves arising after the temporal boundary must be shifted
in frequency with respect to ω−, as shown in Refs. [14–16] for a
nondispersive scenario. Our initial wave oscillating at ω− has a
wavenumber k−�ω−� so, after the temporal jump, the supported
new frequencies ω� will be those that satisfy the equality
k−�ω−� � k��ω��. This leads, when there is no magnetic
response, to the transcendental equation ω−

c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ−�ω−�

p
�

ω�
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ��ω��

p
, which in our lossless case can be written, when

ϵ∞ � 1 and thus the relative dielectric permittivity
ϵ�ω� � 1� χ�ω�, as

ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p−

ω2
0 − ω

2
−

s
� ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p�
ω2
0 − ω

2�

s
: (12)

Squaring both sides of Eq. (12) leads to a quartic polynomial
equation in ω� whose four roots determine the new frequen-
cies for t > 0:

ω� � 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 − 4ω2

0ω
2
−�ω2

− − ω
2
0��ω2

− − ω
2
0 − ω

2
p−�

q
2�ω2

− − ω
2
0�

vuut
,

(13)

for which we will denote 	ω1 and 	ω2, with

K � ω2
−�ω2

− � ω2
p� − ω2

p−� − ω2
0�ω2

0 � ω2
p��: (14)

For definiteness, we will choose K � ffip for 	ω1 and
K − ffip for 	ω2 such that ω1 < ω2 (ω2 < ω1) when

jω−j < ω0 (jω−j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � ω2

p−

q
): note that only in the interval

ω0 < jω−j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � ω2

p−

q
of anomalous dispersion, which we

will not address and for which ϵ− < 0, do we get complex
solutions—more precisely, purely real (imaginary) ω1 (ω2).
Specializing Eq. (12) to the case ωp− � 0 (the medium is vac-
uum for t < 0), we have the following characteristic equation
for ω�:

ω4� − �ω2
− � ω2

0 � ω2
p��ω2� � ω2

0ω
2
− � 0, (15)

and Eq. (13) reduces to

ω� �	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− �ω2

0 �ω2
p� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω2

− �ω2
0 �ω2

p��2 − 4ω2
0ω

2
−

q
2

vuut
:

(16)

In order to illustrate how the frequencies evolve from ω− to
�ω1,ω2�, let us for a moment assume that N �t� �
N − � �N� − N −��1� tanh�Rt��∕2, with R some constant de-
scribing the transition rate [in the limit R → ∞, we have

0 1 2 3 4 5

+
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-
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5
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/k

-
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+
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-
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+
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-
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+
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(b)

Fig. 1. (a) Temporal evolution of ωl and ϵl (l � 1,2) as ωp�t� tran-
sitions from ωp− � 0 (vacuum) to ωp� such that ϵ��ω−� � 4 with
ω0 � 2ω−, resulting in ωp� � 3ω−. (b) Dispersion diagram k� versus
ω�, showing the two solutions for ω� that achieve momentum con-
servation. The dashed green line represents ω0.
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�1� tanh�Rt��∕2 → U �t�]. In Fig. 1(a), we consider a
transition from vacuum (N − � 0) to a Lorentzian-like medium
with N� chosen such that ε��ω−� � 4, and with ω0 � 2ω−.
As soon as N� > 0, ω− splits into the pair �ω1,ω2� �
�ω−,ω0�. This is understood once we make ωp− � 0 in
Eq. (12) and take the limit ωp� → 0: in addition to the trivial
solution ϵ1�ω1 � ω−� � 1, we also have ϵ2�ω2 � ω0� �
�ω−
ω0
�2, which in this case is equal to 0.25. Physically, this is just

the manifestation of the natural frequency ω0 of the newly
added oscillators, which may surface depending on the boun-
dary conditions.

Now, we could think of “quantizing” tanh�Rt� and consider
the entire continuous transition N − → N� as a succession of
infinitesimal step-function-like temporal discontinuities. By
doing this, we next go on by applying Eq. (12) twice in our
second temporal jump, with both ω− itself and ω0 as the input
frequencies: it turns out that ω1�t� and ω2�t� are interrelated
such that they both give rise to the same pair of output frequen-
cies, so, notably, there is a pair �ω1�t�,ω2�t�� [blue and red
solid lines in Fig. 1(a)]. This interrelation shows up in that
ω1�t�ω2�t� � ffiffiffiffiffi

ϵ−
p

ω−ω0 or, alternatively—from the men-

tioned transcendental equation ωl �t� �
ffiffiffiffiffiffiffi
ϵ−

ϵl �t�
q

ω−, with

l � 1, 2 and ϵl�Δ ϵ��ωl �—ϵ1�t�ϵ2�t� � ϵ−�ω−
ω0
�2, allowing us

to further write ω1�t� �
ffiffiffiffiffiffiffiffiffiffi
ϵ2�t�

p
ω0 and ω2�t� �ffiffiffiffiffiffiffiffiffiffi

ϵ1�t�
p

ω0. Of course, by making R → ∞, our original ω−

is instantaneously split into the final values of �ω1,ω2�, whereas
making R finite alters the dynamics of the problem: we have a
transient and thus the amplitudes of the final forward and back-
ward waves will be different. In addition, Fig. 1(b) shows the
graphical match of momentum from the dispersion diagram of
our Lorentzian when the blue solid line Re�k�� crosses the
dashed black line k−.

