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Metasurface provides miniaturized devices for integrated optics. Here, we design and realize a meta-converter to
transform a plane-wave beam into multiple Laguerre-Gaussian (LG) modes of different orders at various diffrac-
tion angles. The metasurface is fabricated with Au nano-antennas, which vary in length and orientation angle for
modulation of both the phase and the amplitude of a scattered wave, on a silica substrate. Our error analysis
suggests that the metasurface design is robust over a 400 nm wavelength range. This work presents the
manipulation of LG beams through controlling both radial and azimuthal orders, which paves the way in ex-
panding the communication channels by one more dimension (i.e., radial order) and demultiplexing different
modes. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.423344

1. INTRODUCTION

The Laguerre-Gaussian (LG) mode, a solution of the
Helmholtz equation in cylindrical coordinates, characterized by
the radial index [1], p, and the azimuthal index [2], l , has at-
tracted tremendous attention recently owing to the ability to
encode information [3–6]. The azimuthal index, known as
the orbital angular momentum (OAM) [2], has shown appli-
cations in object detection [7,8], optical communication [9],
holography imaging [10], etc., mainly counting on the momen-
tum conservation during propagation [11]. Meanwhile, the LG
mode, as a complete orthogonal basis [7], has been demon-
strated to increase the communication speed [12,13], e.g., mul-
tiplexing and demultiplexing in multiple orthogonal OAM
channels [13]. However, the radial index has been largely
underexplored by the community as it is not supported by
the single-mode fiber used in many optical setups. However,
this is not a concern in the free space. Since the radial index
is a valid quantum number [14] and could be transmitted
through a graded-index fiber [1] or in free space, it has the po-
tential to further increase the capacity of communication sys-
tem [1] by one more dimension (i.e., radial order).

However, many studies primarily focused on the generation
[3,6,15] or the observation [16,17] of LG modes. For example,
a mode sorter [4] was proposed to generate up to 325 LG

modes by utilizing seven phase masks to transform an array
of Gaussian beams into the quasi-complete set of LG mode
beams. Despite its technical brilliance, it still transforms each
Gaussian beam into a single LG mode but not multiple ones,
not to mention the setup’s complexity.

Here, we report a complex-modulated metasurface to simul-
taneously tailor multiple LG modes. Many previous optical de-
vices for LG modes generation [4,6,18] feature phase-only
modulation, which need an iterative algorithm [19] to mini-
mize the error between the output and target field. In recent
years, complex modulation [20,21] was proposed to generate
LG modes. However, they were only able to generate one
LG mode at a time. By comparison, our metasurface could
(1) generate the field in a faster way (no need for iteration)
and (2) achieve more sophisticated goals (simultaneous conver-
sion and demultiplexing for multiple LGmodes). Our metasur-
face consists of a 2D array of Au nano-antennas on a glass
substrate coated with indium tin oxide. Our experiments sug-
gest that the designed metasurface performs in a broadband
wavelength spanning over 400 nm, which is also corroborated
by simulation. As the metasurface is a promising miniaturiza-
tion technique [22–25] and many high-order LG modes are
achieved through a single chip [6,26], our work paves the
way to future LG modes application and communication chan-
nel expansion.

Research Article Vol. 9, No. 9 / September 2021 / Photonics Research 1689

2327-9125/21/091689-10 Journal © 2021 Chinese Laser Press

https://orcid.org/0000-0002-9448-3861
https://orcid.org/0000-0002-9448-3861
https://orcid.org/0000-0002-9448-3861
https://orcid.org/0000-0002-4641-3148
https://orcid.org/0000-0002-4641-3148
https://orcid.org/0000-0002-4641-3148
https://orcid.org/0000-0002-3067-3965
https://orcid.org/0000-0002-3067-3965
https://orcid.org/0000-0002-3067-3965
https://orcid.org/0000-0002-9137-0298
https://orcid.org/0000-0002-9137-0298
https://orcid.org/0000-0002-9137-0298
https://orcid.org/0000-0003-3668-3539
https://orcid.org/0000-0003-3668-3539
https://orcid.org/0000-0003-3668-3539
mailto:xksun@cuhk.edu.hk
mailto:xksun@cuhk.edu.hk
mailto:xksun@cuhk.edu.hk
mailto:kywong@eee.hku.hk
mailto:kywong@eee.hku.hk
mailto:kywong@eee.hku.hk
https://doi.org/10.1364/PRJ.423344


2. COMPLEX MODULATION

The building block of the metasurface is the nano-antenna
made of Au [Fig. 1(a)], with the height h and width wx fixed
respectively at 80 nm and 200 nm throughout the paper.
The orientation of the nano-antenna (“atom”) defines the
Pancharatnam–Berry phase modulation [27–30].

