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It is still very challenging to determine a freeform lens for converting a given input beam into a prescribed output
beam where not only the irradiance distribution but also the phase distribution hardly can be expressed ana-
lytically. Difficulties arise because the ray mapping from the input beam to the output beam is not only inter-
twined with the required double freeform surfaces but also intertwined with the output phase distribution, whose
gradient represents the directions of the output rays. Direct determination of such a problem is very difficult.
Here, we develop a special iterative wavefront tailoring (IWT) method to tackle this problem. In a certain iter-
ation, the current calculation data of the double freeform surfaces and the output phase gradient are used to
update the coefficients of a Monge–Ampère equation describing an intermediate wavefront next to the entrance
freeform surface. The solution to the wavefront equation could lead to an improved ray mapping to be used to
update the corresponding phase gradient data and reconstruct the double freeform surfaces. In a demonstrative
example that deviates much from the paraxial or small-angle approximation, the new IWT method can generate a
freeform lens that performs much better than that designed by a conventional ray mapping method for
producing two irradiance distributions in the forms of numerals “1” and “2” on two successive targets,
respectively. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.430221

1. INTRODUCTION

A beam transformer converts a given incident beam into a pre-
scribed output beam with certain irradiance and phase (or
wavefront) distributions [1]. It has various applications, includ-
ing lithography, material processing, laser or LED projector,
optical communications, and light detection and ranging
(lidar). Refractive, reflective, and diffractive optical elements
can be used for different configurations of beam transformers
[1]. Here, we focus on the commonly used refractive or reflec-
tive beam transformers, where ray optics are usually used in the
design process. The design problem is mainly governed by three
types of equations [2]: the energy conservation within a bundle
of rays, the ray-tracing equations dominated by Snell’s law in
vector form, and the Malus–Dupin theorem that describes the
equal optical path lengths (OPLs) between the input and out-
put wavefronts. Moreover, surface continuity should be consid-
ered for fabrication issues. Generally, the design problem is very
difficult to handle because the output beam to be produced
could have arbitrary amplitude and phase distributions without
any a priori simplifying assumptions. Direct formulation of the
design problem by merging the three types of equations into

only one could be impossible, especially for the case that the
output phase cannot be represented analytically.

Traditional beam transformers are commonly used for the
cases in which the input and output beam wavefronts are kept
planar and the irradiance distributions are rotationally symmet-
ric. In the 1960s, Frieden [3] and Kreuzer [4] independently
introduced a pair of plano-aspherical lens systems for con-
verting a TEM00 Gaussian laser beam into a circular uniform
beam while the output wavefront is kept planar. In their meth-
ods, the solutions for the aspheric surfaces can be formulated as
an integral equation. Rhodes and Shealy [5] derived a set of
ordinary differential equations for achieving the same goal.
Many later designs can transform the Gaussian laser beam into
collimated output beams with Fermi–Dirac, super-Gaussian,
super-Lorentzian, and the flattened Lorentzian distributions
(see, e.g., Ref. [6]). Doskolovich et al. [7] proposed an axisym-
metric refractive optical element design for a more general case
in which the input and output beam wavefronts are rotationally
nonplanar.

Freeform beam transformer designs without rotational sym-
metries are mostly restricted to paraxial approximations. In a
double-mirror system design, Nemoto et al. [8] first determined
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the coordinate relationships, i.e., the ray mapping, between the
input Gaussian beam and the rectangular uniform output beam
by applying variable separation to the energy conservation, and
then obtained the first mirror surface by applying stationary
phase method to the Fresnel diffraction integral and acquired
the second mirror surface by compensating for the phase dis-
tortion. Shealy and Chao [9] designed a two-mirror system for
transforming an elliptical Gaussian beam into a rectangular uni-
form output beam while keeping the beam collimated. After
obtaining an analytical expression of the ray mapping that is
independent in two orthogonal directions, they integrated
the two reflective freeform surfaces explicitly from two first-
order partial differential equations (PDEs). In the design of
a plano-freeform lens pair, Feng et al. [10] calculated the var-
iable-separable ray mapping numerically and constructed the
double freeform surfaces point by point following the ray map-
ping. Such a method was extended for tackling nonseparable
beam shaping by computing the ray mapping with the help
of the L2 optimal transport (OT) theory [11,12]. However,
Bösel et al. demonstrated that the L2 OT ray mapping is only
accurate for paraxial or small-angle approximation in the design
of double freeform surfaces for collimated beam shaping [13].

