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All-inorganic perovskite has attracted significant attention due to its excellent nonlinear optical characteristics.
Stable and low-toxic perovskite materials have great application prospects in optoelectronic devices. Here, we
study the nonlinear optical properties of CsPbClxBr3−x (x � 1, 1.5, 2) nanocrystals (NCs) glass by open-aperture
Z-scan. It is found that the two- (2PA) and three-photon absorption (3PA) intensity can be adjusted by the treat-
ment temperature and the ratio of halide anions. The perovskite NCs glass treated at a high temperature has better
crystallinity, resulting in stronger nonlinear absorption performance. In addition, the value of the 2PA parameter
of CsPbCl1.5Br1.5 NCs glasses decreases when the incident pump intensity increases, which is ascribed to the
saturation of 2PA and population inversion. Finally, the research results show that the 2PA coefficient
(0.127 cmGW−1) and 3PA coefficient (1.21 × 10−5 cm3 GW−2) of CsPbCl1Br2 NCs glass with high Br anion con-
tent are larger than those of CsPbCl2Br1 and CsPbCl1.5Br1.5 NCs glasses. This is mainly due to the greater in-
fluence of Br anions on the symmetry of the perovskite structure, which leads to the redistribution of delocalized
electrons. The revealed adjustable nonlinear optical properties of perovskite NCs glass are essential for developing
stable and high-performance nonlinear optical devices. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.427155

1. INTRODUCTION

All-inorganic perovskite has received widespread attention re-
cently, owing to its tunable light-emitting bandgap [1,2], large
exciton binding energy [3], and other excellent photoelectric
properties [4,5]. Hence, perovskite materials are mostly used
in light-emitting diodes (LEDs) [6,7], solar cells [8], photode-
tectors [9,10], lasers [4,11], and other devices. Halide perov-
skite nanocrystals have become one of the most promising
optoelectronic materials due to their low-cost and easy synthesis
[1]. Compared with bulk and layered materials, the specific sur-
face area of CsPbClxBr3−x nanocrystals (NCs) is greatly in-
creased, thereby enhancing the NC optical performance
[1,2,12]. Due to the strong multiphoton absorption (MPA)
characteristics of halide perovskite NCs, they are very promis-
ing as a material for the development of multiphoton pump
lasers [13]. The spherical NCs not only overcome the difficulty
of large area growth of thin films, but also can combine with a

variety of substrates or solutions for incorporation into opto-
electronic devices [14].

Owing to the poor stability of bare perovskite and toxicity of
lead halide perovskite, the application of perovskite materials in
optoelectronic devices is greatly restricted [15,16]. So far, di-
verse approaches to improve the stability of perovskite materials
have been reported, such as bonding of the organic ligands
[17], establishing core/shell nanostructure [18], Mn-doping
[19], silica coating [20,21], and infiltrating CsPbX3 NCs into
mesoporous matrices [22]. However, combining the thermal,
chemical, and mechanical stability of the glass has been proved
an effective method to improve the stability of perovskite NCs
[23–25]. Hu et al. reported the well-designed arrangement of
CsPbBr3 NCs glasses with reduced self-absorption emission
and enhanced the quantum efficiency of solar cells [26]. Ye et al.
investigated the versatile precipitation of CsPbX3 NCs glasses,
in which photoluminescence (PL) covering the whole
visible range with high efficiency could be achieved [24].
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Meanwhile, some researches indicated that the relative PL in-
tensity of CsPbBr3 quantum dots glass is still ∼85% ∼ 90%
after being immersed in water for 120 h or exposed to UV light
for 100 h, and even about 60% of PL intensity still remained
for storage up to 45 days [27,28]. All these previous studies
reveal that embedding CsPbX3 quantum dots or NCs into glass
has a great potential in improving its stability and fluorescence
performance [26–28].

