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The class quantumMerlin–Arthur (QMA), as the quantum analog of nondeterministic polynomial time, contains
the decision problems whose YES instance can be verified efficiently with a quantum computer. The problem of
deciding the group non-membership (GNM) of a group element is conjectured to be a member of QMA. Previous
works on the verification of GNM, which still lacks experimental demonstration, required a quantum circuit with
O�n5� group oracle calls. Here, we provide an efficient way to verify GNM problems, in which each quantum
circuit only contains O�1� group of oracle calls, and the number of qubits in each circuit is reduced by half. Based
on this protocol, we then experimentally demonstrate the new verification process with a four-element group in an
all-optical circuit. The new protocol is validated experimentally by observing a significant completeness-sound-
ness gap between the probabilities of accepting elements in and outside the subgroup. This work efficiently sim-
plifies the verification of GNM and is helpful in constructing more quantum protocols based on the near-term
quantum devices. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.427897

1. INTRODUCTION

Quantum effect can be used to enhance information processing
in many ways. Besides speeding up solving certain problems
[1–3], quantum computers can also be used to construct novel
interactive proof systems (IPSs) [4–6], which leads to fruitful
studies in blind quantum computing [7–9], quantum zero-
knowledge proof systems [10,11], and multiprover IPSs
[12,13]. An IPS involves a verifier and (potentially multiple)
provers, where the verifier aims at solving certain problems
by exchanging messages with the provers.

IPSs can be used to classify decision problems, the problems
whose answers can only be YES or NO. For example, nonde-
terministic polynomial time (NP), one of the most important
complexity classes, can be described by an IPS, with a classical
verifier and a single computationally unbounded prover
exchanging one round of classical message [14,15]. Specifically,

NP contains decision problems that, for a YES instance, there
exists certain proof message, with which the YES instance can
be verified in polynomial time by a classical computer. NP can
be generalized to the quantum realm naturally and the quan-
tum analog is called quantum Merlin–Arthur (QMA) [15,16].
In QMA, the proof message is replaced by a quantum state, and
the verifier can use a quantum computer to process it [17,18].

Since a classical verifier can be simulated by a quantum com-
puter and a classical message can be described by a quantum
state, every problem belonging to NP is also in QMA [15,16],
i.e., NP ⊆ QMA. However, it remains an unsolved problem
whether QMA is strictly larger than NP, and the group non-
membership (GNM) problem is believed to be a possible can-
didate that falls in QMA but not in NP [16,19–21]. Previous
works have shown the potential quantum advantage on verify-
ing YES instances of this problem. It has been proven that the
GNM problem is not in NPB [20] for a certain group oracle B.
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Also, for every B, GNM�B� ∈ QMAB has been proven by giv-
ing quantum proofs and a verification process that can be effi-
ciently performed by a quantum computer [21]. Furthermore,
it is conjectured that certain quantum proofs, which are similar
to the one constructed for proving GNM�B� ∈ QMAB, can be
used in many other decision problems of finite groups, such as
the problems of deciding proper subgroups and simple
groups [21].

Because of the potential applications of quantum IPS and
the growing power of near-term quantum devices [22,23], it
has become a meaningful question on how to make quantum
IPS more friendly for near-term quantum devices. The verifi-
cation of GNM is of special importance, as it is closely related
to the verification of a wide spectrum of group properties and is
expected to present quantum advantage. However, the previous
efforts to verify GNM are not favorable for near-term devices,
as it requires too deep quantum circuits [21,24], and the related
experimental demonstration is absent.

In this work, based on a new protocol, which improves the
previous protocol proposed by Watrous [21] and is more
friendly to near-term quantum devices, we experimentally show
the verification of GNM by an all-optical setup. By sending
various photonic quantum proofs to the optical circuits, a sig-
nificant completeness-soundness gap, which is the difference
between the probabilities of accepting elements outside the
subgroup and incorrectly accepting elements inside the sub-
group, is observed to present the validity of our protocol.
For the groups with at most 2n elements, each quantum circuit
in the new protocol only requires O�1� group oracle calls,
whereas the previous protocol requires O�n5� oracle calls in
one circuit. The number of qubits needed is also half-reduced.
Our new process makes it easier to use the verification of GNM
as a part of near-term quantum applications such as quantum
cryptography protocols.