Most of the existing methods applicable for nonparaxial
cases are devised for planar or spherical beam wavefronts.
For these cases, the design problem can be formulated as a non-
linear PDE of the Monge–Ampère (MA) type [14,15]. The
mathematical derivation starts with expressing the target plane
coordinates as functions of the first freeform surface and its gra-
dient, where the second freeform surface can be eliminated by
imposing the OPL constancy condition. The resulting ray-
tracing equations are then imported into the energy conserva-
tion between the incident and outgoing beam irradiance distri-
butions to obtain the final MA equation, where the surface
integrability condition is imposed to ensure a smooth surface.
Such a direct determination has the advantage that the design
problem can be described by only one equation but at the cost
of an extremely complicated and tedious derivation process.
Alternatively, collimated beam shaping problems for reflective
or refractive designs can be described using OT theories that
acquire an integrable ray mapping by finding a solution to a
linear programming problem [16–19]. Rubinstein and
Wolansky [20] showed that a single lens with two freeform sur-
faces for shaping arbitrary collimated beams can also be found
by solving a variational problem related to the weighted least
action. Oliker et al. [21] designed the required pair of plano-
freeform lenses using the supporting quadric method (SQM)
combined with OT. Mingazov et al. [22] proposed a new
version of the SQM for collimated beam shaping by translating
it into the gradient method of maximizing a concave function.
Doskolovich et al. [23] showed that the computation of an in-
tegral ray mapping is reduced to an OT problem with a non-
quadratic cost function that can be solved by a linear
assignment algorithm. Yadav et al. [24] proposed a generalized
least squares method for solving either a single lens with double
freeform surfaces or two separate plano-freeform lenses in col-
limated beam shaping. Wei et al. extended [25] the symplectic
flow-mapping scheme for irradiance tailoring [26] to the design
of double freeform surfaces for transforming an elliptic

Gaussian beam into a convergent beam with a complex irradi-
ance distribution.

There are very few design methods available for complex
input and output wavefronts. Feng et al. [27] provided a
ray-mapping method in designing double freeform surfaces that
can produce two prescribed irradiance distributions on two suc-
cessive target planes. However, they still employ the restrictive
L2 OT ray mapping, which is generally not accurate for a non-
paraxial case. Bösel et al. [28] showed the ability to generate an
astigmatic wavefront while forming a complex irradiance dis-
tribution. Instead of formulating the problem into one
PDE, they directly solve the three nonlinear PDEs for the first
freeform surface and the projected mapping coordinates, re-
spectively, and then calculate the second freeform surface based
on the OPL constancy. Such a strategy needs more computa-
tional power, and the ability to generate a more general wave-
front without an analytical expression is not demonstrated.

We propose a new iterative wavefront tailoring (IWT)-based
method to tackle the freeform lens design problem for produc-
ing a prescribed output beam with a complex irradiance distri-
bution and phase profile. A previous IWT method is developed
for designing a freeform lens that can generate a prescribed ir-
radiance distribution on a planar or curved target through the
intermediate construction of an outgoing wavefront immedi-
ately behind the exit freeform surface [29,30]. This method
can simplify the formula derivation process and flexibly gener-
ate a variety of freeform optical structures with high accuracy.
The major contribution of this work consists in how to deal
with the difficulties arising from the additional generation of
a complex output phase profile, which could realize optical field
control using freeform optics in a simple, flexible, and accurate
way. The method is described in detail in Section 2. We verify
the method’s effectiveness in Section 3, where we design a dou-
ble freeform lens for generating an output beam with complex
irradiance and phase distributions that can produce a different
irradiance distribution at a certain distance behind the first out-
put plane. A comparison with the L2 OT ray mapping method
is also included in Section 3.