However, the nonlinear optical aspect of perovskite glass,
especially the study of MPA, which is important to the appli-
cation of these optoelectronic devices, has been rarely investi-
gated [13,29,30]. Many studies have been reported on the
nonlinear optical properties of pure perovskite [31]. For exam-
ple, a two-photon absorption (2PA) cross section of CsPbBr3
NCs in toluene as high as 106 GW has been reported [32].
Chen et al. demonstrated that the 2PA cross section of
CsPbBr3 NCs depends on the particle size [33]. Furthermore,
due to the symmetry breaking of the perovskite octahedron
structure, Li et al. confirmed that all-inorganic perovskites with
different proportions of halogen atoms show greater MPA in-
tensity than CsPbCl3 and specially designed organic molecules
[34,35]. Not only that, Chen et al. reported that the five-pho-
ton absorption cross section of Type-I core-shell halide perov-
skite NCs is 9 orders of magnitude higher than that of specially
designed organic molecules [30]. However, the nonlinear op-
tical aspect of perovskite glass, which is highly desired for ap-
plications in low-threshold lasing [36], optical data storage
[37], photodetectors [38], and other nonlinear optical photo-
electric devices [32], has been rarely investigated.

In the present work, the three-order nonlinear optical char-
acteristics of CsPbClxBr3−x (x � 1, 1.5, 2) NCs glasses have
been investigated by open-aperture (OA) Z-scan measurements
using femtosecond laser pulses. We observe the 2PA and three-
photon absorption (3PA) phenomena of CsPbClxBr3−x (x �
1, 1.5, 2) NCs glasses at wavelengths of 800 and 1300 nm.
The magnitude of the 2PA coefficient (β) of CsPbClxBr3−x
(x � 1, 1.5, 2) NCs glasses is about 10−1−10−2 cmGW−1,
and the magnitude of the 3PA coefficient (γ) is
10−5−10−6 cm3 GW−2. The observed MPA behavior of
CsPbClxBr3−x (x � 1, 1.5, 2) NCs glasses could play a great
role in the development of perovskite-based optoelectronic
devices.

2. EXPERIMENT SETUP

In the OA Z-scan measurement, as shown as Fig. 1, the per-
ovskite NCs glasses with thickness L are moved along

the Gaussian light propagation direction, and the laser beam
transmittance after the sample is measured. For 2PA measure-
ment, we used a Ti:sapphire femtosecond laser (Spectra-
Physics) operating at a central wavelength of 800 nm with a
repetition frequency of 1 kHz and a pulse width of 35 fs.
For 3PA measurements, the laser source consisted of an optical
parametric amplifier (TOPAS-Prime), delivering a wavelength
of 1300 nm with a pulse width of 200 fs. The repetition fre-
quency of laser was 1 kHz. In order to amplify weak signals, a
chopper (Thorlabs MC2000B) is inserted into the optical path.
The focal length of the front lens of the sample is 10 cm, and
the spot radius at the focal point is about 30 μm. The trans-
mitted intensity of each pulse after passing through the sample
is measured by a Si-biased detector (Thorlabs DET10A2) using
the lock-in amplifier (Signal Recovery Model 7270) technique.

3. RESULTS AND DISCUSSION

In this work, CsPbClxBr3−x (x � 1, 1.5, 2) NCs are successfully
embedded inside a glass sheet (radius � 10 mm, thickness �
0.56 mm) matrix via the melt-quenching and in situ crystalliza-
tion method. TheCsPbClxBr3−x (x � 1, 1.5, 2) NCs are spheri-
cal structures with a diameter of ∼35–45 nm [see the
Appendix A, Fig. 6(a)] [39]. Figure 2(a) shows the X-ray diffrac-
tion (XRD) patterns ofCsPbCl1.5Br1.5 NCs glass under different
treatment temperatures. The diffraction peaks of perovskite glass
are at 15.5°, 22°, 31°, 38.5°, and 44.6°, corresponding to (100),
(110), (200), (211), and (220) phase, respectively [40,41].
Referring to the previous research results, these narrow diffrac-
tion peaks demonstrate that the CsPbCl1.5Br1.5 NCs have good
crystallization [25]. Figure 2(b) displays the PL emission spectra
of CsPbCl1.5Br1.5 NCs glass. The PL emission peak of

Fig. 1. Experimental setup for the Z-scan technique.