When a left-handed circularly polarized (LCP) light im-
pinges onto this unit, the Au block, functioning as a locally
defined birefringent crystal, could alter the amplitude and
phase for the orthogonally decomposed light respectively along
the fast axis and slow axis, thus transforming a certain amount
of LCP into right-handed circular polarized (RCP) light
[28,31]. The RCP component [32] from transmitted light is

Sout � hRjΓ�−α�Q̂Γ�α�jLi, (1)

where R and L denote RCP and LCP, respectively; Γ�α� is the
rotation matrix; α is the orientation angle of the block in
Fig. 1(a); and Q̂ is the transformation matrix.

We perform finite-difference time-domain (FDTD) simu-
lation to calculate the full field of the transmitted RCP light
through nano-blocks with various orientations and geometries
(Appendix A). We select 10 different configurations with
length ranging from 220 nm to 400 nm while keeping the
period P of the unit as 500 nm, and orientation from 0 to π
to encode the full phase and amplitude of the light wave. In
order to offset dynamic phase’s difference, each configuration
has a unique initial orientation angle as shown in the red block
[Fig. 1(b) and Appendix A]. The performance of 10 configu-
rations was evaluated in the wavelength range from 500 to
1500 nm using FDTD simulation. The complete conversion
maps of both the amplitude and phase are revealed in Figs. 1(c)
and 1(d).

The laser beam is converted to LCP before shining on the
metasurface under test [Fig. 1(e)]. The RCP component of the

forward scattering light will carry the information encoded
with multiple LG modes deflected into different angles
(demultiplexing).

3. METASURFACE FIELD

The electric field of a certain Laguerre-Gaussian beam can be
written as [33]

LGl
p �

ffiffiffi
2

p
r jl j

wjl j�1
0

· exp
�
−
r2

w2
0

�
· LPjl jp

�
2r2

w2
0

�
· exp�ilϕ�, (2)

where p is the radial index; l is the azimuthal index that rep-
resents the magnitude of OAM; r and ϕ are the cylindrical co-
ordinates; w0 is the beam waist; and LP is the Laguerre
polynomial. In the past, devices featuring only phase modula-
tion, whether a metasurface [6] or diffraction filter [18], have
been proposed for generating LG modes. However, for more
than two LG modes’ encoding, phase-only modulation could
not achieve zero-error (Appendix B). Complex modulation
[20,21], proposed in recent years, has not been explored in
multiple LG modes encoding.

Here, we show that an incident plane-wave beam can be
converted into multiple LG modes diffracted into arbitrary di-
rections in transmission by a metasurface, whose complex
modulation is expressed as

M �
X
s

σs�LGl
p�s · exp�i · sin θ · g s

! · ρ!� � AM exp�iϕM �,

(3)

where σs represents different weight assigned to the specified
LG mode; LGl

p denotes the normalized complex distribution
of each mode; and θ is the deflection angle while g s and ρ
are the deflection direction and pixel vector, respectively [inset
of Fig. 1(e)]. The pixel vector ρ! points from the center point
to one pixel on the metasurface. The amplitude and phase parts

Fig. 1. (a) Configuration of a unit block. P, period; wx , width; wy , length; h, height; α, orientation angle. (b) Configurations of Au block to
accomplish complex modulation. The color bars are amplitude range of [0, 0.5] and phase range of [−π, π], which are the same as in (c) and (d).
(c), (d) Amplitude and phase conversion over 500–1500 nm range for the 10 configurations specified in the red rectangle in (b). (e) Experimental
setup. PBS, polarization beam splitter; LCP, LCP generator, consisting of a polarizer and a λ∕4 wave plate; RCP, RCP filter, composed of a polarizer
and a λ∕4 wave plate.
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of the output field in Eq. (3) could be achieved by the metasur-
face with complex modulation which is fabricated by electron-
beam lithography.

The meta-convertor allocates the incident light energy into
different decomposition modes according to the designed in-
formation magnitude. As an example, we convert the plane-
wave beam into two LG modes with non-identical deflection
angles. Figure 2(a) shows the complex modulation of the com-
bination of LG2

4 and LG
1
1 modes with their deflection direction

being respectively g1
!� �1,0� and g2

!� �1,0�, with deflection
angles θ of 5° and 10°, and an amplitude ratio of 6:4. We fab-
ricate the metasurface by a mapping from the complex field
[Fig. 2(a)] to the exact configuration in Fig. 1(b). Figure 2(b)
shows the scanning electron microscope image of the fabricated
metasurface with a zoom-in view shown in Fig. 2(c), which
elaborates the building blocks of various angles. The metasur-
face is composed of 400 × 400 unit blocks. Since each unit
block has a size of 500 nm × 500 nm, the metasurface has
an area of 200 μm × 200 μm.

