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As a method to extract information from optical systems, imaging can be viewed as a parameter estimation prob-
lem. The fundamental precision in locating one emitter or estimating the separation between two incoherent
emitters is bounded below by the multiparameter quantum Cramér-Rao bound (QCRB). Multiparameter
QCRB gives an intrinsic bound in parameter estimation. We determine the ultimate potential of quantum-limited
imaging for improving the resolution of a far-field, diffraction-limited optical field within the paraxial approxi-
mation. We show that the quantum Fisher information matrix (QFIm) in about one emitter’s position is inde-
pendent on its true value. We calculate the QFIm of two unequal-brightness emitters’ relative positions and
intensities; the results show that only when the relative intensity and centroids of two-point sources, including
longitudinal and transverse directions, are known exactly, the separation in different directions can be estimated
simultaneously with finite precision. Our results give the upper bounds on certain far-field imaging technology
and will find wide use in applications from microscopy to astrometry. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.417613

1. INTRODUCTION

Locating an emitter and estimating different emitters’ relative
positions precisely are key tasks in imaging problems. The ques-
tion of two-point resolution was first discussed by Rayleigh
[1,2]. Rayleigh’s criterion states that two-point sources are
resolvable when the maximum of the illuminance produced
by one point coincides with the first minimum of the illumi-
nance produced by the other point. This criterion sets the limit
of resolving power of optical systems [1]. Many methods have
been developed to bypass this limit by converting resolving
multi-emitter to locating single emitters. Deterministic super-
resolution methods such as stimulated emission depletion
microscopy [3], reversible saturable optical fluorescence transi-
tions microscopy [4], and saturated structured illumination
microscopy [5] utilize the fluorophores’ nonlinear response
to excitation, which leads to individual emitting of emitters.
Stochastic super-resolution methods such as stochastic optical
reconstruction microscopy [6] and photo-activated localization
microscopy [7] utilize the different temporal behavior of light
sources, which emit light at separate times and thereby become
resolvable in time. Therefore, localization of a single emitter is
also an essential and fundamental issue in imaging problems.

Imaging is, as its heart, a multiparameter problem [8].
Targets’ localization and resolution can be viewed as parameter
estimation problems. Positions of emitters are treated as param-
eters encoded in quantum states. The minimal error to estimate
these parameters is bounded by the Cramér-Rao lower bound

(CRLB). To quantify the precision, researchers utilize Fisher
information (FI) associated with CRLB.

Inspired by classical and quantum parameter estimation
theory [9–22], Tsang and coworkers [23] reexamined Rayleigh’s
criterion. If only intensity is measured in traditional imaging, the
CRLB tends to infinite as the separation between two-point
sources decreases, which is called the Rayleigh curse. However,
when the phase information is also taken into account, two in-
coherent point sources can be resolved no matter how close the
separation is, which has been demonstrated in experiments
[24–28]. If the centroid of the two emitters is also an unknown
nuisance parameter, the precision to estimate the separation will
decrease. Measuring the centroid precisely first can recover the
lost precision due to misalignment between the measurement
apparatus and the centroid [23,29]. Two-photon interference
can be performed to estimate the centroid and separation at
the same time [30]. Further developments in this emerging field
have addressed the problem in estimating separation and cent-
roid of two unequal brightness sources [31–33], locating more
than two emitters [34], and resolving the two emitters in 3D
space [35–39], with partial coherence [40–42] and complete
coherence [43]. In addition, with the development of the
super-resolution microscopy techniques mentioned above, the
method to improve precision of locating a single emitter is also
important. Efforts along this line include designing optimal
point spread functions (PSFs) [44,45] and the quantum-
limited longitudinal localization of a single emitter [46].
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In this work, we generalize the quantum-limited super-res-
olution theory to the localization of a single emitter with sym-
metric PSF and resolution of two unequal-brightness emitters
in 3D space with arbitrary PSF. In the perspective of multipara-
meter estimation theory, we show that three Cartesian coordi-
nates of a single emitter’s position [Fig. 1(a)] can be estimated
in a single measurement scheme. For a two-emitter system, we
consider the most general situation with five parameters, in-
cluding relative intensity, centroids, and separations in trans-
verse and longitudinal directions [see Fig. 1(b)]. We show
that only two separations can be measured simultaneously to
attain the quantum limit for the most general situation. In
some special cases, centroids and separations can be estimated
precisely at the same time. Localization and resolution in three
dimensions are important in microscopy and astrometry. Our
theoretical framework will be useful in these fields.