2. METHOD

We consider here the design of a freeform lens with two free-
form surfaces performing a one-to-one mapping of the input
optical field into a prescribed output optical field, as sketched
in Fig. 1. The amplitude and phase distributions of the input
beam are denoted by A�u, v� and ϕ�u, v� respectively, where
�u, v� ∈ Ω ⊂ R2. The amplitude and phase distributions of
the output beam are denoted by A 0�ξ, η� and ϕ 0�ξ, η�, respec-
tively, where �ξ, η� ∈ Γ ⊂ R2. An arbitrary light ray that goes
through point S � �u, v, h� at the input plane strikes the first
freeform surface at point P � �x1, y1, z1� and then strikes the
second freeform surface at point Q � �x2, y2, z2�. The output
light ray intersects with the output plane at point T � �ξ, η, d �.
The input wavefront located at a given distance from the input
plane is described by position vector W̃ � �x̃, ỹ, z̃�, and the
output wavefront located at a given distance from the output
plane is described by position vector W̃ 0 � �x̃ 0, ỹ 0, z̃ 0�. The re-
fractive indices of the medium at the left side of the first free-
form surface and the right side of the second freeform surface
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are denoted by n1, and the refractive index of the freeform lens
is denoted by n2.

In the irradiance control IWT method, an outgoing wave-
front located behind the exit surface of the freeform lens to be
designed is adopted to help solve a ray mapping. For the prob-
lem of optical field control, we employ an intermediate wave-
front that is next to the entrance freeform surface to be
designed. This intermediate wavefront is described by position
vector W � �x, y,w�, as illustrated in Fig. 1. In the following,
we will first establish the parametrized intermediate wavefront
equation, and then describe the IWT procedure specified for
optical field control. For the sake of completeness, we also de-
scribe the double-freeform surface reconstruction from a ray
mapping.

A. Parametrized Intermediate Wavefront Equation
Since we consider a lossless system, and there is no crossing of
rays from the input plane to the target plane, the irradiance
distributions on the two planes should satisfy the energy con-
servation in differential form,

I�u, v� � I 0�ξ�u, v�, η�u, v��jξuηv − ξvηuj, (1)

where I�u, v� � A�u, v�2, I 0�ξ, η� � A 0�ξ, η�2, and the sub-
scripts here denote partial derivatives.

We now describe the light propagation properties inside the
lens with the help of the intermediate wavefront W �
�x, y,w�. According to Fermat’s principle, the first partial deriv-
atives of w with respect to x and y can be described as

wx � −�x2 − x�∕�z2 − w�, wy � −�y2 − y�∕�z2 − w�: (2)

Both x and y can be thought as functions of the independent
variables u and v, and according to chain’s rule,

wu � wxxu � wyyu, wv � wxxv � wyyv: (3)

Combining Eq. (2) and Eq. (3), we have(
wx � �yvwu − yuwv�∕γ � −�x2 − x�∕�z2 − w�,
wy � �xuwv − xvwu�∕γ � −�y2 − y�∕�z2 − w�:

(4)

Herein, γ � xuyv − xvyu. From Eq. (4), we can express
�x2, y2� as (

x2 � x � �z2 − w��yuwv − yvwu�∕γ,
y2 � y � �z2 − w��xvwu − xuwv�∕γ:

(5)

We denote the unit outgoing ray vectors as O �
�O1,O2,O3�. In the framework of geometrical optics, the

phase is equivalent to the rays, and the ray directions are de-
termined by the first partial derivatives of the phase (see, e.g.,
Refs. [31,32]). Therefore, the relationship between O and the
output phase ϕ 0�ξ, η� is

O1 � ϕ 0
ξ,O2 � ϕ 0

η,O3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ 02

ξ − ϕ 0
η

q
: (6)

�ξ, η� and �x2, y2� can be linked through a collinear relation-
ship, �

ξ � x2 � �d − z2�O1∕O3 � x2 � s,
η � y2 � �d − z2�O2∕O3 � y2 � t: (7)

Herein, s means the displacement between ξ and x2, and t
means the displacement between η and y2. Inserting Eq. (5)
into Eq. (7), we obtain(

ξ � x � s � �z2 − w��yuwv − yvwu�∕γ,
η � y � t � �z2 − w��xvwu − xuwv�∕γ:

(8)

Generally, s, t, and also z2 are dependent on ξ and η. For a
degenerate case in which the output beam wavefront is planar,
both s and t are zeros, and the difficulty mainly lies in handling
z2. Such a problem is similar to the irradiance control problem
on a curved target where the z-values are not constant [30].
Here, we focus on a more complicated case where the output
phase is difficult to be expressed analytically. In such a case,
s and t , which are directly relevant with the phase gradient,
are difficult to be expressed explicitly with ξ and η.