We decompose the complex pattern to determine the coef-
ficient for each mode as (Appendix C)

Cl
p �

D
LGl

p,U
E

D
LGl

p, LGl
p

E , (4)

where U denotes the complex field without deflection to main-
tain central symmetry and the denominator is the normaliza-
tion term. This process is one kind of Fourier decomposition
with the Fourier basis being the LG modes which form the
complete set [34]. The result [Fig. 2(d)] suggests a ratio of
6:4 between the modes of LG2

4 and LG1
1, which is well consis-

tent with our design.
Here, we analyzed the effect of fabrication error, detailed in

Section 4. Under our assumption, �10 nm deviation of width
and length of the Au block will cause an average error of mostly
lower than 10%, which is acceptable. Then, we also evaluate
the influence of fabrication error on the decomposition results
(Appendix C). The decomposition would have no significant
change provided that the fabrication error has a mean of 0.
The decomposition error deviates only 4.5% for a mean of
0.05, which suggests the robust tolerance to the fabrication er-
ror. This has also been validated with another design [Fig. 2(e)]
with a combination of LG2

4∶LG
1
1 � 1∶1.

4. ERROR ANALYSIS

The tolerance of the size of the nano-block is critical for the
broadband performance. The metasurface is fabricated with
the electron-beam lithography. But there is no statistical data
reflecting the fabrication error for our metasurface.
Empirically, the fabrication has an error of 10 nm. So here
we assume the machine will have a 10 nm deviation on both
the width and length of the Au block and the deviation is
Gaussian distributed. Therefore, the probability density func-
tion of the distribution could be represented as follows:

p�Z ; μ,Σ� � 1

�2π�di2 jΣj12
· exp

�
−
1

2
�Z − μ�TΣ−1�Z − μ�

�
, (5)

where Z � �wx ,wy�T is the vector of the length and width of
the Au block; μ � �μx , μy�T is the mean of the length and
width; Σ � �σ21 0; 0 σ22� is the covariance matrix of the
Gaussian distribution, where two variables are uncorrelated
under our assumption; and d i denotes the dimension of the
variable.

The total possible range of Z here, in our consideration, is
[190,210] nm for width and �μy − 10, μy � 10� nm for length.
We conduct full-wave FDTD simulation over this region, and
get the error map:

ϵ�Z � � jC�wx ,wy; α0� − C�μx , μy; α0�j
0.464

, (6)

where C�x, y; α� denotes the complex modulation under the
configuration x and y given orientation α.

The average error ξ could be calculated as

ξ �
Z

μx�10

μx−10

Z
μy�10

μy−10
ϵ�Z � · p�Z ; μ,Σ�dwxdwy, (7)

where the integral region is the total possible range of Z .
Since the two variables, width wx and length wy are uncor-

related, we just draw one variable at a time in Fig. 3. If the
standard deviation σi �i � 1, 2� is small enough, the most dis-
tribution will be inside our consideration region. Here we as-
sign three levels to different standard deviations, ranging from
“pessimistic,” “neutral,” to “optimistic” in Fig. 3 and Table 1.
When the standard deviation σ is set to 3.33 nm, nearly 99.4%
of the whole distribution, which is the yellow area in Fig. 3, is
within our consideration region. When the standard deviation
σ goes up to 10 nm, only 46.5% of the distribution falls into

Fig. 2. (a) Rounded complex pattern to convert the fundamental Gaussian beam into a combination of LG2
4 and LG1

1 directed to ~g1 � �1,0�,
with angles θ � 5° and θ � 10°. The assigned weight has a ratio of LG2

4∶LG
1
1 � 6∶4. (b) Overall scanning electron microscope (SEM) image.

(c) Zoomed SEM image. (d) LG decomposition results for the complex pattern in (a) without deflection. (e) LG decomposition results for the modes
combination of LG2

4∶LG
1
1 � 1∶1. Scale bar: 20 μm in (b); 1 μm in (c).
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our assumption region, which is termed “pessimistic” in this
case. We will calculate the total error according to Eq. (7) under
these three scenarios.

The error map is revealed in Fig. 4 for four nano-block con-
figurations. The first and third columns, captioned “Error” in
the figure, are the absolute error among the fabrication regions.
The second and fourth columns show the error with Gaussian
distribution under “optimistic” assumption.