This paper is organized as follows. In Section 2, we provide a
quantum mechanical description of the optical system with one
and two emitters; in Section 3, we will review the quantum
estimation theory, the main method to quantify the precision
of localization and resolution, and introduce the FI and quan-
tum Fisher information (QFI). The specific expressions of QFI
of localization and resolution with some discussions will be pro-
vided in Section 4, and analysis will be done on the results.
Finally, we summarize all the results in Section 5.

2. QUANTUM DESCRIPTION OF LOCALIZATION
AND RESOLUTION

We assume that the emitters are point-like sources and the
electromagnetic wave emitted by the emitters is quasimono-
chromatic and paraxial, with (x, y) denoting the image-plane
coordinates, z denoting the distance from the emitters to
the image plane. The quasimonochromatic paraxial wave
Ψ�x − xe , y − ye , ze� obeys the paraxial Helmholtz equation

∇2
TΨ� 2k2Ψ� i2k

∂
∂z

Ψ � 0, (1)

where �xe , ye , ze� are unknown coordinates of the emitter with
respect to the coordinate origin defined in the image plane and

∇2
T ≡ ∂2∕∂x2 � ∂2∕∂y2. From Eq. (1), the generator of the dis-

placement in direction z is Ĝ � 1
2k∇

2
T � k. The generators of

the displacement in direction x and y are momentum operators
p̂x and p̂y, which are derivatives −i∂x and −i∂y. We have
Ψ�x −xe ,y − ye ,ze�� exp�−iĜze − ip̂xxe − ip̂yye�Ψ�x,y;0�. Then,
we rewrite the above results with quantum formulation and
denote the PSF of the optical systemΨ�x, y, 0� � hx, yjΨi with
jx, yi � â†�x, y�j0i. The quantum state of photons from a
single emitter is

jΨ̃i � exp�−iĜze − ip̂xxe − ip̂yye�jΨi, (2)

where Ψ̃ is the displaced wave function with respect to
Ψ�x, y; 0�.

For two incoherent point sources, without the loss of gen-
erality, we only consider the displacement in the x and z direc-
tions. The quantum state is

ρ � qjΨ1ihΨ1j � �1 − q�jΨ2ihΨ2j, (3)

where jΨ1,2i � exp�−iĜz1,2 − ip̂xx1,2�jΨi and �x1, z1��x2, z2�
are coordinates of two incoherent light sources. Here, the rel-
ative intensity q is also an unknown parameter. The density
matrix ρ gives the normalized mean intensity

ρ�x� � qjΨ�x − x1, z1�j2 � �1 − q�jΨ�x − x2, z2�j2: (4)

Equations (3) and (4) can be reparameterized with the
centroids x0 ≡ �x1 � x2�∕2, z0 ≡ �z1 � z2�∕2 and
separations s ≡ x2 − x1, t ≡ z2 − z1. The parameter vector is
θ ≡ �x0, dx, z0, dz, q�T .

3. QUANTUM ESTIMATION THEORY

Localization and resolution can be treated as the estimation of
the coordinates of emitters. In this section, we review the quan-
tum and classical estimation theory for further analysis. The
quantum states in localization and resolution problems are de-
pendent on the parameters to be estimated. Let the parameters
be θ ≡ fθ1, θ2, θ3,…gT , and we use θi to substitute the param-
eters in Eqs. (2) and (3) for convenience. A quantum measure-
ment described by a positive operator-valued measure (POVM)
Πj with the outcome j is performed on the image plane to es-
timate θ, so that the probability distribution of the outcome is
p�jjθ� � Tr�Πjρ�θ��. The estimators are θ̌ ≡ fθ̌1, θ̌2, θ̌3,…gT ,
which are the functions of measurement results. The precision
of the estimates is quantified by the covariance matrix or mean
square error

Cov�θ� ≡
X
j

p�jjθ��θ − θ̌�j��T �θ − θ̌�j��, (5)

where Cov�θ� is a positive symmetric matrix with a diagonal
element denoting the variances of each estimator. The nondiag-
onal elements denote the covariance between different
estimators.