4. DYNAMICS: PLANE WAVE(S) IN A
TIME-VARYING LORENTZIAN MEDIUM

A. Temporal-Interface Scattering Coefficients
In order to find the electromagnetic fields after the temporal
discontinuity at t � 0, we need to solve the wave equation sub-
ject to the temporal boundary conditions (BCs), including
those stated at the end of Section 2. One can find in the liter-
ature [14–16] that, in a nondispersive medium, it suffices to
consider temporal continuity for both D and B, which ensures
that magnetic and electric fields H and E remain bounded,
respectively:D�z, t � 0�� �D�z, t � 0−� and B�z, t � 0�� �
B�z, t � 0−�. This latter condition obviously becomes
H �z, t � 0�� � H �z, t � 0−� when magnetism is not present.
In our case these two still apply, but two extra BCs are needed
to determine the amplitudes of the forward and backward
waves for both frequencies (ω1 and ω2): we can now use the
fact—remarked upon in Section 2—that P�0�� � P�0−� and
dP�0��

dt � P�0−�
dt , where, e.g., P�0	� stands for P�z, t � 0	� to

reduce notation. Importantly, the joint continuities of D and P
lead to the continuity of E : these three conditions are linearly
dependent, so we choose to discard P.

If we adopt the eiωt time-harmonic convention and use
k � k− � k�, our initial forward waves can be written as [note

that, in order to simplify notation, E− stands for E�z, t < 0�],
e.g.,

E− � eiω−t e−ikz , (17a)

H − �
ffiffiffiffiffi
ϵ−

p
η0

eiω−t e−ikz , (17b)

D− � ϵ0ϵ−eiω−t e−ikz , (17c)

dP−

dt
� iω−ϵ0�ϵ− − 1�eiω−t e−ikz : (17d)

Let us now see the complex space-time harmonic depend-
encies from a different perspective and adopt the space-
harmonic complex dependence e−ikz , in which case forward
and backward waves will be described by eiωt and e−iωt , respec-
tively. For t > 0, the fields can be expressed as

E� � e−ikz
X2
l�1

�f l e
iωl t � bl e−iωl t�, (18a)

H� � e−ikz
1

η0

X2
l�1

ffiffiffiffi
ϵl

p �f l e
iωl t − bl e−iωl t�, (18b)

D� � e−ikzϵ0
X2
l�1

ϵl �f l e
iωl t � bl e−iωl t�, (18c)

dP�
dt

� e−ikz iϵ0
X2
l�1

ωl �ϵl − 1��f l e
iωl t − bl e−iωl t�, (18d)

where the unknowns f l and bl represent the amplitudes of the
forward and backward electric field waves oscillating at fre-
quency ωl. Enforcing the time continuity of these four waves
at t � 0 leads—after some straightforward simplifications,

replacing ωl �
ffiffiffi
ϵ−
ϵl

q
ω−, and using the BC for H to simplify

the BC for dP
dt—to the following system of equations:2

666664

1 1 1 1ffiffiffiffiffi
ϵ1

p
−

ffiffiffiffiffi
ϵ1

p ffiffiffiffiffi
ϵ2

p
−

ffiffiffiffiffi
ϵ2

p

ϵ1 ϵ1 ϵ2 ϵ2
1ffiffiffiffiffi
ϵ1

p −
1ffiffiffiffiffi
ϵ1

p 1ffiffiffiffiffi
ϵ2

p −
1ffiffiffiffiffi
ϵ2

p

3
777775

2
6664
f 1

b1
f 2

b2

3
7775 �

2
666664

1ffiffiffiffiffi
ϵ−

p

ϵ−
1ffiffiffiffiffi
ϵ−

p

3
777775, (19)

which gives us the closed-form solution to the unknown
amplitudes:

�f 1, b1� �
ϵ2 − ϵ−

2
ffiffiffiffiffi
ϵ−

p �ϵ2 − ϵ1�
� ffiffiffiffiffi

ϵ−
p 	 ffiffiffiffiffi

ϵ1
p �

, (20a)

�f 2, b2� �
ϵ− − ϵ1

2
ffiffiffiffiffi
ϵ−

p �ϵ2 − ϵ1�
� ffiffiffiffiffi

ϵ−
p 	 ffiffiffiffiffi

ϵ2
p �

, (20b)

where � (−) gives the forward f l (backward bl ) amplitude. A
set of analogous equations expressed only in terms of frequen-
cies can be found in Appendix A.