The average error ξ, elaborated in Eq. (7), is calculated
under all the three scenarios and listed in Table 2. Even under
pessimistic assumption, the average error is about or lower than
10%, which is acceptable. And in Appendix C, we will see that

the deviation will be fully waived under LG mode decompo-
sition, which shows the robustness of our design.

5. SIMULATION AND EXPERIMENTS

The holographic image of the metasurface could be calculated
through a complex transmission function [32,35],

H �x, y� �
X
m, n

Mmn ·
exp�ikRmn�x, y��

Rmn�x, y�
, (8)

whereMmn represents a pixel on the metasurface determined by
Eq. (8); k is the wavenumber; Rmn�x, y� denotes the distance
between Mmn and the position �x, y� on the holographic
image H . The final normalized intensity is calculated
as Inorm � hH ,H i∕hH ,H imax.

We next evaluate the broadband performance of the meta-
surface. The complex pattern Mmn of a certain wavelength is
converted using the broadband conversion map for 10 configu-
rations [Figs. 1(c) and 1(d)]. The metasurfaces are designed at
the wavelength of 1000 nm. The complex pattern varies slightly
from 500 nm to 1500 nm (Visualization 1). Then we alter the
wavenumber k in Eq. (8) to simulate the holographic image.

The supplementary visualization shows how the complex
pattern and the LG decomposition results change over the
broadband wavelength range. Visualization 1 is about the meta-
surface featuring modes of LG2

4∶LG
1
1 � 6∶4. In the video, the

first row contains the amplitude and phase map of the complex
field without deflection over the wavelength range from
500 nm to 1500 nm. The third figure of the first row is
the bar chart of the LG decomposition results. The second
row contains the complex field of the metasurface with de-
flection, which is the fabricated complex field we use for
experiments.

Fig. 3. Gaussian distribution under three scenarios: “pessimistic,”
“neutral,” “optimistic.”

Table 1. Three Scenarios of Gaussian Distribution

Std Coverage Level

σ1 � σ2 � 10 46.5% Pessimistic
σ1 � σ2 � 5 91.0% Neutral
σ1 � σ2 � 3.33 99.4% Optimistic

Fig. 4. Error distribution for four different configurations with 10 nm deviation along the width and length of the Au block. The first and third
columns are the absolute error over different width and length. The second and fourth columns are the Gaussian-distributed error from the desired
configuration. For the four configurations we selected here, the width wx is fixed at 200 nm. The lengths wy are (a) 220 nm, (b) 225 nm, (c) 230 nm,
and (d) 250 nm.
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Experimentally, the performance of the fabricated metasur-
face is evaluated at various wavelengths (1030 nm, 1200 nm,
and 808 nm) to demonstrate the broadband modulation ability.
The diffractive images are collected at a distance of 1.5 mm or
2.0 mm from the metasurface (Fig. 5). Figure 5(a) shows the
diffraction pattern for λ � 1030 nm. The LG2

4 and LG
1
1 deflect

to roughly 130 μm and 260 μm at a propagation distance of
1.5 mm, which correspond to the diffraction angles of 5° and
10°, respectively. As seen from both the hologram simulation
and the experiment [Fig. 5(a)], there are apparent interference
fringes in the region where the two LG modes overlap, which is
owing to the insufficient separation in the near field. However,

the fringes will disappear when the paired beams propagate fur-
ther (2 mm away from the metasurface), as shown in Fig. 5(b).

In Figs. 5(c) and 5(d), we test the performance of the meta-
converter at two other wavelengths of 1200 nm and 808 nm,
and the experiments (bottom) agree well with the simulation
results (top). We analyze its error and efficiency from 700 nm
to 1500 nm [Fig. 5(e)] through simulation. The decomposition
error measures the deviation of energy allocation from design
and the efficiency measures the ratio of energy flowing into de-
sired modes defined in Eq. (C10). Take the metasurface in
Fig. 2(b) for example. The amplitude ratio of the desired
modes is LG2

4∶LG
1
1 � 6∶4. After normalization, the desired

Table 2. Parameters Approximationa

ηN 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ηP 0 0.0464 0.0928 0.1392 0.1856 0.2320 0.2784 0.3248 0.3712 0.4176 0.4640
wy �nm� 0 220 225 230 250 255 265 270 300 330 400
α0 0 0 0 − 1