For unbiased estimators, the covariance matrix is lower
bounded by the Cramér-Rao bound

Cov�θ� ≥ 1

M
�F �ρθ,Πj��−1, (6)

where M is the number of copies of the system to obtain the
estimators θ̌. F�ρθ,Πj� is the Fisher information matrix (FIm)
defined by

Fig. 1. (a) Schematic of one emitter with position (x0, y0, z0).
(b) Schematic of two emitters with positions (x1, y1, z1) and (x2, y2, z2)
and different intensities (q1, q2).
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�F�ρθ,Πj��μν �
X
j

1

p�jjθ�
∂p�jjθ�
∂θμ

∂p�jjθ�
∂θν

, (7)

where μ and ν denote the row and column indices of the
FIm. The inequality (6) means the matrix Cov�θ� −
1
M �F�ρθ,Πj��−1 is a semipositive definite matrix.

Here, we give an example of FIm that the measurement
method is the intensity detection, projecting the quantum state
into the eigenstates of the spatial coordinates. The elements of
this POVM are fΠx,y � jx, yihx, yjg, and the FIm

F direct
μν �

ZZ
1

p�x, yjθ�
∂p�x, yjθ�

∂θμ
∂p�x, yjθ�

∂θν
dxdy, (8)

with p�x, y� � Tr�ρΠx,y�.
To obtain the ultimate precision, it is necessary to obtain the

bound, which only depends on the quantum states rather than
the measurement systems:

Cov�θ� ≥ 1

M
�F �ρθ,Πj��−1 ≥

1

M
�Q�ρθ��−1, (9)

where the Q�ρθ� is the quantum Fisher information matrix
(QFIm), which gives the maximum FIm. Its matrix elements
are given by

�Q�ρθ��μν �
1

2
Tr�ρθfLμ, Lνg�, (10)

in which f·, ·g denotes the anticommutator, and Lκ stands for
the symmetric logarithmic derivative (SLD) with respect to the
parameter θκ, which satisfies the condition

∂κρθ �
Lκρθ � ρθLκ

2
: (11)

For the multiparameter estimation problem, an essential issue is
the attainability of QCRB. If the system only has a single
parameter to be estimated, the optimal measurement is to
project the quantum state onto the eigenstates of the SLD [17],
while this strategy is not suitable for multiple parameters. If the
SLD operators Lκ corresponding to the different parameters
commute with each other ��Lμ, Lν� � 0�, there exists a measure-
ment that can maximize the parameters’ estimation precision si-
multaneously. If not, it does not imply this bound cannot be
saturated. As discussed in Refs. [10,15,16], a sufficient and nec-
essary condition for the saturability of the QCRB in inequal-
ity (9) is the satisfaction of a weak commutativity condition

Tr�ρθfLμ, Lνg� � 0: (12)

We define the weak commutativity condition matrix Γ�ρθ�,
and �Γ�ρθ��μν � 1

2iTr�ρθfLμ, Lνg�.

4. RESULTS

Our main results contain two parts. First, we show the QFIm of
locating an emitter with symmetric wave functions satisfying
the paraxial Helmholtz equation in 3D space. Second, we give
the QFIm of two incoherent point sources in which the param-
eters to be estimated include relative intensity, centroids, and
separations in both transverse and longitudinal directions.

A. Quantum Localization in 3D Space
In general, we assume that the wave function is symmetric in
the transverse direction with respect to its center:

Ψ�x, y, z� � Ψ�−x, y, z� � Ψ�x, − y, z�: (13)

Considering the situation of a single emitter, the quantum state
is a pure state in Eq. (2). The SLD can be written in the simple
expression

Lκ � 2�jΨ̃ih∂κΨ̃j � j∂κΨ̃ihΨ̃j�, (14)

where j∂κΨ̃i � ∂jΨ̃i∕∂θκ. Moreover, since ∂κhΨ̃jΨ̃i �
h∂κΨ̃jΨ̃i � hΨ̃j∂κΨ̃i � 0, the QFIm can be written in the
form