In Fig. 2(a) we show the temporal evolution of the electro-
magnetic waves at z � λ∕16 around the temporal jump (at
t � 0, indicated with black dashed lines) that results from
Eqs. (12)–(20) when we consider the transition of Fig. 1
(the results obtained from FDTD simulations—marked with
circles—when N �t� follows the previously mentioned
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tanh�Rt� profile perfectly converge to these results as we make
R larger. Here we use R� 105∕T , with T � 2π

ω−
).

Although less practical from a mathematical standpoint than
the unilateral Laplace transform (see Appendix D) in this case,
perhaps taking the Fourier transform (FT fg) of E�t� over the
whole time interval −∞ < t < �∞ helps reveal the transient
nature of our discontinuity. Taking z � 0 for simplicity, from
Eqs. (17a) and (18a), the spectrum of E�z � 0, t� becomes

E�z � 0,ω� �FT fE−�z � 0, t�U �−t��E��z � 0, t�U �t�g

� i
ω −ω−

−
X2
l�1

�
if l

ω −ωl
� ibl
ω�ωl

�
, (21)

which shows nonzero spectral content over the entire
−∞ < ω < �∞ range, commensurate to the fact that an
abrupt change of the medium’s properties gives rise to opera-
tional frequencies that extend to infinity.

1. Approximations for ω0 ≫ ω−

Now, let us ask ourselves what happens when ω0 increases, in
which case we have to consider two different scenarios. In
Figs. 2(b1) and 2(b2), we keep ωp� fixed with the value that
makes ϵ��ω−� � 4 when ω0 � 2ω− and increase the ratio
ω0∕ω−: as this ratio tends to ∞, we have ϵ1�ω1 → ω−� → 1
and ϵ2�ω2 → ω0� → 0 [Fig. 2(b1)], which makes f 1 → 1
[see Fig. 2(b2)]. Noting that

P
l �f l � bl � � 0, this means

the initial plane wave is not altered by the temporal disconti-
nuity, as one would expect from the fact that, given that the
new medium is effectively transparent at ω−, no transfer of en-
ergy should take place between ω− and ω0.

On the contrary, in Figs. 2(c1) and 2(c2) we consider that
ωp� varies such that ϵ��ω−� � 4 regardless of ω0∕ω− [see con-
stant black dashed line in Fig. 2(c1)]: by making ω0∕ω− → ∞,
we now have ωp� → ∞ and

ϵ1

�
ω1 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ−

ϵ��ω−�
r

ω−

�
→ ϵ��ω−�, (22a)

ϵ2

�
ω2 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ��ω−�

p
ω0

�
→

ϵ−
ϵ��ω−�

�
ω−

ω0

�
2

→ 0, (22b)

which transform Eq. (20a) into �f 1, b1� �
ffiffiffi
ϵ−

p
2ϵ1

� ffiffiffiffiffi
ϵ−

p 	 ffiffiffiffiffi
ϵ1

p �,
i.e., the exact same expressions of the nondispersive scenario
[14–16]. Nonetheless, we now also have f 2 � b2 �
ϵ1−ϵ−
2ϵ1

≠ 0 [in this precise example f 2 � b2 � f 1, as depicted
in Fig. 2(c2)]: one thus has to wonder how to connect this sol-
ution including oscillations at ω2 → ∞ with the nondispersive
situation and first realize that the new medium is effectively
ENZ [3,4]. Substituting ϵ2 → 0 into Eq. (18) we see that
H��ω2� → 0 [and D��ω2� → 0], making the Poynting vector
at ω2 tend to zero and all of the power purely reactive. We must
recognize, however, that as soon as we allow for some infini-
tesimally small loss (see Section 6), as required by our
Lorentzian in order to become physical, ω2 becomes purely
imaginary and its components immediately vanish (more de-
tails can be found in Appendix C). Noting that, when there
is no dispersion, E and P are discontinuous across the temporal
boundary—which entails a change of electromagnetic energy
density—our suddenly vanishing ω2 components are nothing
but the dispersive manifestation of this behavior.

B. First-Principles Approach: Use of Laplace
Transform
From Maxwell’s equations with a general polarization vector,

∇ × E � −μ0
∂H
∂t

, (23a)

∇ ×H � ϵ0
∂E
∂t

� ∂P
∂t

� J, (23b)

one can derive the pertinent wave equation

∇ × ∇ × E � −μ0ϵ0
∂2E
∂t2

− μ0
∂2P
∂t2

− μ0
∂J
∂t

: (24)
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Fig. 2. (a) Electromagnetic waves versus time at z � λ∕16 for a
transition from ϵ−�ω−� � 1 (vacuum) to ϵ��ω−� � 4, with
ω0 � 2ω− (the solid lines are analytical results, while the circular
markers represent numerical FDTD simulations). (b1) New frequen-
cies ωi [and ϵ��ωi�] for t > 0 and (b2) wave amplitude coefficients
versus ω0∕ω−, considering ωp� � 3ω− [ϵ��ω−� → 1 as
ω0∕ω− → ∞]. Panels (c1), (c2) are the same, but with ϵ��ω−� �
4 [ωp� →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ��ω−�

p
ω0 as ω0∕ω− → ∞].
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Transforming into the Laplace domain, taking into account
Eqs. (8) and (10) and restricting ourselves to ωp− � 0,