2. THEORETICAL FRAMEWORK

First, we formally revisit the GNM problem here [21]. LetG be
a finite group and S � hg1,…, gki be a subgroup generated by
group elements g1,…, gk ∈ G. Given an element x ∈ G, the
GNM problem is to decide whether x is outside the subgroup
S. If x ∉ S, x is a YES instance; otherwise, x is a NO instance.
To analyze the problem with minimum assumption on the
group, usually the framework of black-box groups [25] is
adopted. Following the framework of the quantum group
oracle [21], in which the quantum group element labels are
a set of mutually orthogonal quantum states, we denote the
quantum label corresponding to the group element g by ψ g
and the space spanned by the quantum labels of elements in
G by spanfGg :� spanfjψ g1ihψ g2 j∶g1, g2 ∈ Gg. The quantum
group oracle is defined to be able to detect whether a state is in
spanfGg and carry out right multiplication M�·� as
M�g2�jψ g1i � jψ g1g2i. The quantum proof for the non-
membership can be a uniform superposition of the elements
in a co-set αS of the subgroup S for any α ∈ G [21], where αS
is defined as αS :� fαsjs ∈ Sg. Explicitly, it can be written as

jQproof i �
1ffiffiffiffiffiffi
jSj

p X
g∈αS

jψ gi, (1)

where jSj is the element number of the subgroup S. This state is
invariant under right multiplications of the elements in S be-
cause they map the elements in αS bijectively to αS. On the
other hand, if x ∉ S, the result state is orthogonal to the origi-
nal one as hQproof jM�x�jQproof i � 0, since �αS�x and αS do
not share common elements.

Next, we introduce the core quantum circuit, which plays a
central role in both the original and new verification process
[21]. The core circuit is similar to the swap test circuit and
is depicted in Fig. 1. The outcome of the core circuit is defined
to be the measurement outcome of the control qubit. We de-
note by core�x, jQproof i� � s the event of obtaining the mea-
surement outcome s ∈ f0,1g in one run of the core circuit with
input state jQproof i and group member x. The outcome can
show the effect of the multiplication by x on the input state.
For core�x, jQproof i�, if x ∈ S, the outcome can only be 0, as
jQproof i is invariant under the multiplication. If x ∉ S, the
probability of obtaining 1 is 0.5 as the state after multiplication
is orthogonal to jQproof i. Therefore, with the proof state, the
non-membership of an element can be verified when the out-
come 1 is obtained.

However, a malicious prover may send bogus proof states
that deviate from Eq. (1) and give incorrect outcomes.
Therefore, to ensure the soundness of the verification, the veri-
fier has to do a property check on the received proof state, i.e.,
check that the state is invariant under the group multiplication
M�s� for any s ∈ S, so that the elements in S cannot be proven
to be outside S. In the original protocol, to verify the proof
received is valid, the verifier needs to uniformly sample the sub-
group elements in a reversible way and produce a quantum
superposition of all the quantum labels,X

g∈S
aijgijgarbage�g�i, (2)

where the norm of faig should be nearly uniform. The revers-
ible sampling requires O�n5� calls of the group oracle in the
quantum circuit [24] and requires the verifier to keep at least
two quantum group element labels.

In the new verification process for GNM, we reduce both
the circuit depth and qubit number needed by importing the
technique we call random state inspection (RSI). In RSI, the
prover is required to send m registers that carry copies of a state
to the verifier. The verifier randomly selects one register to re-
serve and applies independent test channels to the other m − 1
registers to check the property of the states that they carry. If all
the m − 1 registers pass the property checking, the verifier ac-
cepts the reserved register for the later verification process.