�Q loc�θ��jk � 4Re�h∂jΨ̃j∂kΨ̃i − h∂jΨ̃jΨ̃ihΨ̃j∂kΨ̃i�, (15)

where Re denotes the real part. The specific forms of j∂κΨ̃i in
this problem are

j∂xe Ψ̃i � −ip̂x jΨ̃i, j∂ye Ψ̃i � −ip̂yjΨ̃i, j∂ze Ψ̃i � −iĜjΨ̃i,
(16)

because of the symmetry of the wave function in Eq. (13),
hΨ̃j∂kΨ̃i � −hΨj∂κjΨi � 0 for any κ � x, y. The weak com-
mutativity condition is

�Γloc�θ��jk � 4 Im�h∂jΨ̃j∂kΨ̃i − h∂jΨ̃jΨ̃ihΨ̃j∂kΨ̃i�, (17)

where Im denotes the imaginary part. According to Eqs. (15)
and (16), we obtain the QFIm

Q loc � 4

� p2x 0 0
0 p2y 0

0 0 g2z − G
2
z

�
, (18)

with px �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjp̂2x jΨi

p
, py �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjp̂2y jΨi

q
, gz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjĜ2jΨi

q
,

and Gz � hΨjĜjΨi. The weak commutativity condition is sat-
isfied since

Γloc �

2
64
0 0 0

0 0 0

0 0 0

3
75: (19)

This result indicates that the 3D localization problem is com-
patible [16], i.e., we can perform a single measurement to es-
timate all the parameters simultaneously and attain the
precision achieved by optimal measurement for each parameter.
If the generators for each parameter commute with each other
�Ĝi, Ĝj� � 0, the weak commutativity condition is always sat-
isfied. This is indeed the situation for the generators p̂x , p̂y
and Ĝ.

We take the Gaussian beam as an example, which is the
most common beam in practical experiments. The pure state
without displacement in Eq. (2) is

jΨi �
Z
x,y
dxdy

ffiffiffiffiffiffiffiffi
2

πw2
0

s
exp

�
−
x2 � y2

w2
0

�
jx, yi, (20)

with w0 the waist radius. The shifted wave function is

jΨ̃i �
Z
x,y
dxdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πw�ze�2

s
exp

�
−
�x − xe�2 � �y − ye�2

w�ze�2
�

× exp
�
−ikze − ik

�x − xe�2 � �y − ye�2
2R�ze�

� iζ�ze�
�
jx, yi,

(21)
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with w�ze� � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ze∕zr�2

p
, R�ze� � ze �1� �zr∕ze�2�,

and ζ�ze� � tan−1�ze∕zr�, where zr is the Rayleigh range of
a Gaussian beam, which equals πw2

0∕λ related to the wave-
length λ.

The result of QFIm is

4

2
664

1
w2
0

0 0

0 1
w2
0

0

0 0 1
4z2r

3
775: (22)

Considering the conventional intensity measurement, the
classical Fisher information (CFI), according to Eq. (8), is

F μν �
Z
x,y
dxdy

1

I�x, y�
∂I�x, y�
∂θμ

∂I�x, y�
∂θν

, (23)

with I�x, y� � jhx, yjΨ̃ij2, and the CFIs of three parameters are

Fxexe �
4z2r

w2
0�z2 � z2r �

,

Fyeye �
4z2r

w2
0�z2 � z2r �

,

Fzeze �
4z2

�z2 � z2r �2
: (24)

From these results, we can see that in Fig. 2, if only intensity
measurement is applied when the detector is at the waist posi-
tion, the CFIs for xe and ye equal the QFIs, while in the z di-
rection, the detector should be put at the Rayleigh range.
Estimation of different parameters requires us to put the detec-
tor at different positions, which indicates that the intensity
measurement is not the optimal measurement. The optimal
measurement methods remain to be explored. To improve
the precision of estimation, we can optimize the input state.
Shaping the wave function to change the PSFs of optical sys-
tems is also helpful here [39,44,47]. The Laguerre–Gauss (LG)
beam is also often used in experiments. Recent work shows that
the precision to estimate the longitudinal position using an LG

beam is better than using a Gaussian beam [48]. We also cal-
culate the QFI of the transverse position of an LG beam and
show the ratio between the QFI of a Gaussian beam and that of
an LG beam in Table 1 with respect to the azimuthal mode
index p and radial index l . The results show that using an
LG beam to locate an emitter’s transverse position also has bet-
ter performance than Gaussian.

