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The application of machine learning to the field of ultrafast photonics is becoming more and more extensive.
In this paper, for the automatic mode-locked operation in a saturable absorber-based ultrafast fiber laser (UFL),
a deep-reinforcement learning algorithm with low latency is proposed and implemented. The algorithm contains
two actor neural networks providing strategies to modify the intracavity lasing polarization state and two critic
neural networks evaluating the effect of the actor networks. With this algorithm, a stable fundamental mode-
locked (FML) state of the UFL is demonstrated. To guarantee its effectiveness and robustness, two experiments are
put forward. As for effectiveness, one experiment verifies the performance of the trained network model by ap-
plying it to recover the mode-locked state with environmental vibrations, which mimics the condition that the
UFL loses the mode-locked state quickly. As for robustness, the other experiment, at first, builds a database with
UFL at different temperatures. It then trains the model and tests its performance. The results show that the
average mode-locked recovery time of the trained network model is 1.948 s. As far as we know, it is 62.8%
of the fastest average mode-locked recovery time in the existing work. At different temperatures, the trained
network model can also recover the mode-locked state of the UFL in a short time. Remote algorithm training
and automatic mode-locked control are proved in this work, laying the foundation for long-distance maintenance
and centralized control of UFLs. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.428117

1. INTRODUCTION

Artificial intelligence (AI) algorithms studied in the computer
field have played a huge role in many other fields [1,2], such as
medicine, finance, and optics [3–5]. The applications of AI
mainly include feedback control, pattern recognition, big data
analysis, feature extraction, and noise reduction [6–8]. As an
important branch in the field of AI, deep-reinforcement learn-
ing (DRL) provides a solution to the feedback-control problem
of complex systems because of its perception and decision-mak-
ing capabilities [9]. Because of this, it is widely used in feedback
control in areas such as autonomous driving and industrial au-
tomation. When the DRL is applied in different environments,
the strategies are different. Therefore, a large number of algo-
rithms based on reinforcement learning have emerged, such as
Markov decision process, dynamic programming, Monte Carlo
method [10], temporal difference, SARSA, deep Q network
(DQN) [11], deep deterministic policy gradient (DDPG)
[12], and other algorithms [13]. These algorithms could make

the system reach and maintain the desired regime in different
environments as soon as possible.

In optics, DRL can also play an important role. Some optical
research relies on the stability of the experimental platform or
system. Its stability is achieved by adjusting the parameters ap-
propriately according to the current environment. DRL can
indirectly collect environmental information and adjust the
parameters of the experimental system so that the system
quickly reaches and stays in the desired regime for a long time.
In this way, the system can work stably without manual adjust-
ment for further research and testing.

In the field of ultrafast photonics, AI has also promoted its
development [14,15]. Recently, the combination of machine
learning algorithms with the control and characterization of ul-
trafast dynamics, laser design, and optimization has broken
through many technical barriers. Ultrafast fiber laser (UFL)
is a significant part of ultrafast photonics research. It can gen-
erate femtosecond or picosecond pulses and has been widely
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used in various applications [16–23], such as nonlinear optics,
precision measurement, and astronomy. The prerequisite for
the applications of UFL is to maintain a stable mode-locked
state for a long time and to recover quickly once the mode-
locked state is disturbed. Fiber lasers based on polarization-
maintaining fibers have high stability and do not require
polarization controllers to manipulate. Therefore, the UFL
in this article refers to the fiber lasers that need to adjust
the polarization state to achieve a mode-locked state. To recover
the mode-locked state of a UFL, relying solely on manual ad-
justment of the polarization state is inefficient. Hence, its ap-
plication is limited. This problem can be solved by automating
and accelerating the mode-locked state recovery of the UFL. To
realize the automatic control of the polarization state, the elec-
trical polarization controller (EPC) provides technical support
[24–27]. When an EPC is added to the UFL, the voltage values
of the multiple EPC channels can be repeatedly adjusted to
change the polarization state in the laser cavity and by checking
the output of the UFL to obtain the target regime. This is a
typical feedback-control process.