Fig. 2. (a) XRD patterns and (b) PL emission spectra of
CsPbCl1.5Br1.5 NCs glasses under different treatment temperature
excited by femtosecond pulses at 365 nm.
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CsPbCl1.5Br1.5 NCs glass displays a slight redshift with the treat-
ment temperature from 470°C to 530°C. The reason for the
slight redshift of PL emission peak in the CsPbCl1.5Br1.5
NCs glass is the increase of the crystal grains size, which is caused
by the increase of the heat treatment temperature [41]. However,
the surface defects increase due to the continuous increase in
temperature, which affects the fluorescence quantum yield
and causes the PL emission intensity of the CsPbCl1.5Br1.5
NCs glass to decrease [41].

Figures 3(a) and 3(b) show the OA Z-scan curves of the
CsPbCl1.5Br1.5 NCs glass (bandgap ∼ 2.58 eV) at the different
treatment temperature excited by 800 nm (∼1.55 eV) with
pump intensity of 25.5 GW∕cm2 and by 1300 nm
(∼0.95 eV) with pump intensity of 217 GW∕cm2, respec-
tively (see the Appendix A, Fig. 8). As shown in Figs. 3(a)
and 3(b), the Z-scan curves are all valley shapes. When the
CsPbCl1.5Br1.5 NCs glass is close to the focus, the normalized
transmission of the incident laser decreases. As shown in
Figs. 3(a) and 3(b), the CsPbCl1.5Br1.5 NCs glass with a heat
treatment temperature of 530°C has the strongest nonlinear
response.

In theory, the measured normalized transmission (T ) for
OA Z-scan results is given by the expression [42,43]

TOA�nPA� �
1

f1� �n − 1�αNLLeff fI 0∕�1� �z∕z0�2�gn−1g1∕n−1
�n � 1, 2, 3�, (1)

where Leff is the effective length of the sample. αNL is the
nonlinear optical coefficient. z is the position of the sample
in the light path, z0 � πω2

0∕λ is the Rayleigh range of the
Gaussian beam, and ω0 is the beam waist at the focal point
(z � 0).

Among them, the 2PA coefficient is represented by β. The
imaginary part of third-order nonlinear susceptibility [44,45],

Imχ�3� � c2ε0n20β
ω

, (2)

where c is the speed of light, n0 is the linear refractive index, and
ε0 and ω are the vacuum permittivity and angular frequency
of the laser beam, respectively. The figures of merit (FOMs)
are used to describe nonlinear absorption characteristics:
FOM � jImχ�3�∕α0j, where α0 is the linear absorption coef-
ficient. The 3PA coefficient is represented by γ. The effective
thicknesses of 2PA and 3PA are Leff � �1 − e−α0L�∕α0 and
L 0
eff � �1 − e−2α0L�∕2α0, respectively [42,43].
Figures 3(c) and 3(d) display the 2PA and 3PA coefficients

of CsPbCl1.5Br1.5 NCs glasses at the different treatment tem-
peratures obtained by fitting Eq. (1). The insets in Figs. 3(c)
and 3(d) show the schematic diagram of the 2PA and 3PA proc-
esses, respectively. When CsPbCl1.5Br1.5 NCs glass is excited
by the femtosecond laser, electrons in the valence band need
to absorb two (or three) photons at the same time to transition
to the conduction band. By fitting with a Z-scan theory, 2PA
coefficients of CsPbCl1.5Br1.5 NCs glass with different treat-
ment temperatures were calculated: β � 0.87 cmGW−1 for
470°C treatment temperature, β � 0.97 cmGW−1 for 500°C
treatment temperature, and β � 1.23 cmGW−1 for 530°C
treatment temperature, respectively. Under the pump intensity
of 25 GW∕cm2, the Imχ�3� for CsPbCl1.5Br1.5 NCs glasses
are in the range of �1.99−2.81� × 103 esu and the magnitudes
of FOM are all at 103 esu cm obtained by fitting Eq. (2) (see
the Appendix A, Table 1). 3PA coefficients of CsPbCl1.5Br1.5
NCs glasses with different treatment temperatures were
calculated: γ � 2 × 10−5 cm3 GW−2 for 470°C, γ � 2.17 ×
10−5 cm3 GW−2 for 500°C, and γ � 2.86 × 10−5 cm3 GW−2