60
π − 1

18
π − 1

12
π − 1

9
π − 5

36
π − 1

6
π − 7

36
π − 41

180
π

ηac 0 0.0452 0.103 0.125 0.181 0.236 0.275 0.326 0.378 0.424 0.450
ϕac 0 −1.129 −1.112 −1.177 −1.080 −1.154 −1.208 −1.212 −1.151 −1.112 −1.100
ξ 0 0.258% 2.23% 3.39% 2.17% 1.53% 4.77% 5.82% 2.30% 2.07% 2.90%
ξ1 0 11.17% 9.29% 8.47% 10.68% 8.39% 9.85% 8.20% 8.62% 6.83% 5.18%
ξ2 0 9.48% 7.87% 7.28% 9.95% 6.91% 9.01% 7.00% 7.92% 6.30% 4.50%
ξ3 0 7.49% 6.04% 6.10% 9.38% 5.58% 8.23% 5.89% 7.19% 5.75% 3.96%

aηN : desired quasi-amplitude conversion. ηP : desired actual amplitude conversion. wy : length of the nano-antenna along the y axis. α0: initial orientation angle. Given
the predetermined length wy and orientation α0, the actual amplitude and phase conversion are denoted as ηac and ϕac. ξ: error between the actual and desired complex
conversion. Error under three different Gaussian distributions: ξ1: pessimistic; ξ2: neutral; ξ3: optimistic.

Fig. 5. Experimental results: broadband performance of meta-converters. (a)–(d) Diffraction patterns with metasurface designed for
LG2

4∶LG
1
1 � 6∶4. The test wavelength and the measurement distance from the metasurface are all labeled with the beam profile. First row: sim-

ulation. Second row: experiments. (e) Simulated broadband performance for the meta-converter of LG2
4∶LG1

1 � 6∶4 in terms of error and efficiency.
(f ) Metasurface contains modes of LG1

1∶LG2
2∶LG3

2 � 3∶4∶5. The left edge corresponds to zero deflection for all figures. Scale bar for all: 200 μm.
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coefficients vector is ~ω � �0.6,0.4�. After decomposition at
1 μm, the decomposed vector is ~σ � �0.504,0.354�. The error
is calculated as 0.076 and the efficiency is 0.858, which are
both acceptable. We repeat the procedure from 700 to
1500 nm with a step of 50 nm to get Fig. 5(e). It shows that
from 800 nm and up to 1500 nm, the metasurface has an error
about or below 10%mostly (except 28% at 850 nm). Although
the above analysis adopts two LG modes, in general, the design
and analysis procedure could apply to a combination of multi-
ple LG modes. For demonstration, we show the three LG
modes encoding with an energy ratio of LG1

1∶LG2
2∶LG3

2 �
3∶4∶5. Since the RCP filter is not at 100% efficiency, the un-
converted LCP passing the metasurface will form an interfer-
ence pattern resembling its arrangement, which will cause a
concentric ring interference at the center in Figs. 5(a)–5(d).

Although the result is decent for three LG modes here, the
metasurface has an issue of energy transmission efficiency. The
maximum amplitude modulation is 0.464. The transmitted
power is 21.5% at most. Given the metasurface is complex
modulated, the whole energy transmission would be even
lower. If we increase the amount of LG modes, there must exist
a limit where the energy allocated to each mode is undetectable
in experiment. Future work about dielectric metasurface to im-
prove the energy transmission is prospected.

6. CONCLUSION

In conclusion, we designed a metal metasurface to generate
multiple LG modes and separate them simultaneously. The
metasurface features a complex modulation and has a decent
performance over the 400 nm wavelength range. Although
we demonstrate the energy allocation into a limited number
of LG modes, the meta-convertor could in principle distribute
the light energy into an arbitrary number of modes. Since the
radial index of the LG mode could be transmitted through a
graded-index fiber [1,36] or in free space, it is envisaged it could
potentially increase the communication bandwidth in the op-
tical communication systems with integrated optical devices.

APPENDIX A: COMPLEX MODULATION

We set two basic orthogonal electric field units as

Ex � ex
! · exp�i�kz − ωt��, (A1)

Ey � ey
! · exp�i�kz − ωt��, (A2)

where k denotes the wave vector, z is the propagation distance
along the z axis, ω is the radius frequency, and t is the time.

Then the light field could be written in Jones vector form:

jxi �
�
1
0

�
, (A3)

jyi �
�
0
1

�
, (A4)

where jxi and jyi denote the polarized field along the x axis and
y axis, respectively.

As LCP and RCP could be decomposed into two linear
polarization, and LCP and RCP could be written as follows:

jLi � 1ffiffiffi
2

p
�
1
i

�
, (A5)

jRi � 1ffiffiffi
2

p
�
1
−i

�
, (A6)

where jLi and jRi denote LCP and RCP carrying unit power,
and i represents the π∕2 phase shift between two linear
polarizations.