1

μ0
∇ × ∇ × Ẽ�r, s� � −ϵ0

�
s2Ẽ�r, s� − sE�r; 0−� − ∂E�r; 0

−�
∂t

�

− �s2P̃�r, s� � sJ̃�r, s� − J�r; 0−��:
(25)

Now combine Eq. (25) with the constitutive relation
Eq. (11) to obtain

1

μ0
∇ × ∇ × Ẽ�r, s� � ϵ0s2�s2 � ω2

0 � ω2
p��

s2 � ω2
0

Ẽ�r, s�

� ϵ0

�
sE�r; 0−� � ∂E�r; 0−�

∂t

�
− sJ̃�r, s� � J�r; 0−�: (26)

Let us take the one dimensional reduction of Eq. (24) with
E � x̂E�z, t�. In view of preservation of momentum we take
k � k− � ω−

ffiffiffiffiffiffiffiffiffi
μ0ε0

p
throughout. Also, ∇ � −ik, so from�

k2 � μ0ϵ0
∂2

∂t2

�
E � −μ0

∂2P
∂t2

− μ0
∂J
∂t

, (27)

Eq. (26) becomes

ϵ0

�
ω2
− � s2

s2 � ω2
0 � ω2

p�
s2 � ω2

0

�
Ẽ�z, s�

� ϵ0

�
sE�z; 0−� � ∂E

∂t
�z; 0−�

�
− sJ̃�z, s� � J�z; 0−�, (28)

or

Ẽ�z, s�

� �s2 � ω2
0�
ϵ0�sE�z; 0−� � ∂E

∂t �z; 0−�� − sJ̃�z, s� � J�z; 0−�
ϵ0�ω2

−s2 � ω2
−ω

2
0 � s4 � s2ω2

0 � s2ω2
p��

:

(29)

The denominator of Eq. (29) can be factored as

s4 � �ω2
− � ω2

0 � ω2
p��s2 � ω2

−ω
2
0 � �s2 − s21��s2 − s22�

� �s2 � ω2
1��s2 � ω2

2� (30)

with sl � 	iωl . Note the agreement with the kinematic char-
acteristic Eq. (15).

For t < 0, the electric field is given as E�z, t < 0� �
cos�ω−t − kz�. At the time t � 0−,

E�z, t � 0−� � cos�kz�, (31a)

∂E
∂t

�z, t � 0−� � ω− sin�kz�: (31b)

We are now able to rewrite Eq. (29) in the form

Ẽ�z, s� � �s2 � ω2
0�
sE�z; 0−� � ∂E

∂t �z; 0−�
�s2 � ω2

1��s2 � ω2
2�

− �s2 � ω2
0�

sJ̃�z, s� − J�z; 0−�
ϵ0�s2 � ω2

1��s2 � ω2
2�
: (32)

An inverse transform of Eq. (32) for the source-free case
yields

E�z, t� � E�
1 � E−

1 � E�
2 � E−

2, (33)

where

E	
1 � ω2

0 − ω
2
1

ω2
2 − ω

2
1

1

2

�
1	 ω−

ω1

�
cos�ω1t 
 kz�, (34a)

E	
2 � ω2

0 − ω
2
2

ω2
2 − ω

2
1

1

2

�
1	 ω−

ω2

�
cos�ω2t 
 kz�, (34b)

which are the same exact expressions that result from keeping
the real part of Eq. (18a), with �f l , bl � from Eq. (20) [or, more
directly, Eq. (A2)] simplified through ϵ− � 1. Under the ap-
proximations of Eq. (22), the latter results simplify to

E	
1 ≃

1	 ffiffiffiffiffi
ϵ2

p
2ϵ2

cos�ω1t 
 kz�, (35a)

E	
2 ≃

ϵ2 − 1

2ϵ2

�
1	 1

ω0

ω−

ffiffiffiffiffi
ϵ2

p
�
cos�ω2t 
 kz�: (35b)

A corresponding approximation for the magnetic field is
then

H	
1 ≃	 1	 ffiffiffiffiffi

ϵ2
p

2
ffiffiffiffiffi
ϵ2

p 1

η0
cos�ω1t 
 kz�,

H	
2 ≃	 ϵ2 − 1

2ϵ2

�
1	 ω−

ω0
ffiffiffiffiffi
ϵ2

p
�

ω−

ω0
ffiffiffiffiffi
ϵ2

p 1

η0
cos�ω2t 
 kz� ≈ 0.