Fig. 1. Core circuit. The circuit is similar to the swap test circuit
and aims to check whether the input state is invariant under certain
group multiplication. With a correct proof state, if x ∈ S, the measure-
ment outcome is always 0; if x ∉ S, the measurement outcome is 1
with probability 0.5.
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Otherwise, the verifier rejects. We model the test channel as a
quantum channel that maps an input register to an output qu-
bit. The verifier measures the output qubit and regards out-
come j0i as pass and j1i as fail. One can show that, if all
the other registers have passed the test channels, the probability
for the reserved register to fail passing the test channel (if tested)
can be bounded to 0 at speed O�1∕m� even when the m regis-
ters are entangled. Denote the density operator of the reserved
register and other registers as ρr and ρt , this bound can be
written as

Pr�test�ρr� � failjtest�ρt� � pass� < O�1∕m�: (3)

To show this bound, one just needs to analyze the density
matrix of the output state after applying the test channels to all
the registers. After testing all the other registers, the verifier can
directly apply the later verification process on the reserved regis-
ter as its property is ensured. By RSI, as the check and use of the
proof state can be done in separate circuits, the circuit depth
needed in the verification is reduced to that of the property
checking or the later verification.

Besides reducing the circuit depth by RSI, we also simplify
the property checking process in the original protocol. Rather
than using the state in Eq. (2), which needs O�n5� quantum
group oracle calls to produce, we propose a simplified new pro-
cess here. The test channel of the new process starts from sam-
pling an element s of the subgroup S from a nearly uniform
distribution with a classical computer by Babai’s algorithm
[24]. Here, nearly uniform means the probability for s to be
any subgroup elements is in �1∕jSj − 1∕22n, 1∕jSj � 1∕22n�.
The second step of the test channel is a core circuit. With
the sampled element s, an input state passes the test channel
when core�s, ρ� � 0. Therefore, in the whole verification pro-
cess, all the quantum circuits the verifier needs to run are just
core circuits with different group elements.

Here, we discuss the completeness and soundness of the new
verification protocol. It can be proven that for any element
s ∈ S and any quantum state ρ ∈ spanfGg, the probability
of incorrectly proving the non-membership of s, i.e., having
core�s, ρ� � 1, can be bounded as

Pr�core�s, ρ� � 1� ≤ 1 − Pr�test�ρ� � pass�
K
�
1 − jSj

22n

� , (4)

where

1

K
� 1 − cos

��jsj
2

�
2

jsj π
�
, (5)

and jsj is the minimal positive number r such that sr equals
identity. With this bound, we know that one can bound the
error probability Pr�core�s, ρ� � 1� to 0 by increasing
Pr�test�ρ� � pass�, which can be efficiently bounded to 1 with
RSI. Therefore, the soundness of the new protocol is ensured.
To prove this bound, one just needs to decompose ρ on the
basis of quantum labels fjψ gig and study the coefficient of
every basis state under the core circuit. The condition of high
Pr�test�ρ� � pass� can provide a restriction on the value of
Pr�core�s, ρ� � 1� and techniques such as the Lagrangian
multiplier can be then used to determine its maximal value.
To prove the completeness, one just needs to notice that proof

states from honest prover can certainly pass the test channels,
and the reserved register with the correct state can prove the
non-membership, the same as the original protocol. The whole
new verification process is listed below.

1. Prover sends m registers with state in Eq. (1) to the veri-
fier, trying to prove g ∈ G is not in the subgroup S ⊆ G.
Verifier receives the registers and checks whether their states
are in spanfGg. If not, reject the proof.

2. Verifier randomly chooses a register to reserve and ap-
plies the property checking process to all the other registers
as below.

3. Property checking.

(a) Verifier samples an element s ∈ S with a classical com-
puter by Babai’s algorithm.

(b) Verifier applies the core circuit with multiplication by s
to the state. Verifier rejects the proof if the outcome is 1.

4. Verifier applies the core circuit with multiplication by g
to the reserved register. The GNM of g is verified when the
outcome is 1.