Many achievements have been made in the research of au-
tomatic mode-locked algorithms for UFL [14,28–33]. In 2012,
Shen et al. [34] applied the pulse counting method to deter-
mine the mode-locked state, thereby adjusting the input volt-
age of the EPC to meet the mode-locked condition. Brunton
et al. [35] proposed the concept of self-tuning laser in 2014 and
for the first time introduced machine learning algorithms into
the automatic mode-locked control of nonlinear polarization
rotation (NPR) fiber laser. In the past few years, the Kutz team
has demonstrated a number of machine learning algorithms
applied to automatic mode-locked control, such as a toroidal
search algorithm [36] and recurrent neural network algorithm
[37] for mode-locked fiber laser, and a DQN algorithm [38] for
NPR fiber laser. Woodward and Kelleher [39] applied a genetic
algorithm (GA) to the automatic mode-locked control of the
figure-eight laser in 2016. In the second year, they applied
GA to the ring fiber laser [40], which was able to obtain a stable
and tunable Q switching state. In 2020, Pu et al. [41] proposed
a human-like algorithm (HLA) for automatic mode-locked
control of NPR fiber laser, which can realize multiple regimes
of regulation. They further deployed the algorithm in a field-
programmable gate array (FPGA), which greatly improved the
response speed of the algorithm to the laser.

Some of the aforementioned automatic mode-locked con-
trol algorithms have been verified to be feasible in a simulated
environment. However, the verification has not been com-
pleted in the actual environment. In addition to the HLA
algorithm, other algorithms need to consume at least 30 s or
more to reach the target state when they are applied to the ac-
tual automatic mode-locked control. Such low-recovery effi-
ciencies are hard to tolerate for practical applications. The HLA
algorithm also has a certain defect—when adjusting the polari-
zation state, it only modifies the input voltage of the EPC
according to a fixed step. When the randomly initialized polari-
zation state is far away from the target polarization state, the
number of adjustment steps could be larger. This leads to
an increased time from starting the automatic mode-locked re-
covery algorithm to resuming the mode-locked state, defined as

the recovery time. The average recovery time refers to the aver-
age value of the mode-locked recovery time obtained from
multiple experiments. According to Ref. [41], the average re-
covery time with the randomly initializing polarization state
method can be about 14 times the fastest recovery time in
the HLA algorithm.

A deep-reinforcement learning algorithm with low latency
(DELAY) based on the DDPG strategy is introduced for
the automatic mode-locked state recovery of the UFLs. The
DELAY algorithm mainly includes two actor deep neural net-
works and two critic deep neural networks. The role of the ac-
tor network is to select the appropriate action (corresponding to
the input voltages of the EPC) according to the state. The pur-
pose of the critic network is to evaluate the effect of the
executed actions on the system. The DELAY algorithm is com-
bined with a UFL based on a saturable absorber (SA) to form an
automatic mode-locked control system. In the process of inter-
action between the algorithm and the environment, a necessary
time delay is experienced to ensure that the environment state
is stable. The reason is that it takes a certain period of time
before the state of the UFL becomes stable after updating
the polarization state of the EPC. In experiments, it is found
that the fastest fundamental mode-locked (FML) recovery time
of the algorithm after vibration is 0.472 s, and the average re-
covery time is 1.948 s. Compared with the polarization-control
algorithms proposed in the past, this algorithm can achieve a
large-scale polarization state adjustment in one step, thereby
optimizing the solution that the initial polarization state is
far from the ideal polarization state. This is the main reason
why the DELAY algorithm is faster than the HLA algorithm
on average mode-locked recovery time. In addition, the data
between the computer and the EPC-controlled unit/the laser
output monitoring device in this system are transmitted
through a wireless network. The DELAY algorithm is deployed
on the computer, so this means that the system can realize
remote automatic mode-locked control. The realization of
remote control indicates that the system can realize remote
maintenance and monitoring. It is also convenient for remote
assistance to adjust the system status. Finally, a computer can
control multiple laser systems simultaneously, which is of great
significance to the debugging and controlling of the cascade
system.