In our metasurface, each periodic unit block contains the
glass substrate and Au nano-block as in Fig. 1(a). The configu-
ration of the Au block is determined by three parameters,
namely, the width wx , the length wy, and the orientation
angle α.

The Au nano-block, considered as a birefringent crystal, has
its ordinary and extraordinary refractive index as no and ne
along the x and y axes given no orientation angle. If the incident
light is LCP, the output field after the Au block’s tuning is

jΨi � R�−α�Q̂R�α�jLi, (A7)

where

R�α� �
�
cos α −sin α
sin α cos α

�
, (A8)

with α being the orientation angle of the Au block,

Q̂ �
�
Aoeiϕo�z� 0

0 Aeeiϕe�z�

�
, (A9)

where Ao and Ae denote the transmission coefficient along
the ordinary and extraordinary direction, respectively, while
ϕo�z� and ϕe�z� represent the phase modulation resulting from
the birefringence.

In the end, we shall extract the RCP component of the out-
put field jΨ�z�i [32], which is

Eout � hRjΨ�z�i � 1ffiffiffi
2

p �1 −i�	 · jΨ�z�i

� i · sin
�
kd �no − ne�

2

�
ei
�
kd �no�ne �

2 �2α
�
, (A10)

where d is the height of our proposed Au block.
From above, we could have the output field specially modu-

lated in amplitude and phase as

Aout � abs�Eout� � sin

�
kd �no − ne�

2

�
, (A11)

ϕout � angle�Eout� �
kd�no � ne�

2
� 2α� π

2
: (A12)

In phase modulation, the dynamic phase kd �no � ne�∕2 is
determined by the Au block’s own parameter, and the
Pancharatnam–Berry phase 2α is dependent on the orientation
angle, which means if the Au block is rotated from 0 to π, the
output phase could have a 0−2π modulation range, which is
consistent with the phase conversion in Fig. 6(b).

The FDTD simulation results are presented in Figs. 6(a)
and 6(b). We set the width wx and height h to 200 nm and
80 nm, respectively, and alter the length wy from 200 to
400 nm. Such a range could reach the maximum amplitude
conversion range, e.g., from 0 to 0.464, and is within our fab-
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rication capacity. If wx equals wy, the Au block will show no
birefringence. It means no LCP will be converted to RCP,
which is consistent with the dark area in Fig. 6(a) where wx
is roughly equivalent to wy.

Since the fabrication of a certain Au block has an error of
about 10 nm, there is no point to pick �α,wy� in Figs. 6(a) and
6(b) to match the exact amplitude and phase needed. Because
later fabrication may deviate the selected point thus the desired
complex modulation could not be achieved. To solve this issue,
we conduct a parameter approximation. We select 10 points,
which are 10 different wy values, to round the continuous 0–1
amplitude to the nearest decimal, viz., from 0.1 to 1 in 10 dis-
crete values. The continuous phase modulation is reached
through the Pancharatnam–Berry phase by designing the ori-
entation angle α of each individual gold nano-block, so there is
no need to round the phase. The selected 10 different configu-
rations are elaborated in Table 2 and are the same as in Fig. 1(c)
in the red box.

Due to the fabrication limit, the maximum amplitude con-
version we could obtain is 0.464. Therefore, a projection map-
ping from 0−1 to 0−0.464 is adopted to yield quasi 0−1
amplitude modulation. And the approximation mentioned
above is taken to round the desired amplitude to the nearest
one decimal. For example, if the desired amplitude conversion
is 0.34, it will be rounded to 0.3 denoted as ηN , which after
approximation could be written as ηP � ηN × 0.464 �
0.1392. Next, we search over the simulated conversion map
in Figs. 6(a) and 6(b) to find the appropriate parameters, in-
cluding the length wy and initial orientation α0, on which the
recomputed actual amplitude ηac and phase ϕac are based. Last,
the relative error ξ is calculated as

ξ � jηPei×�−1.129� − ηacei×ϕac j
0.464

, (A13)

where −1.129 is the calibrated phase all configurations need to
match at their initial orientation. In this example, after the ac-
tual amplitude conversion is computed as 0.1392, the length of
the Au block wy is determined as 230 nm. Then, the initial
orientation α0 is set at − 1

60 π, in order to offset the dynamic
phase, which in other words is to make the initial phase con-
version ϕac � −1.177 as close to calibration −1.129 as possible.
Under this configuration, we conduct the FDTD method to
calculate the actual amplitude conversion ηac and error ξ as
detailed in Table 2.