Our solution for simplifying the complicated optical field
control problem is to retain s and t on the right side of
Eq. (8) and consider them as functions of the independent var-
iables of u and v. Equation (8) and its differentiation with re-
spect to u and v are inserted into Eq. (1) to eliminate the two
variables ξ and η. The resulting equation is a second-order PDE
of MA type,

wuuwvv − w2
uv � A1wuu � A2wuv � A3wvv � A4 � 0, (9)

where the coefficients Ai �i � 1, 2, 3, 4� are functions depend-
ing on x, y,w, s, t, z2, and their first partial derivatives, and the
second partial derivatives of x and y (see Appendix A). Rewrite
Eq. (8) as a vector-valued function, �ξ, η� � m�u, v�, and then
a nonlinear boundary condition to Eq. (9) can be specified as

m�∂Ω� → ∂Γ, (10)

where ∂Ω and ∂Γ are the boundaries of Ω and Γ, respectively.
You may notice that Eq. (9) is unable to be solved unless
x, y, s, t , and z2 are given in advance. However, x, y, s, t , and
z2 are coupled with the lens data. To solve this contradiction,
we introduce the following iterative procedure.

B. IWT Procedure for Optical Field Control
The IWT procedure for optical field control is illustrated in
Fig. 2, and its detailed description is included as follows.

Step 0: We first define an input ray sequence described by
the unit input ray vector I�u, v� and an input wavefront
W̃�u, v� from the given input beam information. To start
the iterative process, we need to provide an initial estimate
of the ray mapping, �ξ, η� � �ξ�u, v�, η�u, v��.

Step 1: From the ray mapping, we acquire the correspond-
ing data of the first partial derivatives of the output
phase, ϕ 0

ξ�ξ�u, v�, η�u, v�� and ϕ 0
η�ξ�u, v�, η�u, v��. Then,

we immediately determine an output ray sequence

Fig. 1. Sketch of the freeform beam transformer.
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O�ξ�u, v�, η�u, v�� according to Eq. (6). From the output ray
sequence, we can reconstruct an output wavefront
W̃ 0�ξ�u, v�, η�u, v�� based on least squares, where we employ
a concise relationship between the wavefront points and the
outgoing ray vectors [27],(

�W̃ 0
i�1,j − W̃

0
i,j� · �Oi�1,j �Oi,j� � 0,

�W̃ 0
i,j�1 − W̃

0
i,j� · �Oi,j�1 �Oi,j� � 0:

(11)

Equation (11) means that the chord linking the adjacent
wavefront points is perpendicular to the average of the outgoing
vectors through the two points. Equation (11) can be written as
a linear system of equations of the distances between T and W̃ 0,
which can be solved with least squares based on Hermann’s
method [33] and the MATLAB backslash operator [34].

Step 2: Since we have determined the input ray sequence
and wavefront, and the output ray sequence and wavefront,
we can compute the double freeform surfaces P�u, v� �
�x1�u, v�, y1�u, v�, z1�u, v�� and Q �u, v� � �x2�u, v�, y2�u, v�,
z2�u, v�� to realize the desired transformation using least
squares based on Snell’s law and the condition of the OPL con-
stancy [27]. More details are included in Subsection 2.C.

Step 3: After obtaining the data of the double freeform sur-
faces, we can determine s and t. We can also obtain an inter-
mediate ray sequence R � Unit�Q − P� � �Q − P�∕jQ − Pj,
from which we reconstruct an intermediate wavefront
W � �x, y, w̃� using least squares. Herein, w̃ is used to differ-
entiate from w in Eq. (9).

Step 4: We insert the data of x, y, s, t, and z2 into Eq. (9) and
Eq. (10). Taking w̃ as the initial value, we solve the MA equa-
tion numerically. After obtaining a solution w, we can acquire a
new ray mapping, �ξ, η� � �ξ�u, v�, η�u, v��, based on Eq. (8).

Step 5: The new ray mapping is inserted into Step 1 to re-
peat the loop. The stop criterion can be chosen as the difference

between the current ray mapping and the previous one or a
certain number of iterations.

Step 6: After obtaining the satisfied ray mapping, we need to
specify its corresponding output ray sequence and wavefront as
in Step 1 and reconstruct the final double freeform surfaces as
in Step 2.

Such an iterative procedure can make the freeform lens de-
sign for complicated optical field control easier to implement.
Although a sequence of MA equations needs to be solved, a
multiscale strategy [29,30] for the irradiance control IWT
methods can be adapted to speed up the computation here.