(36)

5. TRANSMISSION-LINE MODEL

The time-varying Lorentzian response described in Eq. (3) can
be viewed as the (polarization) charge response to an applied
voltage across a series time-varying LC circuit and thus
rewritten as

L�t� d
2P�t�
dt2

� 1

C�t�P�t� � E�t�, (37)

with distributed shunt inductance L�t� � 1
ϵ0ω

2
p�t� and per-unit-

length series capacitance C�t� � 1
ω2
0L�t�

� ϵ0

�
ωp�t�
ω0

�
2

, in units

of [H/m] and [F/m], respectively {note that L�t� is dimension-
ally different from the per-unit-length series inductance that
models μ0, in [H/m]. A shunt inductance can, e.g., characterize
a thin aperture in the transverse wall of a waveguide [46].
Distributed (or lumped) series capacitors and shunt inductors
can also model negative permeabilities and permittivities, re-
spectively [47,48]}. Two important facts must be pointed
out here: (i) ω0 is kept constant, and (ii) there is no dL�t�

dt
dP�t�
dt

term. Accordingly, considering that, for t < 0, our dispersive
medium is modeled as a transmission line with an L−C−

branch, we can think of our sudden change in ωp�t� as the
connection of a new LpCp branch in parallel as shown in

Fig. 3, with Lp � L−L�
L−−L�

and Cp � 1
ω2
0Lp

� C� − C− (note that

both Lp and Cp will be non-Foster when ωp� < ωp−, and note
also that disconnecting the L−C− branch will turn the medium
into vacuum. These aspects will be discussed in our future
study); when ωp− � 0 (vacuum), L− � ∞ and C− � 0, and
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thus Lp � L� and Cp � C�. Now the inductor Lp forbids a
discontinuity in Pp that would generate a spike of polarization

current dPp

dt across the new branch: Pp�0�� � Pp�0−� � 0

[vCp
�0�� � vCp

�0−� � 0]. Besides, there can be no disconti-

nuity in the magnetic flux linkage Φp � Lp
dPp

dt —the fact that
we use the term “magnetic” should not give rise to confusion:
we are using inductors to model the dispersive behavior of the
dielectric function, but there is no magnetism involved; more
specifically, in the picture of a mass-spring oscillator, the induc-
tor represents mass and is therefore related to (mechanical)
momentum and kinetic energy, whereas the capacitor models
the spring constant and is related to potential energy. A further
argument is that, unlikeΦL0 ,ΦL− andΦLp are related to

dH
dz , not

to H , and hence vL− and vLp are related to E , not to dE
dz—that

would lead to a spike in vLp :
dPp�0��

dt � dPp�0−�
dt � 0. Therefore,

we finally have d2Pp�0��
dt2 � E�0��

Lp
� E�0−�

Lp
. Toward the end of

Section 2, continuity conditions for P and dP
dt were derived from

a functional-analysis point of view of our LTI system’s response;
as it is clear that the voltages and currents across the L−C−

branch are also continuous, we have now arrived, from a cir-
cuital perspective, to the same continuity conditions.

6. LOSSY CASE

If we introduce loss into our time-varying Lorentzian medium,
Eqs. (3) and (37) must be extended as

d2P�t�
dt2

� γ
dP�t�
dt

� ω2
0P�t� � ϵ0ω

2
p�t�E�t�, (38a)

L�t� d
2P�t�
dt2

� R�t� dP�t�
dt

� 1

C�t� P�t� � E�t�, (38b)

with resistivity R�t� � γL�t�, in [Ω ·m]. For conciseness, we
will not write down here the lengthy expressions of the complex
frequencies that enforce k� � k− [Fig. 4(a) shows the complex-
frequency dispersion diagram for ϵ��ω−� � 4 − 0.1i with
ω0 � 2ω−] according to

ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p−

ω2
0 − ω

2
− � iω−γ

s
� ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p�
ω2
0 − ω

2� � iω�γ

s
,

(39)

but it is worth pointing out that three different scenarios open
up. We will now restrict the discussion to the particular case

C-

t=0

L- Lp

L0=µ0

E(z,t) C0= 0

H(z,t) H(z+ z,t)

E(z+ z,t)