APPENDIX B: PHASE-ONLY MODULATION
COULD NOT ACHIEVE ZERO-ERROR

The electric field of an LG mode is detailed in Eq. (2). Here we
simplify it as

LGl
p � Apl �x, y� · exp�iϕpl �x, y��, (B1)

where Apl and ϕpl represent the amplitude and phase,
respectively.

The ideal complex pattern containing exactly the desired LG
modes could be written as

U �
X∞
p�0

X∞
l�−∞

σpl · Apl �x, y� · exp�iϕpl �x, y��, (B2)

where σpl is a complex number.
If the metasurface could feature phase-only modulation, the

complex pattern could be rewritten as U � C · exp�i�ϕ�x, y��,
where C is a constant. The power is P � jU j2 � jC j2.
Naturally, we will have

X∞
p�0

X∞
l�−∞

X∞
p 0�0

X∞
l 0�−∞

σplσp 0 l 0AplAp 0l 0

· expfi�ϕpl �x, y� − ϕp 0 l 0 �x, y��g � jC j2: (B3)

The above equation is not true for any arbitrary combina-
tion of more than two LG modes. Given the unimodular prop-
erty [37], the Fourier basis, here the LG mode basis, should be
either one or infinite in Eq. (B3). For finite LG modes, which
are more than two LG modes but not infinite, Eq. (B3) is
impossible. This is quite similar to Ref. [38], where the
phase-only modulation for OAM combination is proved
impossible.

APPENDIX C: LG MODE DECOMPOSITION

We use LGl
p to denote the Laguerre-Gaussian mode with radial

index p and azimuthal index l . The detailed expression is de-
tailed in Eq. (2). The field of the LG mode LGl

p is normalized
throughout the paper, which means the highest amplitude is 1
for all the different modes.

Consider an electric field U , which could be decomposed
into the combination of different LG modes as follows:

U �
X
p, l

C l
p · LGl

p, (C1)

where Cl
p, a complex number, is the coefficient of the mode

LGl
p, which could be calculated as

Cl
p �

hLGl
p,U i

hLGl
p, LGl

pi
�

R
LGl	

p · UdSR
LGl	

p · LGl
pdS

, (C2)

where LGl	
p is the conjugate of mode LGl

p, and the integral area
is the whole electric field S. The electric field U is normalized
to ensure the highest amplitude is 1. Considering the different
LG modes are also normalized, we have

P
abs�Cl

p� � 1.
Since LG modes are orthogonal to each other, obviously we

have

Fig. 6. (a) Amplitude conversion and (b) phase conversion under
different wy and orientation angle α when x is set at 200 nm and in-
cident source is set at 1000 nm.
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R
LGl

p 	 ·UdSR
LGl

p 	 ·LGl
pdS

�
	
1, p � p 0 and l � l 0

0, otherwise
: (C3)

Here we only consider the LG modes combination without
deflection. It could give a basic idea of how the fabrication error
will affect the final LG modes. However, if we introduce de-
flection into the decomposition, the results will cover a wide
range of LG modes basis. It is similar to Ref. [39], where
the OAM state is fixed but located away from the center, lead-
ing to a non-pure singular OAM in the spectrum. Such sim-
plification could help us quantify the error and determine how
much the error will influence our results.

For our metasurface M , detailed in Eq. (3), we first intro-
duce the complex field U , which is equivalent with M but
without deflection.

For the field U , the decomposition is

�Cl
p�k �

R �LGl
p�	k · UdSR �LGl

p�	k · �LGl
p�kdS

� σk, (C4)

where σk represents the weight assigned to mode �LGl
p�k.

The relative intensity of each mode is written as

�I lp�k
σ2k

hU ,U i �
σ2kP

i hσi�LGl
p�i, σi�LGl

p�ii
� σ2kP

i σ
2
i
, (C5)

where the sum of the intensity of all the modes isP
k �I lp�k � 1. Due to conjugation, the phase information dis-

appears in the intensity calculation step.
From Eq. (C1), we simplify the electric field as

U � A�x, y� · exp�iϕ�x, y�� � AU · exp�iϕU �: (C6)

Given the assumption that the fabrication error of the width
and length of the Au block is Gaussian distributed, it is reason-
able to assume that it will lead to amplitude error being
Gaussian distributed, which means the electric field of the fab-
ricated metasurface is

U fab � �A�x, y� � t � · exp�iϕ�x, y��, (C7)

where t is the amplitude of Gaussian distribution N �μa, σ2a�.
Note the mean μa and variance σ2a of the amplitude error here

Fig. 7. First column: amplitude pattern. Second column: phase pattern. Third column: LG decomposition results. (a) Rounded complex pattern,
featuring LG2

4∶LG1
1 � 1∶1. (b) Complex pattern with a Gaussian noise N �0,0.052� applied to the amplitude. (c) Complex pattern with a Gaussian

noise N �0.05,0.052� applied to the amplitude.
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are different from the mean μ and variance σ2 of fabrication
error in Section 4.