The organization of the paper is as follows. A low-latency
deep-reinforcement learning algorithm is presented for auto-
matic mode-locked state recovery for UFL in Section 2. Then,
in Section 3, the architecture of the UFL and a feedback-
control system are introduced. Related characterization of the
system is also mentioned. In Section 4, the experimental results
of the deployment of the algorithm in the system are demon-
strated, which mainly include the vibration test and tempera-
ture test. In Section 5, the contributions and prospects are
discussed.

2. LOW-LATENCY DEEP-REINFORCEMENT
LEARNING ALGORITHM

The structure of the DELAY algorithm is illustrated in Fig. 1.
It depicts four deep neural networks, including two actor
networks (in black) with the same structure and two critic
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networks (in red) with the same structure. The actor networks
are constructed by a three-layer fully connected deep neural
network, in which the number of nodes in the two hidden
layers is 256, and the input layer and output layer are state
and action, respectively. The function in the algorithm is to
infer the next action based on the current state to ensure that
the system reaches the target regime as soon as possible. The
above actor network interacts with the laser environment di-
rectly and determines the voltage values given to the EPC in
the next step according to the current laser state. The following
target actor network can be considered as a replicated version of
the actor network, which is used to calculate and estimate pos-
sible future actions. The critic networks are also constructed
by a three-layer fully connected deep neural network, in which
the number of nodes in the two hidden layers is set to 256. The
input layer is the state and the action to be performed, and the
output layer is a Q value for evaluating the reward of the action
in the laser environment. The above critic network is used to
calculate the Q value of the currently executed action. The
following target critic network is used to compute the Q value
corresponding to the action obtained from the target actor
network.

The replay buffer in Fig. 1 stores a large number of tuples
(s, a, r, s 0, done), where s represents the current state, a is the
action selected by the actor network according to s, r means the
reward for performing the action a, s 0 indicates the state after
executing a, and done indicates whether the target regime is
reached after executing a. It is used as a training set for network
training in the algorithm. Since the network training process
randomly selects samples from the replay buffer, the correlation
between adjacent actions is broken up. In this way, the training
effect of the network can be improved. The purpose of the weak
delay in Fig. 1 is that when the action is executed, it needs to be
read after the state of the laser is stable for 0.5 s. In this way, the
polarization state of the laser can be judged more accurately.

The algorithm is mainly used to train a deep neural network
model so that the polarization state can be quickly adjusted
after the mode-locked state being disturbed. For DRL algo-
rithms, the quality of the environment definition has a great
impact on the performance of the algorithm, so the abstraction
of states and actions in the environment needs to be carefully
considered. In the DELAY algorithm, the state is defined as a

six-tuple, including the four-channel voltage values of the EPC
in the current state, two pulse-stability evaluation values ob-
tained according to the laser output signals in the time domain
and frequency domain. The calculation method of those two
values will be given in Section 3. The action is defined as a four-
tuple, corresponding to the four-channel input voltage values
of the EPC. To make the training model more effective, the
voltage values applied to the EPC are mapped to [−1, 1].
Since the accuracy of the EPC voltage setting is 0.001, the
approximate value of the algorithm result can be used when
setting the voltage value for the EPC.

In the DELAY algorithm, the actor and critic networks need
to be trained through a backpropagation method. The loss
function of the actor network is defined as

lossa �
1

n

Xn
j�1

Qpredict_j �
1

n

Xn
j�1

critic�sj, aj�, (1)

where n means the number of tuples in the replay buffer used
when calculating a loss value, and sj and aj are from the replay
buffer. The loss function of the critic network is

lossc �
1

n

Xn
i�1

�Qpredict_i − �ri � γQ target_i��2, (2)

where n has the same meaning as n in Eq. (1), ri means the
reward obtained from the recorded execution of the ith action,
Qpredict_i represents the result obtained from the critic network,
the discount factor γ is the weight of the next action value, and
Q target_i indicates the prediction result obtained in the target
critic network. The parameter update method of the target ac-
tor and the target critic network is as follows:�

ω 0
a_t � τωa_t � �1 − τ�ωa_new

θ 0
c_t � τθc_t � �1 − τ�θc_new

, (3)

where ωa_t and ω 0
a_t , respectively, indicate the weight param-

eters before and after the target actor network is updated, and
ωa_new means the updated weight parameters of the actor net-
work. The second formula corresponds to the parameters in the
critic network and the target critic network. This method of
parameter update is called soft update, which helps the model
convergence process to be more stable. τ represents the soft-
update weight.