B. Quantum Limited Resolution in Three Dimensions
Now we consider two incoherent point sources with the quan-
tum state in Eq. (3). Different from single emitters, the quan-
tum state is a mixed state, which implies that Eq. (15) cannot
be used here. We need a new method to calculate the QFIm.
According to the definition of SLD in Eq. (11), we find the
quantum state ρ and its derivatives, which is associated with
SLDs supported in the subspace spanned by jψ1i, jψ2i,
∂x1 jψ1i, ∂z1 jψ1i, ∂x2 jψ1i, and ∂z2 jψ1i. Thus, similar to
Ref. [38], our analysis relies on the expansion of the quantum
state ρ in the nonorthogonal but normalized basis:

fjΨ1i, jΨ2i, jΨ3i, jΨ4i, jΨ5i, jΨ6ig, (25)

where

jΨ1i � exp�−iĜz1 − ip̂x1�jΨi,
jΨ2i � exp�−iĜz2 − ip̂x2�jΨi,

jΨ3i �
−ip̂ exp�−iĜz1 − ip̂x1�jΨi

p
,

jΨ4i �
−iĜ exp�−iĜz1 − ip̂x1�jΨi

g
,

jΨ5i �
−ip̂ exp�−iĜz2 − ip̂x2�jΨi

p
,

jΨ6i �
−iĜ exp�−iĜz2 − ip̂x2�jΨi

g
, (26)

with p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjp̂2jΨi

p
, g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjĜ2jΨi

q
. The relation be-

tween the representation of quantum states based on orthogo-
nal basis and nonorthogonal basis is the linear transformation
shown in Appendix A. The derivation of QFIm and the
weak commutativity condition matrix is also shown in
Appendix A. After a lengthy calculation, we obtain the two
matrices:

Table 1. Ratio between the QFI of Gaussian Beam and
That of LG Beam with Respect to the Azimuthal Mode
Index p and Radial Index la

QFILG∕QFIG p � 0 p � 1 p � 2 p � 3

jl j � 0 1 3 5 7
jl j � 1 2 4 6 8
jl j � 2 3 5 7 9
jl j � 3 4 6 8 10

aHere, we select p � 0, 1, 2, 3, and l � 0, 1, 2, 3. �p, l� � �0, 0� is the
Gaussian beam.

Fig. 2. Quantum and classical Fisher information of localization in
3D space. For estimation of the transverse coordinates of the emitter,
the CFI coincides with the QFI in the position z � 0, which indicates
intensity measurement achieves QFI if the detector is put in the posi-
tion of waist; for the estimation of the longitudinal coordinate, the
detector needs to be put at the Rayleigh range to get the best precision.
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Q �

2
666666664

Qx0x0 2p2�1 − 2q� Qx0z0 0 4w∂sw

2p2�1 − 2q� p2 0 0 0

Qx0z0 0 Qz0z0 2�g2 −G2��−1� 2q� 4w∂tw

0 0 2�g2 −G2��−1� 2q� g2 −G2 0

4w∂sw 0 4w∂tw 0 −1�w2

�−1�q�q

3
777777775
, (27)

Γ �

2
666666664

0 Γx0s Γx0z0 Γx0t 4∂sϕ�−1� 2q�w2

−Γx0s 0 Γsz0 0 −2∂sϕw2

−Γx0z0 −Γsz0 0 Γz0t 4�G � ∂tϕ��−1� 2q�w2

−Γx0t 0 −Γz0t 0 −2�G � ∂tϕ�w2

−4∂sϕ�−1� 2q�w2 2∂sϕw2 −4�G � ∂tϕ��−1� 2q�w2 2�G � ∂tϕ�w2 0

3
777777775
, (28)