for 530°C, respectively. As the processing temperature in-
creases, the crystallinity is better. The larger the nanocrystal
particles, the stronger the 2PA and 3PA performance of the
CsPbCl1.5Br1.5 NCs glasses [39].

Furthermore, the nonlinear properties of CsPbCl1.5Br1.5
NCs glasses with different pump intensities are measured.
The OA Z-scan curves of CsPbCl1.5Br1.5 NCs glass under
500°C treatment temperature with various incident pump
intensities at the wavelength of 800 nm are shown in Fig. 4(a).
The normalized transmittance decreases when either increasing
the pump intensity or placing the CsPbCl1.5Br1.5 NCs glass
closer to the focus point, z � 0, while as the pump intensity

Fig. 3. OA Z-scan results of CsPbCl1.5Br1.5 NCs glasses with differ-
ent treatment temperatures. (a) Under pump intensity 25.5 GW∕cm2

at a wavelength of 800 nm and (b) under pump intensity
217 GW∕cm2 at a wavelength of 1300 nm. (The balls are the exper-
imental data, and the solid lines are fitting curves.) The fitting results
of (c) β and (d) γ of CsPbCl1.5Br1.5 NCs glass with different treatment
temperatures. (Inset, the schematic of a two-level model.)

Fig. 4. (a) OA Z-scan curves and (b) corresponding fitting results of
β (black ball), Imχ�3� (pink), and FOM (blue) of the CsPbCl1.5Br1.5
NCs glass at the wavelength of 800 nm with different incident pump
intensity.
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increases, the normalized transmittance curve deepens. These
results suggest the potential application of CsPbCl1.5Br1.5
NCs glass in optoelectronic devices, such as optical limiting
devices [46]. Figure 4(b) summarizes the dependence of
2PA fitting results as a function of pump intensity. (Fitting re-
sults are summarized in Table 2). The β is 0.096 cm/GW
of CsPbCl1.5Br1.5 NCs glass at the pump intensity of
255 GW∕cm2 and 0.089 cm/GW at the pump intensity of
332 GW∕cm2, respectively. The result of the 2PA coefficient
we obtained is with the same order of magnitude as the
CsPbBr3 NCs [36] and CsPbClxBr3−x (x � 1, 2) quantum
dots [47]. The perovskite NCs encapsulated in perovskite glass
are isolated from the external environment. This gives them
better stability and greatly improves the service life of perovskite
NCs. The Imχ�3� for CsPbCl1.5Br1.5 NCs glasses are in the
range of �2.03–2.88� × 102 esu and the FOM is in the range
of �2.3–3.2� × 102 esu cm. It is shown that as the pump inten-
sity increased, the value of β, Imχ�3�, and FOM decreased. The
same phenomenon has been observed in other materials, such
as PbS/glue nanocomposite [48] and few-layerWS2 films [49].
As the incident light energy increases, a large number of carriers
gather in the excited state, resulting in population inversion
[50]. Hence, the electrons in the ground state cannot further
absorb the photon and transition to the excited state [51].
The β of CsPbCl1.5Br1.5 NCs decreases as the pump intensity
increases.

To further explore the influence of different doped halogen
anion ratios on the MPA and consider the influence of treat-
ment temperature on the PL performance of all-inorganic per-
ovskite glasses, we choose CsPbClxBr3−x (x � 1, 1.5, 2) NCs
glasses with a treatment temperature of 500°C to explore their
nonlinear response [52]. Figures 5(a) and 5(b) display the OA
Z-scan response of CsPbClxBr3−x (x � 1, 1.5, 2) NCs glasses
under femtosecond laser of 800 nm and 1300 nm, respectively.