In the training process of the network model, the hyperpara-
meter settings in the networks are shown in Table 1. The
actor_lr and critic_lr are the learning rate of the actor network
and the critic network, respectively. The buffer_size is the size
of the replay buffer, and the batch_size is the training batch
size. The training and optimizing processes of the algorithm
model are completed in combination with the actual UFL sys-
tem. At the beginning of each iteration, the four input voltages
of the EPC are randomly initialized. Then, the actor network is
used to calculate the next action (a) based on the current state
(s), and the EPC input voltages are updated. After 0.5 s, the
new state (s 0) and the reward (r) of the system are obtained
from the laser environment, and the tuple (s, a, r, s 0, done)
is stored in the replay buffer. When the system reaches the
target FML state, an iteration process is considered to be over.
In a model training process, this iterative process needs to
be repeated 100 times. In the iterative process, the weight

Fig. 1. Structure of the low-latency deep-reinforcement learning
algorithm based on DDPG strategy in the laser environment.
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parameters of the actor and critic networks are periodically
trained and updated. The other two target networks have also
been soft updated accordingly. The goal of parameters update is
to minimize the number of steps from the initial state to the
mode-locked state in an iteration process. When the network
model still cannot reach the target regime quickly after the iter-
ation, the network is trained again on the basis of the current
trained model.

Figure 2 shows the flow chart using the trained actor net-
work model to maintain the stable mode-locked state of the
UFL. The stabilization algorithm reads the time–frequency-
domain information output by the laser from the oscilloscope.
After that, a certain strategy (introduced in Section 3) is used on
the computer to determine whether the laser has reached the
mode-locked state. If the system is in the mode-locked state,
wait for 0.5 s before the computer reads the oscilloscope data
again. Otherwise, the computer runs the trained actor network
model to calculate the action to be performed. Then, the action
is converted into four voltage values and assigned to the four
voltage input ports of the EPC. After waiting for 0.1 s, the sys-
tem enters a new round of the iterative process. The program
can run all of the time to monitor and maintain the stable
mode-locked state of the system.

Table 2 shows the comparison of different algorithms in
mode-locking time applied to the fiber laser, where EA repre-
sents the evolutional algorithm and PSO means the particle
swarm optimization algorithm. The last three sets of results
are all tested in the system built by this work. From the results
in the table, the DELAY algorithm has the best performance in
average recovery time. However, as of the current experimental
results, the fastest mode-locked recovery time of the DELAY
algorithm can only reach 0.472 s, which is 0.252 s slower than
the HLA algorithm, which is because the process of transmit-
ting four voltage values from the computer to the FPGA
is completed through the wireless network. According to

thousands of statistics, the average time it takes to update
the input voltages of the EPC is about 0.524 s each time.
Therefore, the time cost of the DELAY algorithm is relatively
longer. But for practical applications, adjusting the laser to the
mode-locked state within 2 s on average can meet real-time
requirements.

All of the implemented algorithms are written in Python
language and run on a laptop with Windows 10 operating sys-
tem. The model of the CPU is Intel Core i5-8265U @
1.6 GHz in the laptop. The DELAY algorithm is implemented
based on the PyTorch 1.7 framework [43].