where

weiϕ � hΨ1jΨ2i,
G � hΨjĜjΨi,

Qx0x0 � 4

�
p2 − 4�∂sw�2�1 − q�q −

4�∂sϕ�2�1 − q�qw2

1 − w2

�
,

Qx0z0 � 16∂sw∂tw�−1� q�q − 16∂sϕ�G � ∂tϕ��−1� q�qw2

−1� w2 ,

Qz0z0 �
4fG2 − 4�∂tw�2�−1� q�q − �G2 − 4�G − ∂tw� ∂tϕ��G � ∂tw� ∂tϕ�q�1 − q��w2g

−1� w2 � 4g2,

Γx0s � −
8∂sw∂sϕ�−1� q�qw3

−1� w2 ,

Γx0z0 � −16�−∂sϕ∂tw� ∂sw�G � ∂tϕ���−1� q�q�−1� 2q�w,

Γx0t � −
8�−1� q�qw�∂sϕ∂tw� ∂sw�G � ∂tϕ��−1� w2��

−1� w2 ,

Γsz0 � −
8�−1� q�qw�∂sw�G � ∂tϕ� � ∂sϕ∂tw�−1� w2��

−1� w2 ,

Γz0t � −
8∂tw�G � ∂tϕ��−1� q�qw3

−1� w2 : (29)

If the separation in longitudinal direction is zero and the cent-
roid in this direction is known, the matrix in Eq. (27) reduces
to a 3 × 3 matrix, which is the same as the result in Ref. [31]. If
the wave function satisfies the equation

G � ∂tϕ � 0, (30)

the parameters z0, t, and q can be estimated with the precision
given by QCRB simultaneously. In the most general case, for an
arbitrary wave function, only the separations in x and z direc-
tions satisfy the weak commutativity condition. Therefore, the
QFIm becomes �

p2 0
0 g2 −G2

�
, (31)

in which each element is a constant. In brief, parameters on
separations in x and z directions are compatible. In the multi-
parameter estimation problem, the achievable precision bound

is the Helovo Cramér-Rao bound (HCRB) [49,50], denoted by
ch. The discrepancy D between QCRB and HCRB, which
equals ch − Tr�Q−1� is bounded by [51]

0 ≤ D ≤ Tr�Q−1�ℜ, (32)

withℜ :�kiΓQ−1k∞, where k·k∞ is the largest eigenvalue of a
matrix. The first inequality is saturated if Eq. (12) is satisfied.ℜ
is a quantitative indicator of compatibility in multiparameter
estimation problems whose value is between 0 and 1 [51].
Equation (32) shows that, if ℜ equals zero, HCRB equals
QCRB. Meanwhile, HCRB is at most twice QCRB [51,52].

We take the Gaussian beam in Eq. (21) as an example. We

obtain p � 1
w0
, g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2

k2w4
0

− 2
w2
0

q
, G � k − 1

kw2
0
, w �ffiffiffiffiffiffiffiffiffiffiffiffi

1
1�� t

2zr
�2

q
exp�− kzr s2

t2�4z2r
�, ϕ � arctan� t

2zr
� − kt�1� s2

2t2�8z2r
�, and

g2 −G2 � 1∕kw4
0. The condition in Eq. (30) is satisfied if

t � 0. Here, the value of ℜ is shown in Fig. 3 with
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w0 � 100 μm and wavelength λ � 0.5 μm. In Fig. 3(a), the
relative intensity is a constant q � 0.5; in the other three pic-
tures, relative intensity is also a parameter to be estimated.
From these results, we find ℜ is close to zero in some regions,
especially when the separations in two directions are
nearly zero.

When the separations in the x and z directions are infini-
tesimal (far less than the wavelength), the QFIm QG and weak
commutativity condition matrix ΓG of the Gaussian beam be-
come

lim
s, t→0

QG �

2
6666666664

2k
zr

k�1−2q�
zr

0 0 0

k�1−2q�
zr

k
2zr

0 0 0

0 0 1
z2r

−1�2q
2z2r

0

0 0
−1�2q
2z2r

1
4z2r

0

0 0 0 0 0

3
7777777775
, (33)

and

lim
s, t→0

ΓG �

2
6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
, (34)

indicating that, except the intensity, the other four parameters
can be estimated simultaneously and the optimal precision of
each parameter is a constant. Different intensities of the two
emitters introduce the statistical correlations between the sep-
aration and centroid in the same direction. The parameters in
different directions have negligible correlation, even though the
intensities of two-point sources are different. Off-diagonal
terms of QFIm lead to the inequality, �Q�ρθ�−1�jj ≥ 1∕Q�ρθ�jj,
which means the existence of off-diagonal terms reduces the
precision to estimate each parameter. Meanwhile, different
intensities and the separation in the longitudinal direction arise
the asymmetry of two-point sources, which reduces the preci-
sion to estimate the centroids in the transverse and longitudinal
directions. Compared with Ref. [38], our results analyze how
different intensities affect the four parameters in the transverse