Figure 5(a) shows the OA Z-scan curves of CsPbClxBr3−x
(x � 1, 1.5, 2) NCs glasses under pump intensity
178 GW∕cm2 at a wavelength of 800 nm. Comparing the nor-
malized transmittance curves of CsPbClxBr3−x (x � 1, 1.5, 2)
NCs glasses with different Cl− and Br− ion ratios, it is found
that the CsPbClxBr3−x (x � 1, 1.5, 2) NCs glasses with higher
Br− ions doping ratio have a greater nonlinear response in
the process of 2PA and 3PA. The bandgap width of
CsPbCl1Br2 NCs glasses is 2.46 eV, slightly smaller than that
of CsPbCl1.5Br1.5 (2.58 eV) and CsPbCl2Br1 (2.7 eV) (see the
Appendix A, Fig. 8). Due to the increase of Br− ion content, the
bandgap is narrowed, thereby promoting the carrier transition
rate [34,53]. CsPbCl1Br2 NCs glasses exhibit a large MPA
phenomenon. Correspondingly, the PL emission peak of
CsPbCl2Br1, CsPbCl1.5Br1.5, and CsPbCl1Br2 NCs glasses
with emission wavelength peaks at 454, 470, and 490 nm is
shown in Fig. 5(c), respectively. The PL peak shifts to the lower
energy direction as the proportion of Br− ions increases. It is
shown that the luminescence can be effectively tuned by intro-
ducing the Cl− and Br− ion ratios. The width of CsPbClxBr3−x
(x � 1, 1.5, 2) NCs glasses at half-height (FWHM) of the PL
emission is less than 30 nm (see the Appendix A, Fig. 7).

By fitting the Z-scan data in Figs. 5(a) and 5(b), the β of
CsPbCl1Br2 NCs glass is ∼0.087 cmGW−1, 0.1 cmGW−1

for CsPbCl1.5Br1.5 NCs glass, and 0.127 cmGW−1 for
CsPbCl2Br1 NCs glass. The 2PA coefficient of CsPbCl1Br2
NCs glass is 1 order of magnitude higher than that of
CsPbCl1Br2 quantum dots [47]. Combined with Eq. (2),
the Imχ�3� for CsPbClxBr3−x NCs glasses is in a range of
�1.99−2.9� × 102 esu, which is larger than that of CsPbBr3
NC (see the Appendix A). The FOM value used to describe
the nonlinear absorption characteristics is in the range of
�2.2−2.53� × 102 esu cm (see the Appendix A, Table 3).
Meanwhile, we obtained the γ: 0.54 × 10−5 cm3 GW−2 is
for CsPbCl2Br1 NCs glass, 0.82 × 10−5 cm3 GW−2 is for
CsPbCl1.5Br1.5 NCs glass, and 1.21 × 10−5 cm3 GW−2 is for
CsPbCl1Br2 NCs glass. The 3PA coefficient of CsPbCl1Br2
NCs glass is over 1 order of magnitude larger than that of
the CsPbCl1.5Br1.5 and CsPbCl2Br1 NCs glasses. This is
mainly because the CsPbCl1Br2 NCs glass has a narrower
bandgap and higher structural destabilization that will lead
to the easier carrier transition and delocalized electrons redis-
tribution compared with CsPbCl1.5Br1.5 and CsPbCl2Br1 NCs

Fig. 5. OA Z-scan results of CsPbClxBr3−x (x � 1, 1.5, 2) NCs
glasses. (a) Under pump intensity 178 GW∕cm2 at a wavelength
of 800 nm and (b) under pump intensity 535 GW∕cm2 at a wave-
length of 1300 nm. (The balls are the experimental data, and the solid
lines are fitting curves.) (c) PL emission spectra of CsPbClxBr3−x
(x � 1, 1.5, 2) NCs glasses for 500°C treatment temperature excited
by femtosecond pulses at 365 nm; (d) fitting the results of 2PA
coefficient (β, purple bar) and 3PA coefficient (γ, red bar) obtained
in (a) and (b), respectively.