C. Double Freeform Surface Reconstruction from the
Ray Mapping
Here, we recall the reconstruction of double freeform surfaces
following the one-to-one mapping between an input ray se-
quence and an output ray sequence using a least squares-based
iterative procedure [27], which is effective and fast. The basic
steps are as follows.

Step 0: We first give an initial approximation of the entrance
freeform surface, which can be simply set as a plane.

Step 1: After that, we can obtain a corresponding exit free-
form surface based on the constant OPL condition,

n1�W̃,P� � n2�P,Q � � n1�Q , W̃ 0� � Const, (12)

where �A,B� refers to the distance between A and B.
Step 2: The required unit ray sequence R inside the lens can

be acquired as R � Unit�Q − P�. After that, the required nor-
mal field of the first freeform surface can be acquired based on
Snell’s law in vector form, N � Unit�n2R − n1I�.

Step 3: Notice that the normal fieldN is not necessarily inte-
grable and there generally does not exist an exact freeform sur-
face that is perpendicular to N everywhere. Therefore, we also
employ a least squares method to compute an approximate
freeform surface P, and the basic relationship between P
and N is [27]� �Pi�1,j − Pi,j� · �Ni�1,j �Ni,j� � 0,

�Pi,j�1 − Pi,j� · �Ni,j�1 �Ni,j� � 0. (13)

Equation (13) can be written as a linear system of equa-
tions of the distances between W̃ and P, which can also be
solved using Hermann’s method and the MATLAB backslash
operator.

Step 4: The updated entrance freeform surface P is inserted
into Step 1 to obtain a new exit freeform surface Q . The above
process is repeated until a required stop criterion is satisfied.

3. RESULTS

As a demonstrative example, we design a freeform lens with the
refractive index of 1.5 for transforming a divergent elliptical
Gaussian beam into an specified output beam with a complex
irradiance distribution and phase profile (see Fig. 3). The input
beam is emitted from a point light source located at the original
point, and the 1∕e2 full width divergence angles for x and y
directions are 12° and 36°, respectively. Figure 3(a) shows
the input beam irradiance I�u, v� on the z � 20 mm plane,
where �u,v� ∈ Ω�f�u,v�jjuj≤2.1021mm,jvj≤6.4984mmg.
The input beam phase distribution ϕ�u, v�, which corresponds
to a spherical wavefront, is shown in Fig. 3(b). Figure 3(c)

Yes

No

Give an initial estimate of the ray mapping and 
define an input ray sequence and wavefront 

Solve the wavefront equation and obtain a ray 
mapping ( (u, v), (u, v))

Satisfy the stop criterion?

Construct the final double freeform surfaces 

Construct the double freeform surfaces using a 
least squares method based on Snell' s law and 

the OPL constancy

Define an output ray sequence and wavefront 
according to the ray mapping and the 

prescribed phase distribution

Output z2, determine  (s, t),  and reconstruct an 
intermediate wavefront (x, y,   ) next to the first 

freeform surface

and recons
,   ) next to
f
w

Fig. 2. Diagram of the IWT method for optical field control.
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shows the desired output beam irradiance distribution
I 0�ξ, η� on the plane of z � 45 mm, where �ξ, η� ∈ Γ �
f�ξ, η�jjξj ≤ 12 mm, jηj ≤ 12 mmg. Figure 3(d) shows the de-
sired output phase distribution ϕ 0�ξ, η�, which is rather irregu-
lar and can be difficult to describe by an analytical formula.
This phase distribution is aimed for converting I 0�ξ, η�
into a different irradiance distribution I 0 0�ξ 0, η 0� on the plane
of z � 75 mm [see Fig. 3(e)], where �ξ 0, η 0� ∈ Γ 0 �
f�ξ 0, η 0�jjξ 0j ≤ 16 mm, jη 0j ≤ 16 mmg. ϕ 0�ξ, η� is obtained
by numerically solving a phase-retrieval problem from the
two output irradiance distributions [35],