To summarize, in our new protocol, we split the property
checking of the proof state and the verification after property
checking into different circuits by RSI. We also use a new prop-
erty checking process that requires many fewer quantum re-
sources. As a result, the verifier only needs to run a core
circuit, which is shallow, for many times, rather than run a deep
circuit with O�n5� group operations. Also, the number of qu-
bits that the verifier needs to keep is halved because the verifier
no longer needs to keep a reversibly sampled quantum label.

3. EXPERIMENTAL SETUP AND RESULTS

In this work, an experimental demonstration of our new veri-
fication process is carried out. We consider an Abelian group
G � fhA,BijAB � BA,A2 � B2 � Eg. The four elements in
G are encoded in the polarization degree of freedom of photons
as jψEi � jVH i, jψAi � jHV i, jψBi � jHH i and
jψABi � jV V i, in which jH i and jV i denote the horizontal
and vertical polarization of the photons, respectively. They can
together span the whole two-qubit Hilbert space. The corre-
sponding multiplication circuits of the four group elements
are illustrated in the first line of Fig. 2(a), where the circuit
M�g� of each element g satisfies M�g2�jψ g1i � jψ g1g2i. We
then construct the core circuits with these multiplications and
map them to the optical interferometer illustrated in Fig. 2(a).
For example, the circuit of A transforms jψEi to jψAi, jψAi to
jψEi, jψBi to jψABi, and jψABi to jψBi. The subgroups we
choose are S � fE,Ag and S 0 � fE,ABg. The quantum proof
states for S and S 0 used in the experiment are jQproof i �
�jψBi � jψABi�∕

ffiffiffi
2

p � �HH � V V �∕ ffiffiffi
2

p
, and jQ 0

proof i �
�jψBi � jψAi�∕

ffiffiffi
2

p � �HH �HV �∕ ffiffiffi
2

p
, respectively.

In our experiment, jQproof i, jQ 0
proof i, jψAi, and jψBi are

put into the core circuit with right multiplication by E,A,B,
and AB. Our new protocol only requires one core circuit in
each quantum circuit. In contrast, if one strictly follows the
original protocol, at least five qubits are needed that contain
two quantum labels of group elements and one ancillary qubit
for reversible group element sampling. One also needs at least
three group multiplications in the strict original circuit, whereas
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the new method only requires one multiplication in each cir-
cuit. The full experimental setup of the new protocol is shown
in Fig. 2(b). The input states are generated by pumping two
identically cut Type I beta-barium-borate (BBO) crystals whose
optic axes are aligned in mutually perpendicular planes [26]
with an ultraviolet (UV) source. The UV pulses are frequency
doubled from a mode-locked Ti:sapphire laser centered at
800 nm with 130 fs pulse width and 76 MHz repetition rate.
After compensating the birefringence effect between H and V
in BBO crystals with quartz plates (QPs), maximally entangled
photon pairs of the forms jQproof i are produced [26].
Furthermore, by adjusting the polarization of pump pulses
and downconversion photons, the other states of jψBi �
jHH i, jψAi � jHV i, and jQ 0

proof i � �jHH i � jHV i�∕ ffiffiffi
2

p
are produced. The input photons are then sent to one of the
quantum circuits in Fig. 2 to perform the core circuit with
different group multiplications.

In our setup, the Mach–Zehnder interferometer (MZI) is
realized by a Sagnac interferometer in which the path informa-
tion of photons is regarded as the control qubit [27]. In a
Sagnac interferometer, an optical nonpolarization beam splitter
(BS), worked as the Hadamard gates on control qubit, is used
to separate the beam into two paths, 1 and 2, which are treated
as the control qubit j0i and j1i, respectively. Here, the BS is
chosen to split 50:50 for 0° angle of incidence, which could
decrease the difference of the split ratio of different polariza-
tions. In the path j1i, a half-wave plate (HWP) is used to im-
plement CNOT gates set at 45° to reverse the photon
polarization. The visibilities of two Sagnac interferometers
are 96.7%� 0.4% and 95.9%� 0.4%, respectively. Note
that, for the circuit E with Es multiplication, there is no
CNOT gate and the HWP is set at 0°. Beams 1 and 2 combine

in the BS and then are separated as beams 3 and 4. The polari-
zation of photons is analyzed on the outputs of beams 3 and 4
by polarization beam splitters (PBSs), HWPs, and quarter-wave
plates (QWPs). The photons are detected by single-photon
detectors (D) equipped with 3 nm interference filters (IFs).