Fig. 3. Contour plot ofℜ of two Gaussian incoherent beams model in three dimensions in the (t, s) plane. (a) Relative intensity is a constant and
equals to 0.5. (b) Relative intensity is also a parameter to be estimated; here, we set q � 0.1. (c) Similar to (b) while q � 0.3. (d) Similar to (b) while
q � 0.5.
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and longitudinal directions; here, relative intensity is also con-
sidered as an unknown parameter to be estimated. These results
may find applications in subwavelength imaging.

5. CONCLUSION AND DISCUSSION

In summary, we give the general model and fundamental limi-
tation for the localization of a single emitter and resolution of
two emitters in 3D space. For one emitter, although the param-
eters in three directions are compatible with each other, the
intensity detection cannot extract the maximal information
of 3D positions simultaneously. Optimal measurement meth-
ods remain to be explored.

For two emitters, there are five parameters, including the
relative intensity, separations, and centroids in the transverse
and longitudinal directions of two emitters. We have obtained
the quantum-limited resolution via the QFIm. In the most gen-
eral case that one does not have any prior information of these
parameters, only separations in the longitudinal and transverse
directions can be estimated simultaneously to achieve the quan-
tum-limited precision. More parameters can achieve the quan-
tum-limited precision under special conditions, e.g., Eq. (30).
The Gaussian beam example shows that, if and only if separa-
tion in longitudinal direction is zero, one can estimate separa-
tion, centroid in longitudinal direction, and the relative
intensity with the quantum-limited precision. The example
also shows that, when the separations in two directions are
much smaller than the wavelength, all of the elements in
the QFIm are constants, which indicates that separations
and centroids in the longitudinal and transverse directions
can be estimated precisely with a single measurement scheme.
Spatial-mode demultiplexing [24–26,53,54] or a mode sorter
[35] can be useful here.

We should note that our results are suitable not only for
Gaussian beams but also for arbitrary symmetric wave func-
tions satisfying paraxial Helmholtz equations. Our results give
a fundamental bound of quantum limit in localization and res-
olution in 3D space and will stimulate the development of new
imaging methods.

APPENDIX A: SPECIFIC FORMULATIONS OF
THE DERIVATIVE OF QUANTUM STATE

In this appendix, we give the derivation of QFIm and a weak
commutativity condition matrix. From Eqs. (3) and (26), we
have

ρjΨji � qΠ1jjΨ1i � �1 − q�Π2jjΨ2i, (A1)

where Πij � hΨijΨji. Therefore, ρ can be expressed as a matrix form:

R �

2
6666666664

qΠ11 qΠ12 qΠ13 qΠ14 qΠ15 Π15

�1 − q�Π21 �1 − q�Π22 �1 − q�Π23 �1 − q�Π24 �1 − q�Π25 �1 − q�Π26

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777777775
: (A2)

It is non-Hermitian because we use the nonorthogonal basis.
By Gram–Schmidt process, we can obtain the orthonormal ba-
sis fje1i, je2i, je3i, je4i, je5i, je6ig, and the matrix (ρ) in this
basis is similar to matrix [Eq. (A2)], which means
ρ � TRT −1, where T is the transformation matrix between
the orthonormal basis fjeii, i � 1,…, 6g and nonorthogonal
basis mentioned in Eq. (25). The same method can be used
to obtain the expressions of ∂θiρ:

∂x1ρ � qp�jΨ3ihΨ1j � jΨ1ihΨ3j�,
∂x2ρ � �1 − q�p�jΨ5ihΨ2j � jΨ2ihΨ5j�,
∂z1ρ � qg�jΨ4ihΨ1j � jΨ1ihΨ4j�,
∂z2ρ � �1 − q�g�jΨ6ihΨ2j � jΨ2ihΨ6j�,
∂qρ � jΨ1ihΨ1j − jΨ2ihΨ2j: (A3)