ϕ 0
ξξϕ

0
ηη − ϕ

02
ξη � χ�1 − ϕ 02

η �ϕ 0
ξξ � 2χϕ 0

ξϕ
0
ηϕ

0
ξη � χ�1 − ϕ 02

ξ �ϕ 0
ηη

� χ4d 02f1 − I 0�ξ, η�∕I 0 0��ξ, η� � ∇ϕ 0∕χ�g � 0, (14)

where d 0 denotes the distance between the two output planes,
χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j∇ϕ 0j2

p
∕d 0, and the coordinates �ξ 0, η 0� for describ-

ing I 0 0�ξ 0, η 0� have been replaced with �ξ, η� � ∇ϕ 0∕χ.
The computation size is desired as 256 × 256. To speed up

the computation, we employ a multiscale strategy that is similar
to that in Refs. [29,30]. The initial computation size is set to
32 × 32. In this step, the initial ray mapping is obtained from
solving a standard MA equation corresponding to the L2 OT
(see e.g., Ref. [27]),

ψuuψ vv − ψ
2
uv � I�u, v�∕I 0�∇ψ�, (15)

where ψ is a potential whose gradient ∇ψ � �ξ, η�. After im-
plementing the computations on the grid of 32 × 32 points for
three iterations, the final 32 × 32 points ray mapping is linearly
interpolated into the one of 64 × 64 points, which is used to
start the iterative computations on the grid of 64 × 64 points.
Such a process is repeated until implementing the computa-
tions on the grid of 256 × 256 points for three iterations.
The final ray mapping specifies the final output ray sequence

Oi,j and wavefront W̃ 0
i,j, both of which are used for obtaining

the final entrance and exit freeform surfaces according to
Section 2.C. We solve the standard MA equation shown in
Eq. (15) and the generalized MA equation shown in Eq. (9)
[and also Eq. (14)] following the numerical technique outlined
in Ref. [29]. A Newton–Krylov solver, Kelley’s nsoli.m is
adopted to solve the nonlinear system of equations obtained
from discretizing the MA equations [36], where maxit (the
maxmium number of nonlinear iterations) is set as 200, maxitl
(the upper bound for linear iteration per nonlinear iteration) is
set as 20, and etamax (the maximum error tolerance for residual
in inner iteration) is set as 0.1. Since I 0�ξ, η� can be difficult to
represent analytically, we employ linear interpolation to acquire
its values corresponding to the scattered grid points of �ξ, η� in
each iteration of the Newton–Krylov solver. We also use linear
interpolation to obtain ϕ 0

ξ�ξ, η� and ϕ 0
η�ξ, η� when obtaining a

ray mapping in each IWT iteration. The computations are
implemented in MATLAB 2020a on an Intel Core i7-6700 k
CPU at 4.0 GHz with 48 GB RAM, running Windows 10 (64
bit), which takes around 2.43 s, 11.68 s, 40.11 s, and 93.93 s
for the grid points of 32 × 32, 64 × 64, 128 × 128, and
256 × 256, respectively. The solution to the MA equations ac-
counts for more than 90% of the total running time.

Let ϵ denote the mean absolute deviation of the angles be-
tween the computed normals to the entrance freeform surface,
i.e., Pu × Pv, and the required normals for reconstructing the
entrance freeform surface in each IWT iteration. Figure 4 illus-
trates the effectiveness of the proposed multiscale IWT algo-
rithm in the reduction of the ϵ value. The ϵ value for the
final entrance freeform surface is 0.0064°. Figures 5(a) and
5(b) show the final entrance and exit freeform surfaces, respec-
tively, where you can observe structures that can cause difficul-
ties in analytical expression.

The scattered data points of the double freeform surfaces are
inserted into Rhinoceros to create a solid lens model. We im-
plement Monte Carlo ray tracing with 2 × 107 rays in
LightTools 9.0 to demonstrate the performance of the designed
freeform lens. Figure 6(a) visualizes the ray-tracing results of the
designed freeform lens in LightTools. Figures 6(b) and 6(c)
show the simulated irradiance distributions on the first and sec-
ond output planes, respectively. It can be seen that the simu-
lated irradiance distribution on the first output plane agrees
well with the desired output irradiance distribution shown
in Fig. 3(c). The simulated irradiance distribution on the

Fig. 4. Evolution of the ϵ value as the iteration increases.

Fig. 3. (a) Irradiance and (b) phase distributions of the input beam
on the z � 20 mm plane; the desired (c) irradiance and (d) phase dis-
tributions of the output beam on the z � 45 mm plane, which is
aimed for producing (e) a second output irradiance distribution on
the z � 75 mm plane. The phase distributions are normalized to have
zero average values.
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second output plane is also in line with the desired one shown
in Fig. 3(e), implying that the output phase on the first output
plane is achieved well.