For the circuit A, which implements the multiplication by
A, the probability P0 of detecting j0i equals the sum of the
coincidence count (CC) of detectors located at a3 and b3
and the CC of detectors located at a4 and b4, where a3 is
the output port 3 of the SI on the side of a, and similarly here-
inafter. The probability P1 of detecting j1i equals the sum of
the CC of a3 and b4 and the CC of a4 and b3. On the other
hand, for the case of circuit B, according to the corresponding
mapping relation where the SI is only placed in the a side, the
probability of detecting j0i equals the CC of a3 and b, and the
probability of j1i equals the CC of a4 and b. Similar methods
suit the other circuits AB and E.

Besides the interference visibility introduced above,
two SIs are further verified with the input state of
�jHH i � jV V i�∕ ffiffiffi

2
p

, which is prepared with a fidelity of
95.9%� 1.0%. For the SI appearing in the E circuit, the out-
put state generated from the CC of a3 and b remains the max-
imally entangled state and is achieved experimentally with a
fidelity of 95.3%� 1.0%. For the other interferometer that
is used in circuit AB, without inserting the CNOT gate, the
output state generated from the CC of a and b3 is also the same
as the input state and is achieved with a fidelity of
94.2%� 1.4%. We further verify other output cases of the
interferometers and achieve high fidelities for them. For the
input state 1ffiffi

2
p �B� AB� � 1ffiffi

2
p �jHH i � jV V i�, we present

the detailed experimental real matrix and imaginary matrix
of the outputs here, as shown in Figs. 3 and 4.

(b)

Fig. 2. Circuit mapping and experimental setup. (a) The circuits for group multiplications in the first line are deduced from the quantum labels
for the elements. They are used to construct the core circuits for the verification process in the second line. Optical paths are presented in the third
line. Here, two BSs building an MZI are used to play the role of two Hadamard operations on the control qubit, which is realized with the path
information. One path is regarded as j0i and the other one is j1i. An HWP is placed in j1i path to act as the CNOT gate on the polarization qubit
with the optical axis at 45°. (b) Experimental setups. Entangled photon pairs are produced by pumping BBO and using quartz plates (QPs) on the
above panel. Two photons are sent to the sides a and b respectively. On each side, an SI, shown on the bottom panel in detail, is constructed to realize
the MZI. In an SI, an HWP is placed in j1i path (shown in orange beam and marked as 2) and a phase compensation (PC) crystal is located in j0i
(shown in blue beam and marked as 1). A measurement unit (MU) consisting of a QWP, an HWP, a PBS, and a single-photon detector (D)
equipped with an interferometer filter (IF) is placed on each output port (marked as 3 and 4) of the SI. Note, in this figure, unitary of multiplying by
A is realized. By removing the SI, we can implement different quantum circuits.
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Fig. 3. Real parts of density matrices of the final output photons for the case with input state of �jHHi � jV V i�∕ ffiffiffi
2

p
. (a)–(c) Cases of initial

state, output photons of a3 and b in E-type interferometer, output photons of a and b3 in AB-type interferometer without CNOT gate, respectively;
(e)–(g) cases of output photons of a3 and b3 in A-type interferometer (with fidelity 92.6%� 2.4%), a3 and b in B-type interferometer
(88.9%� 0.7%), a and b3 in AB-type interferometer (88.5%� 1.2%), respectively; (i)–(k) cases of output photons of a4 and b4 in A-type
interferometer (98.0%� 0.3%), a4 and b in B-type interferometer (94.4%� 0.3%), a and b4 in AB-type interferometer (94.8%� 0.9%),
respectively; (d), (h), and (l) corresponding theoretical predictions.