The specific formulations of these matrices are shown in the
appendix. Then, to obtain the QFIm of two emitters, it is nec-
essary to solve Eq. (11) to obtain the SLDs of different param-
eters:

Ξθi �
RLθi � Lθi R

2
, (A4)

where Ξθi is the matrix representation of ∂θi under the nonor-
thogonal basis, where

Ξx1 � qp

2
66666666664

Π31 Π32 Π33 Π34 Π35 Π36

0 0 0 0 0 0

Π11 Π12 Π13 Π14 Π15 Π16

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775
, (A5)

Ξx2 � �1 − q�p

2
66666666664

0 0 0 0 0 0

Π51 Π52 Π53 Π54 Π55 Π56

0 0 0 0 0 0

0 0 0 0 0 0

Π21 Π22 Π23 Π24 Π25 Π26

0 0 0 0 0 0

3
77777777775
, (A6)
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Ξz1 � qg

2
66666666664

Π41 Π42 Π43 Π44 Π45 Π46

0 0 0 0 0 0

0 0 0 0 0 0

Π11 Π12 Π13 Π14 Π15 Π16

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775
, (A7)

Ξz2 � �1 − q�g

2
66666666664

0 0 0 0 0 0

Π61 Π62 Π63 Π64 Π65 Π66

0 0 0 0 0 0

0 0 0 0 0 0

Π21 Π22 Π23 Π24 Π25 Π26

0 0 0 0 0 0

3
77777777775
, (A8)

and

Ξq �

2
66666666664

Π11 Π12 Π13 Π14 Π15 Π16

−Π21 −Π22 −Π23 Π24 −Π25 −Π26

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777775
: (A9)

Since estimating the separation and centroid of two-point
sources is equivalent to estimating the position of each emitter,
we can use new parameters �x0, s, z0, t� to replace the previous
four �x1, x2, z1, z2�, and the relative intensity remains un-
changed:

θ1 � x0 �
x2 � x1

2
, θ2 � s � x2 − x1,

θ3 � z0 �
z2 � z1

2
, θ4 � t � z2 − z1,

θ5 � q: (A10)

The relation between the SLDs of the new parameters with
respect to the old ones can be written as0

BBBBBBBBB@

L̂x0
L̂s
L̂z0
L̂t
L̂q

1
CCCCCCCCCA

�

0
BBBBBB@

1 1 0 0 0

− 1
2

1
2 0 0 0

0 0 1 1 0

0 0 − 1
2

1
2 0

0 0 0 0 1

1
CCCCCCA

0
BBBBBBBBB@

L̂x1
L̂x2
L̂z1
L̂z2
L̂q

1
CCCCCCCCCA
: (A11)

Now, we take the SLD of x0 as an example to show the
relation in Eq. (A11). The parameter x0 has the same generator
p̂ as x1 and x2. According to Eqs. (3) and (26), ∂x1ρ �
iq�jΨ1ihΨ1j, p̂�, ∂x2ρ � i�1 − q��jΨ2ihΨ2j, p̂�, and

jΨ1i � exp�−iĜz1 − ip̂x1�jΨi

� exp

�
−iĜz1 − ip̂

�
x0 −

s
2

��
jΨi,

jΨ2i � exp�−iĜz2 − ip̂x2�jΨi

� exp

�
−iĜz2 − ip̂

�
x0 �

s
2

��
jΨi: (A12)

Thus, ∂x0 jΨ1i � ∂x1 jΨ1i and ∂x0 jΨ2i � ∂x2 jΨ2i; then, we
can obtain

∂x0ρ � i�ρ, p̂� � ∂x1ρ� ∂x2ρ: (A13)

From the definition of SLD in Eqs. (11) and (A13), we can
show that

L̂x0 � L̂x1 � L̂x2 : (A14)

The other relations of SLDs can be derived in a similar way.
Next, QFIm and a weak commutativity condition matrix

can be derived from Eqs. (10) and (12):

�Q�ρ��μν � i�Γ�ρ��μν � Tr�ρLμLν�, (A15)

where

Tr�ρLμLν� � Tr�TRT −1TLμT −1TLνT −1� � Tr�RLμLν�:
(A16)

Note: We are aware of the related independent work
in Ref. [55].
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