We provide an L2 OT ray-mapping design for comparison.
The L2 OT ray mapping is also calculated in a multiscale way:
the computed potential ψ by solving Eq. (15) for a coarser grid
is linearly interpolated into an initial value for a finer grid. The
double-surface reconstruction following the L2 OT ray map-
ping is the same as that described in Section 2.C. Since the
design geometry is far beyond the paraxial and small-angle
approximation, the ϵ value for the L2 OT ray-mapping design
is as high as 2.3197°, resulting in severe deformations in the
simulation results, as shown in Figs. 6(d), 6(e), and 6(f ).

We employ the relative root-mean-square deviation
(RRMSD) to quantify the deviation of the simulated

irradiance distribution from the prescribed one: RRMSD �
∥Ipres − Isimu∥F∕∥It∥F , where Ipres and Isimu denote the matrices
of the prescribed and simulated irradiance distributions, respec-
tively, within the given domain, and ∥·∥F refers to the
Frobenius norm [37]. For the L2 OT ray-mapping method,
the RRMSD values for the two simulated irradiance distribu-
tions can be higher than 0.329. The RRMSD values can be
greatly reduced to be lower than 0.045 when we employ the
new proposed method.

Figure 7(a) provides the final ray mapping for the new pro-
posed method. Figure 7(b) shows the L2 OT ray mapping. It
seems that the two ray mappings demonstrate similar deforma-
tions: those regions corresponding to the edges of the numerals
are more strongly deformed. However, sufficient differences ex-
ist between the two ray mappings, as visualized in Fig. 7(c). The
average distance between the two ray mapping is 0.2775 mm.
As can be seen from Fig. 7(c), the ray-mapping differences
around the central region have relatively small amplitudes,
demonstrating that L2 OT ray mapping is more accurate for
the paraxial region. However, it does not seem that the central
regions on the two simulated irradiance distributions have bet-
ter performances than the surrounding regions. The holes in
the two simulated irradiance distributions of the L2 OT ray-
mapping design are caused by a small “bump” around the
center of the entrance freeform surface. This small bump is
a result of implementing least squares surface reconstruction
with a preset value of the center surface point when the normal
error is large. We can observe whirls in Fig. 7(c), which may
reflect the fact that the L2 OT ray mapping cannot lead to curl-
free surface integration. Note that larger errors will occur when
we reconstruct the double freeform surfaces according to the L2

OT ray mapping using a point-by-point integration strategy, as
described in Ref. [11].

Fig. 5. Designed (a) entrance and (b) exit freeform surfaces.

Fig. 6. Simulated results of the freeform lens designed with the new proposed method: (a) ray-tracing illustration in LightTools, and simulated
irradiance distributions on the (b) first and (c) second output planes, respectively. Simulated results of the freeform lens designed with the L2 OT ray
mapping method: (d) ray-tracing illustration in LightTools, and simulated irradiance distributions on the (e) first and (f ) second output planes,
respectively. In each design, the mesh sizes for the two simulated irradiance distributions are 288 × 288, where the prescribed domains (Γ and Γ 0)
correspond to the central grids of 256 × 256 points.
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The discrepancies between the new proposed method and
the L2 OT ray-mapping method can be narrowed for those de-
signs which satisfy or do not deviate much from paraxial or
small-angle approximation. Figure 8 provides a comparison
of two freeform lenses designed with the two methods, respec-
tively, for a case that the input beam becomes circular (the 1∕e2
full width divergence angles for both x and y directions are 36°).
The RRMSD values for the simulated irradiance distributions
of the two freeform lenses become very close. The reason is that
the L2 OT ray mapping becomes much closer to the ray map-
ping computed by the new proposed method. The average dis-
tance between the two ray mappings is 0.0275 mm. However,
the freeform lens designed with the new proposed method still
performs better enough in terms of surface accuracy. The ϵ
value for the freeform lens designed with the new proposed
method is 0.0071°, while the ϵ value for the freeform lens de-
signed with the L2 OT ray-mapping method is 0.2119°. The
normal error difference between the two lenses can result in

larger irradiance discrepancies on receiving planes far away from
the lenses.