Fig. 6. (a) Transmission electron microscopy (TEM) images
of CsPbClxBr3-x (x = 1, 1.5, 2) NCs and (b) high-resolution
TEM images of CsPbCl1.5Br1.5 NCs.
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glasses [24]. Due to the narrower bandgap and structural de-
stabilization of the perovskite, the electron cloud is distorted,
which promotes the transition of electrons from the ground
state to the excited state [34]. Therefore, the carrier transition
rate is further increased.

4. CONCLUSION

In summary, we measure the 2PA and 3PA properties of
CsPbClxBr3−x (x � 1, 1.5, 2) NCs glasses using the OA Z-scan
method. The CsPbCl1.5Br1.5 NCs glass under 530°C treatment
temperature exhibited the strongest 2PA and 3PA coefficients,
which is mainly due to the better crystallization properties of
perovskite NCs at higher temperatures. Furthermore, the

dependence of incident pump intensity shows that the nonlin-
ear coefficient decreases when the incident pump intensity
increases. We also found that the larger the proportion of
Br anions, the stronger the MPA performance. These results
for CsPbClxBr3−x NCs glass may guide designs for their poten-
tial use in applications.

APPENDIX A

The CsPbClxBr3-x (x = 1, 1.5, 2) nanocrystals are spherical struc-
tures with a diameter of ∼35–45 nm enclosed in a glass sheet,
as shown in Fig. 6(a). As shown as Fig. 9, CsPbCl1Br2 and
CsPbCl2Br1 NCs glasses also showed the 2PA phenomenon
that the normalized transmittance decreased greatly as the
pump power increased under the wavelength of 800 nm. As
the pump energy becomes stronger, more carriers are excited,

Fig. 7. (a) Amplified spontaneous emission (ASE) measurement on CsPbCl1.5Br1.5 NCs glass under an 800 nm pulsed laser at room temperature
and (b) corresponding full-width at half-maxima (FWHM) and output as a function of incident pump intensity.

Table 1. Summary of the Measured 2PA and 3PA Parameters of CsPbCl1.5Br1.5 NCs Glasses at Wavelengths of 800 nm
and 1300 nma

Sample Growth Condition T α0 (cm–1) β (cm GW–1) γ (×10–5 cm3 GW–2) Imχ (3) (esu) FOM (esu cm)

CsPbCl1.5Br1.5 470°C 0.94 0.48 0.87� 0.015 2� 0.077 1.99 × 103 4.14 × 103

CsPbCl1.5Br1.5 500°C 0.90 0.81 0.97� 0.016 2.17� 0.058 2.21 × 103 2.73 × 103

CsPbCl1.5Br1.5 530°C 0.88 0.99 1.23� 0.028 2.86� 0.031 2.81 × 103 2.84 × 103

aT, linear transmittance of perovskite glasses; α0, linear absorption coefficient; β, 2PA coefficient; γ, 3PA coefficient; Imχ(3), imaginary part of third-order nonlinear
susceptibility; FOM, figures of merit.

Fig. 8. (αhυ)2-hυ plot of CsPbClxBr3-x (x � 1, 2, 3) NCs glass.

Table 2. 2PA Parameters of the CsPbCl1.5Br1.5 NCs Glass
Measured by an OA Z-Scan at 800 nm under Different
Pump Intensitya

Pump Intensity
(GW/cm2) β (cm GW–1) Imχ (3) (esu) FOM (esu cm)

102 0.13� 0.0064 2.88 × 102 3.2 × 102

178 0.1� 0.0042 2.28 × 102 2.54 × 102

255 0.096� 0.0043 2.19 × 102 2.43 × 102

332 0.089� 0.0052 2.03 × 102 2.3 × 102

aβ, 2PA coefficient; Imχ(3), imaginary part of third-order nonlinear
susceptibility; FOM, figures of merit.
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thereby absorbing more photons. This performance can be
applied to optoelectronic devices such as optical limiting.
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