Cp

Fig. 3. Transmission-line equivalence of our unbounded time-
varying dispersive medium. At t � 0, the switch is closed, effectively
connecting our series tank circuit LpCp.
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Fig. 4. (a) Dispersion diagram in the complex k- and ω-planes when
ϵ��ω−� � 4 − 0.1i, which results in ωp� ≈ 3ω− and γ � 0.1ω− when
ω0 � 2ω−. Conservation of momentum is achieved when the surfaces
�ω�,Re�k��ω���∕k−� and �ω�, Im�k��ω���∕k−� simultaneously in-
tersect the Re�k��∕k− � 1 and Im�k��∕k− � 0 planes (gray color),
respectively. These intersection curves are marked in black and give rise
to four complex frequencies that, in this example, form two complex-
conjugate pairs in the s plane [the plotted region Re�ω�� > 0 only
includes one complex frequency per pair]. (b) Evolution of the four
complex frequencies versus γ, with the other parameters fixed [ω0 and
ωp� from panel (a)]: at γ � 7.01ω− we reach a critical point, and the
pair of complex frequencies linked to ω0 (ω2f and ω2b) splits into two
purely imaginary frequencies for which ϵ becomes purely real and neg-
ative; the latter is seen in panel (c). Note that, in this overdamped
region (γ > 7.01ω−), the notation ω2f and ω2b is not strictly rigorous:
this pair simply becomes ω2 and ω3, and the associated waves re-
present non-propagating damping.
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where ωp− � 0 (further insights will be presented in an upcom-
ing study). If, starting from γ � 0, we gradually increase loss, a
positive imaginary part—note that, given that we are adopting
the eiωt convention, Im�ω�� > 0 represents frequencies that
are damped—begins to show up in the two pairs of solutions
from Eq. (13) [this is seen in Fig. 4(b), depicting the variation
of these complex frequencies with γ∕ω−], so we have two dis-
tinct pairs of complex frequencies (complex conjugate pairs in
the Laplace transform s plane): 	ωl r � iωl i, with ωl r and ωl i
real and positive (ωl f � �ωl r � iωl i and ωl b �
−ωl r � iωl i will therefore describe forward- and backward-
propagating evanescent waves, respectively). Each pair can then
be seen as the two characteristic roots of the natural response
of some underdamped resistor-inductor-capacitor (RLC)

oscillator, and the forward and backward waves for frequency
l will have the form e−ωl i t cos�ωl r t 	 kz � φ�, φ being a phase
term. If we define the s-plane frequencies sl � iωl r − ωl i, the
electromagnetic waves for t > 0 can be described as

E� � e−ikz
X2
l�1

�f l e
sl t � bl es

�
l t�, (40a)

H� � e−ikz
1

η0

X2
l�1

� ffiffiffiffi
ϵl

p
f l e

sl t −
ffiffiffiffiffi
ϵ�l

p
bl es

�
l t
�
, (40b)

D� � e−ikzϵ0
X2
l�1

�ϵl f l e
sl t � ϵ�l bl e

s�l t�, (40c)

dP�
dt

� e−ikzϵ0
X2
l�1

�slχ l f l e
sl t � s�l χ

�
l bl e

s�l t�, (40d)

and thereby the unknown amplitudes can be calculated as
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Fig. 5. (a) Electromagnetic waves versus time at z � λ∕16 when ω0

and ωp� are taken from Fig. 4 and γ � 0.5ω− (numerical FDTD sim-
ulations are marked with circles): we have ω2f and ω2b, corresponding
to an underdamped scenario. (b) Separate components of
E�z � 0, t > 0�. (c) Two snapshots of the separate components of
E� [the solid and dashed lines represent E�z, t � 0�� and
E�z, t � T ∕32�, respectively], showing forward and backward propa-
gation for both ω1 and ω2.
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Fig. 6. Same as Fig. 5 but with γ � 7.3ω−, yielding an overdamped
regime with purely imaginaryω2 andω3 describing oscillations that do
not propagate. This is seen in panel (c): red (E2) and green (E3) curves.
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ϵ−

p
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s−χ−

3
7775, (41)

where s− � iω−. This character of the waves, decaying with t
but not with z, is clearly seen in Figs. 5(b) and 5(c), which
depicts the underdamped scenario associated with
γ � 0.5ω−.

If we keep increasing γ, we will reach a critical point
(γ � 7.01ω− in Fig. 4) at which the second pair of complex
frequencies collapses into the same purely imaginary frequency
�iω2i, so one can think of this pair as the two equal character-
istic roots of some critically damped RLC oscillator.
Propagation for �iω2i is obviously forbidden, with ϵ2 purely
real and negative [see Fig. 4(c)], and the waves will have the
form e−ω2i t cos�kz � φ�. Also, assuming ω− < ω0, in general
we have jϵ2j ≪ 1. Further, if γ is increased beyond the point
of critical damping, �iω2i is split into two different purely
imaginary frequencies, as corresponds to an overdamped
RLC oscillator, which we will denote ω2 and ω3 (the retrieval
of the temporal-interface scattering coefficients is described in
Appendix B). This time-decaying non-propagating nature as-
sociated with ω2 and ω3 is illustrated in the overdamped
scenario of Fig. 6 (γ � 7.3ω−); see red and green plots in
Figs. 6(b) and 6(c). Finally, Fig. 7 depicts the evolution of
the scattering coefficients with γ∕ω− and how f 2 � b2
(x2 � x3 after the critical point) remains bounded, despite
these coefficients separately diverging.