4. CONCLUSION

We have proposed a new IWT-based method in designing dou-
ble freeform optical surfaces for transforming a given optical
field into a prescribed one. This method simplifies the design
by gradually tailoring an intermediate wavefront next to the
entrance freeform surface and incorporating the data of the
output phase gradient and the z coordinate of the second
freeform surface associated with the ray mapping into the IWT
procedure. The solution to the wavefront equation leads to
a ray mapping between the input beam and the output
beam. Approximate first and second freeform surfaces are
reconstructed following the ray mapping via an iterative
reconstruction procedure based on ray-tracing equations and
the constancy of OPLs. The new reconstructed double freeform

(a) (b) (c)

Fig. 7. (a) Final ray mapping of the new proposed method; (b) the L2 OT ray mapping; and (c) their vector differences in the form of arrows
originated from the grid points shown in (a). For better visualization, each ray mapping with the grid points of 256 × 256 is interpolated into that
with the grid points of 32 × 32.

(a)

(b) (c)

(d)

(e) (f)RRMSD=0.0439 RRMSD=0.0485 RRMSD =0.0473 RRMSD=0.0530

10-3 W/mm2 10-3 W/mm2 10-3 W/mm2 10-3 W/mm2

Fig. 8. Simulated results of the freeform lens designed with the new proposed method: (a) ray-tracing illustration in LightTools, and simulated irradiance
distributions on the (b) first and (c) second output planes, respectively. Simulated results of the freeform lens designed with the L2 OT ray mapping
method: (d) ray-tracing illustration in LightTools, and simulated irradiance distributions on the (e) first and (f) second output planes, respectively.
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surfaces can be used to obtain an updated wavefront equation
that brings a new ray mapping. Such an iterative process can
be implemented in a multiscale way to reduce calculation
complexities. Results show that we can obtain a double-
freeform lens generating two different irradiance distribu-
tions on two successive target planes with much better perfor-
mances than those of the L2 OT ray mapping method for a
case that deviates much from the paraxial or small-angle
approximation.

Compared with the previous IWT methods for irradiance
control, where a single freeform surface could be enough
[29,30], the proposed method can realize additional generation
of a prescribed output phase distribution requiring at least dou-
ble freeform surfaces. This method is also applicable for design-
ing double freeform reflective surfaces or a double plano-
freeform lenses system. Such a special iteration strategy may
also work with other methods, including the direct
determination.

Currently, this method is restricted to those cases in which
there are no zero values in the output beam irradiance distri-
butions and there are no extreme local curvatures (or singular-
ities) in the lens surfaces and the input and output wavefronts.
We also need to mention that the starting geometry of the lens
should be chosen to avoid unphysical solutions.

APPENDIX A

The four coefficients of Eq. (9) are

A1 � ��xvyvv − yvxvv�wu � �yvxuv − xvyuv�wv�∕γ
��γκvwv − X vxv − Y vyv�∕�z2 − w�,

A2 � ��yuxvv − xvyuv � yvxuv − xuyvv�wu

��xvyuu − yuxuv � xuyuv − yvxuu�wv�∕γ
���X uxv � Y vyu � X vxu � Y uyv�
−γ�κuwv � κvwu��∕�z2 − w�,

A3 � ��xuyuv − yuxuv�wu � �yuxuu − xuyuu�wv�∕γ
��γκuwu − X uxu − Y uyu�∕�z2 − w�,

A4 � ��xuvyvv − xvvyuv�w2
u � �xvvyuu − xuuyvv�wuwv

��xuuyuv − xuvyuu�w2
v �∕γ

��κu∕�z2 − w��xvyvv − yvxvv�w2
u

��xuyuv − yuxuv�w2
v

��yuxvv � yvxuv − xvyuv − xuyvv�wuwv�
��κv∕�z2 − w��yvxuv − xvyuv�w2

u � �yuxuu − xuyuu�w2
v

��xvyuu � xuyuv − yuxuv − yvxuu�wuwv�
��1∕�z2 − w��X uxvv − Y vyuv − X vxuv � Y uyvv�wu

��Y vyuu − X uxuv � X vxuu − Y uyuv�wv�
��1∕κ�z2 − w��X uκv − X vκu�β
��Y vκu − Y uκv�α� �X uY v − X vY u�
− I∕I 0�X � κα,Y � κβ��:

Herein X � x � s, Y � y � t, α � yuwv − yvwu,
β � xvwu − xuwv, γ � xuyv − xvyu, and κ � �z2 − w�∕γ.
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