Figure 7 reveals the complex pattern and LG decomposi-
tion results with regard to a metasurface, whose complex field
is U � LG2

4 � LG1
1, with the weight ratio being LG2

4∶LG
1
1 �

1∶1 but without deflection compared to the metasurface
field. The decomposition result is also shown in Fig. 2(e).
Apparently, the error has little effect on our LG mode
decomposition.

The deviation of width and length of the Au block will affect
the amplitude and phase output. The error in this regard has
been obtained through FDTD in Fig. 4. We assume the ori-
entation does not change, so the Pancharatnam–Berry phase
remains the same. The width and length deviation will affect
the dynamic phase change, which is negligible if only consid-
ering �10 nm change. Therefore, the width and length
deviation will only affect amplitude. Given that the fabrication
machine is unbiased, it is intuitive to take the mean μa as 0.
Under optimistic distribution in Table 2, the expectation of
error ξ3 ranges from 3.96% to 9.38%. It would be reasonable
to choose a standard deviation σa in this scale. In Fig. 7, we
assign σa a value of 0.05. The Gaussian noise N �μa, σ2a� is ap-
plied to the amplitude part of the combined LG mode pattern.

For demonstration, we write the LG mode as
LGl

p � Al
p · exp�iϕl

p�, where Al
p and ϕl

p are both real numbers.
The decomposition for the electric field after fabrication is

�Cl
p�fab �

hLGl
p,U fabi

hLGl
p, LGl

pi
→

Z
LGl

p · U fabdS,

�
Z

Al
p�AU � t� · exp�i�ϕU − ϕl

p��dS

�
Z

Al
pAU · exp�i�ϕU − ϕl

p��dS

�
Z

t · Al
p · exp�i�ϕU − ϕl

p��dS: (C8)

Since the normalization factor hLGl
p,LGl

pi is constant, we
do not show it explicitly in Eq. (C8) for simplicity.

Given that t is a random variable, we take the expectation to
get the final coefficient:

�Cl
p�fab ← E ��Cl

p�fab�

�
Z

Al
pAU · exp�i�ϕU − ϕl

p��dS

�
Z

t · N �μa, σ2a�dt
Z

Al
p · exp�i�ϕU − ϕl

p��dS

�
Z

Al
pAU · exp�i�ϕU − ϕl

p��dS

� μa ·
Z

Al
p · exp�i�ϕU − ϕl

p��dS

� Cl
p � μa�Cl

p�phase, (C9)

where �Cl
p�phase is the decomposition coefficient of the pure-

phase modulation. From Eq. (C9), we could conclude that as
long as the mean of amplitude error is 0, the noise term, which
is the second term in Eq. (C9), could be waived. Even if the
amplitude error has some bias, which means μa is not 0, the

decomposition coefficient �Cl
p�fab will be somewhere between

complex modulation Cl
p and phase modulation �Cl

p�phase. If the
bias is infinitely large (which is quite impossible in the sense),
which means the amplitude error is large, the coefficient �Cl

p�fab
will degenerate into phase modulation �Cl

p�phase.
In order to quantify the deviation caused by the fabrication

noise, here we set a criterion to judge the error in LG mode
expansion.

The “error” in LG mode expansion here is defined as the
sum of unwanted modes and the deviation from desired modes.
Our desired coefficient vector of different LG modes is denoted
as ω!� �ω0,…,ωi,…,ωn�, while the coefficient after decom-
position is σ!� �σ0,…, σi,…, σn�, where ωi and σi means
the desired and decomposed coefficient for the ith mode, re-
spectively, and n means all the modes desired.

The error could be calculated as

ϵ �
X
i





 ωi

ω0

−
σi
σ0





: (C10)

The error could be interpreted as the deviation from the
desired modes. We check whether the ratio of different modes
is close to our predetermined ratio.

Here we define another term called efficiency, which is

γ �
X
i
σi : (C11)

The efficiency is the sum of our desired modes. If a large
ratio of power is split into unwanted modes, the metasurface
will not generate desired modes even if the error ϵ is low.
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