Incidentally, only when ωp− � 0 do we have s1 and s�1 (and
s2 and s�2 in the underdamped case). In general, for ωp− < ωp�,

the characteristic roots s1f and s1b will approximately, but not
exactly, form a complex conjugate pair. As a consequence,
ϵ���−is1f � ≠ ϵ��−is1b�, meaning that forward and backward
waves do not propagate in the very same medium.

7. CONCLUSION

We investigate the “reflection/transmission” of a monochro-
matic plane wave at a dispersive temporal boundary, substan-
tiated as a step-like change in the plasma frequency of a
Lorentz-type dielectric function, and we present a transmis-
sion-line equivalent modeling this transition. The fact that
two frequencies rather than one, each with forward and back-
ward propagating constituents, are instantaneously generated
after the transition is in line with the second-order nature of
the dispersion in the medium. When we omit loss, we can still
connect this behavior with the well-known dispersionless case
and show how, as ω0∕ω− increases, the lower frequency ω1

tends to the dispersionless solution, whereas the upper fre-
quency ω2, linked to ω0, presents a markedly different phe-
nomenon: not only does the medium acquire ENZ
character at ω2, but also the forward and backward waves’ am-
plitudes tend to converge, effectively constituting a standing
wave along z which, in the limit of negligible loss, almost in-
stantaneously fades out. Importantly, one can see from the
mathematics developed that the described analogy, exemplified
in this work for a transition from free space, also holds for the
inverse transition to free space, or any other transition for that
matter. In an upcoming study, the issue of power storage/con-
veyance and conversion will be addressed in depth, but it is
already evident from the above discussion that, in the
ω0∕ω− → ∞ limit, no power propagates at ω2.

APPENDIX A: SCATTERING COEFFICIENTS FOR
THE LOSSLESS SCENARIO IN TERMS OF ω

We can substitute
ffiffiffiffi
ϵl

p � ω−
ωl

ffiffiffiffiffi
ϵ−

p
in Eq. (19) to arrive at a set of

equations expressed only in terms of frequencies:2
666664

1 1 1 1
ω−
ω1

− ω−
ω1

ω−
ω2

− ω−
ω2�ω−

ω1

�
2

�ω−
ω1

�
2

�ω−
ω2

�
2

�ω−
ω2

�
2

ω1

ω−
− ω1

ω−

ω2

ω−
− ω2

ω−

3
777775

2
666664
f 1

b1
f 2

b2

3
777775 �

2
666664
1

1

1

1

3
777775: (A1)

Note that, as the elements of the right-hand side are all
equal, this system is perfectly conditioned for numerical solv-
ing. The expressions for the unknown amplitudes in Eq. (20)
thus have the alternative form

�f 1, b1� �
1

2

ω2
2 − ω

2
−

ω2
2 − ω

2
1

ω1

ω2
−
�ω1 	 ω−�, (A2a)

�f 2, b2� �
1

2

ω2
− − ω

2
1

ω2
2 − ω

2
1

ω2

ω2
−
�ω2 	 ω−�: (A2b)

APPENDIX B: SCATTERING COEFFICIENTS IN A
LOSSY OVERDAMPED SCENARIO

Given that we now have purely imaginary ω2 and ω3, which
describe no propagation, the coefficients f 2 and b2 are replaced
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Fig. 7. Real and imaginary parts of the complex amplitude coeffi-
cients versus γ∕ω−. As ω2f → ω2b near the point of critical damping
γ � 7.01ω−, f 2 and b2 tend to diverge but with opposite signs [panel
(b)], keeping f 2 � b2 (or else x2 � x3) bounded.
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with x2 and x3. The matrix system of equations becomes2
664
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APPENDIX C: ADDING A SMALL LOSS WHEN
ω0 → ∞
We saw in Section 4.A in the main text [see Figs. 2(c1) and
2(c2)] how, for a given prescribed value of (lossless) ϵ��ω−�,
taking the limit ω0∕ω− → ∞ leads to a situation that is equiv-
alent to the well-known problem of a temporal interface in a
nondispersive medium, except for the fact that we now have
additional forward and backward oscillations at ω2 → ∞—
for which the medium is ENZ (ϵ2 → 0)—with nonzero am-
plitudes f 2 � b2 � ϵ1−ϵ−

2ϵ1
. We also stated how adding an infini-

tesimally small amount of loss would lead to instantaneously
vanishing ω2 components, thereby drawing an exact correspon-
dence with the nondispersive scenario. Let us see this behavior
in more detail with the numerical example of Fig. 8.