Fig. 4. Imaginary parts of density matrices of the final output photons for the case with input state of 1ffiffi
2

p �jHH i � jV V i�. (a)–(c) Cases of initial
state, output photons of a3 and b in E-type interferometer, output photons of a and b3 in AB-type interferometer without CNOT gate, respectively;
(e)–(g) cases of output photons of a3 and b3 in A-type interferometer, a3 and b in B-type interferometer, a and b3 in AB-type interferometer,
respectively; (i)–(k) cases of output photons of a4 and b4 in A-type interferometer, a4 and b in B-type interferometer, a and b4 in AB-type inter-
ferometer, respectively; (d), (h), and (l) corresponding theoretical predictions.
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Equipped with the experiment setup, we first carried out our
new process on the group S. To demonstrate the test channel in
our verification process, the correct proof jQproof i as well as the
bogus proofs jQ 0

proof i,ψA and jψBi is produced and sent to
the core circuit with multiplication by A. A state passes the test
if the control qubit is detected to be j0i. The results are shown
in Fig. 5(a). We find that the probabilities for a bogus proof to
pass the state test do not exceed 0.518� 0.017 and have a sig-
nificant gap toward the probability 0.955� 0.006 for a correct
proof state jQproof i to pass. Then we show how the nonmemb-
ership of an element g can be verified with the correct proof
state jQproof i. The GNM of g is verified when j1i is detected
in the core circuit with multiplication by g. The experimental
result is shown in Fig. 5(b). We find the probabilities for
jQproof i to be accepted are higher than 0.496� 0.009 for
B,AB ∉ S and lower than 0.045� 0.006 for E,A ∈ S. The
above analysis implies that if the prover sends m registers
and the verifier chooses m − 1 registers to test, the probability
pc for a group of correct proof state to be accepted is greater
than 0.496 × �0.955�m−1. In contrast, the probability for m bo-
gus state to pass the tests is only �0.518�m−1. For a general bogus
proof, our theory can show that the probability ps for it to be
accepted can be bounded by 16

7�m−1�. Therefore, the gap pc − ps is
maximized when m � 15 and the maximal value is 0.097.

For the other subgroup S 0, the result is similar. The bogus
proofs become jψAi, jψBi, jQproof i, and the correct proof
becomes jQ 0

proof i. The probabilities for the bogus proofs to
pass the test channel do not exceed 0.503� 0.008 and for
the correct proof jQ 0

proof i, the corresponding probability is
0.980� 0.003, as shown in Fig. 5(c). We find that the prob-
ability for jQ 0

proof i to be accepted when used for verifying
GNM is higher than 0.481� 0.017 for B,A ∉ S 0 and is
lower than 0.020� 0.003 for E,AB ∈ S 0, as shown in
Fig. 5(d). In this case, ps is still bounded by 16

7�m−1� and

pc � 0.481 × �0.980�m−1. The gap pc − ps is maximized when
m � 19 and the maximal value is 0.207.

These completeness-soundness gaps strongly support the
success of verification of GNM in the new protocol. Though
the whole proof state contains more qubits, the number of qu-
bits and operations in the circuit that the verifier needs to pro-
cess at a time, which are more important to near-term devices,
are greatly reduced.

4. CONCLUSION

In this work, we experimentally implement a verification pro-
cess for GNM in an all-optical setup based on an ameliorative
protocol in which the required quantum resources are greatly
reduced. With multiplication of four group elements imple-
mented by optical circuits, the process is accomplished on
two subgroups consisting of two selected elements. As it is very
likely that similar verification process of GNM can be used in
other problems of finite groups, it will be interesting if this val-
idity were formally proven and experimentally demonstrated.
Furthermore, our novel verification process is helpful to con-
struct more quantum protocols, which could be practical for
near-term quantum devices.
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