Figure 8(a1) shows the real and imaginary parts of the com-
plex frequencies ω2f and ω2b, which form a complex-conjugate
pair in the s plane when ω0∕ω− is smaller than the point of
critical damping (see Section 6). Beyond the critical point, this
pair becomes purely imaginary: denoting χ��ω−� by χr − iχi, it
can be shown that, as ω0∕ω− → ∞, we have γ → χi

χr

ω2
0

ω−
and

ω3 → iγ → i∞, together with ω2 → i �χr�1�χr
χi

ω− when, addi-
tionally, χi → 0 (ω3 and ω2 replace ω2b and ω2f , respectively,
in the overdamped region). Consequently, ϵ3 and ϵ2, purely
real and negative, behave in the limit as ϵ3 → 0− and
ϵ2 → −

	 χi
�χr�1�χr



2ϵ− [see Fig. 8(a1)]. Finally, we have x3 → 0

and x2 → f 2 � b2 � ϵ1−ϵ−
ϵ1

[Fig. 8(b)].
For a given ω0∕ω− ratio, ω3 (ω2) is directly (inversely) pro-

portional to χi, which means, in principle, that the oscillation
will die out faster (slower) as we increase loss. However, x3 → 0
in the limit ω0∕ω− → ∞, so all we care about is ω2, which is
indeed bounded by i �χr�1�χr

χi
ω−. That is, the larger the loss, the

slower the non-oscillatory damping, which is perfectly consis-
tent with intuition: we need loss to be infinitesimally small in
order to make non-oscillatory damping instantaneous right
after the temporal discontinuity; this is better understood by
noting that, in our circuital analogy, L → 0 in the limit
ω0∕ω− → ∞, so the RC time constant dictates the decay rate
[note that this is the opposite of the underdamped regime,
where the damped oscillation from the pair �ω2f ,ω2b� will
die out faster as we increase loss]. This is illustrated in
Fig. 8(c), where the electric fields decay one order of magnitude
faster for χi � 10−4 (markers) than for χi � 10−3 (lines).

Moreover, note that the normalized frequencies ω2f χ i∕ω−

and ω2bχ i∕ω− do not depend on χi when plotted versus
ω0χ i∕ω−—as shown in Fig. 8(a1), where lines and markers re-
present different values of χi—very much like the normalized
dielectric functions in Fig. 8(a2) and the amplitude coefficients
in Fig. 8(b). Interestingly, we know from Section 6 that, at the
critical point, both f 2 and b2 diverge, though with bounded
f 2 � b2: not only do we now observe this behavior, but also

f 2 � b2 remains constant [see magenta and orange plots in
Fig. 8(b)].

Finally, in Fig. 9 we show how, in the limit of χi → 0 and
ω0 → ∞, the resulting waves, though continuous, converge to
the well-known solution of a nondispersive medium under-
going a step-like change in its dielectric function [14–16],
with discontinuous E and P [black and red lines in Fig. 9(a),
respectively].

APPENDIX D: SATISFACTION OF PARSEVAL’S
THEOREM

We herein show how one can still find a form of the Parseval–
Plancherel theorem [49,50]—also known as Rayleigh’s energy
theorem [51]—that is satisfied by our infinite-energy double-
sided signals. Assuming a lossless Lorentzian, E��t� in
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Fig. 8. (a1) Normalized real and imaginary parts of the complex
frequencies ω2f (ω2) and ω2b (ω3) versus ω0χi∕ω−, for χ i � 10−3

(lines) and χi � 10−4 (markers). (a2) Normalized dielectric functions
ϵ2f (ϵ2) and ϵ2b (ϵ3). (b) Complex amplitude coefficients f 2 (x2) and
b2 (x3). (c) E2f (E3) and E2b (E3) versus normalized time, for z � 0
and several ω0∕ω− ratios; note how the black and red plots,
corresponding to the underdamped region where f 2 � b2, are
superimposed.
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Eq. (17a) will have infinite energy, and yet we can consider
some positive real number σ such that e−σtE��t� is Lebesgue
square-integrable [52]: e−σtE��t� ∈ L2�0,∞�. Direct applica-
tion of Parseval’s theorem for finite-energy signals results in

Z
∞

0

e−2σt jE��t�j2dt �
1

2π

Z
∞

−∞
jFT fe−σtE��t�U �t�g�ω�j2dω

� 1

2π

Z
∞

−∞
jLrfE��t�g�σ � iω�j2dω,

(D1)

with Lrfg the unilateral (right-sided) Laplace transform.
Similar considerations allow us to write, for the left-sided
signal E−,

Z
0

−∞
e2σt jE−�t �j2dt �

1

2π

Z
∞

−∞
jFT feσtE−�t�U �−t�g�ω�j2dω

� 1

2π

Z
∞

−∞
jLl fE−�t�g�−σ � iω�j2dω:

(D2)

Finally, we can write, for our double-sided signal
E�t� � E−U �−t� � E�U �t�, the energy equality

Z
∞

−∞
e−2σjtjjE�t�j2dt

� 1

2π

Z
∞

−∞
jFT fe−jσjtE�t�g�ω�j2dω

� 1

2π

Z
∞

−∞
jLl fE�t�g�−σ � iω� � LrfE�t�g�σ � iω�j2dω,

(D3)

where �Ll � Lr�fE�t�g�s� represents the bilateral Laplace
transform of E�t�, whose region of convergence (ROC) is given
in this case by jRe�s�j < σ.
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