3. EXPERIMENTAL SETUP

To demonstrate the effectiveness and the robustness of the
DELAY algorithm, a UFL is constructed, as shown in Fig. 3.
The UFL consists of a wavelength-division multiplexer (WDM)
that reflects the 980 nm light, a piece of 0.4 m erbium-doped
fiber (EDF) that serves as gain medium pumped by a 980 nm
laser diode, an EPC used to adjust the intracavity polarization, a
fiber SA based on single-walled carbon nanotube SA (SWCNT)
film [44,45], and a 10/90 optical coupler (OC). The 90% port
of the optical power is fed back into the cavity, while the 10%
port is used for the output. The total length of the cavity
is ∼5.24m.

Fig. 2. Flow chart for stable mode-locked state monitoring.

Table 1. Hyperparameters in the Training Process

Hyperparameter Value Hyperparameter Value

actor_lr 10−6 critic_lr 10−6

γ 0.99 τ 0.02
buffer_size 100 batch_size 8

Table 2. Comparison of Different Algorithms in Mode-
Locking Time

Algorithm Name Time

GA [39] ∼30 min mode-locking time
EA [42] ∼30 min mode-locking time
GA [24] ∼30 s recovery time
HLA [41] 0.22 s fastest recovery time

3.1 s average recovery time
Running on
this system

GA 377 s average recovery time
PSO 216 s average recovery time

DELAY 0.472 s fastest recovery time
1.948 s average recovery time

Fig. 3. Experimental setup of UFL based on SA. WDM, 980/
1550 nm wavelength division multiplexer; EDF, erbium-doped fiber;
EPC, electrical polarization controller; FPGA, field-programmable
gate array; SA, saturable absorber; OC, optical coupler; ISO, isolator;
PD, photodetector.
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There are four channels on the EPC for voltage adjustment
to change the polarization state. The voltage adjustment range
of each channel is 0–5 V, and the corresponding angle adjust-
ment range is 0–4π rad. The four channels of the EPC in the
system are connected to the 4 digital–analog converter (DAC)
output ports of the FPGA. Corresponding to the FPGA, the
minimum amplitude of angle adjustment on each channel is
π∕625,000 rad. When the input voltages of the EPC need to
be adjusted, a computer can send the voltage data stream to the
FPGA. After the FPGA receives the data stream, it can immedi-
ately update the voltage values of the four EPC channels. In this
way, the polarization state of the system can be controlled by
the computer. By using a polarization-measuring instrument to
record the polarization state, proper adjustment of the input
voltage of the EPC can traverse the entire surface of the
Poincaré sphere. It is a feature of the EPC that the arbitrary
change of the adjustment step in the DELAY algorithm can
be realized. Therefore, no matter how far the position of the
output polarization state in the fiber laser deviates from the
polarization state of the mode-locked state, it can be returned

to the target state with a few adjustment steps. This is one of the
important reasons why the average mode-locked recovery time
obtained by the DELAY algorithm is much lower than that of
other algorithms.

In the research, first, by manually adjusting the polarization
range of the EPC, the UFL can work in the FML state. As
illustrated in Fig. 4, when the system is under the FML state,
the pulse period is 25.34 ns in laboratory time, and the rep-
etition frequency (f rep) is 39.46 MHz. Figure 4(c) shows
the autocorrelation information of the mode-locked pulse.
Through sech2 function fitting, the pulse width is found to
be about 316 fs. Figure 4(d) plots the output spectrum, which
indicates a center wavelength of 1560.77 nm. The sech2-like
spectrum illustrates that the UFL behaves in a typical soliton
mode-locked state. The results presented are all measured at
room temperature (about 25°C).

Subsequently, the computer is connected with the oscillo-
scope and the FPGA through a wireless network. In this way,
the computer can collect the output of the laser to provide feed-
back for the DELAY algorithm and change the polarization
state of the EPC by transmitting new voltage values to the
FPGA. Specifically, the oscilloscope transmits the collected
time-domain signal and the processed frequency-domain signal
to the computer so that the algorithm can determine whether
the UFL reaches the mode-locked state. After the DELAY
algorithm processes the data in the current state, a new set
of voltage values will be transmitted from the computer to
the FPGA to update the polarization state of the EPC. The
output arm of the UFL is first connected with an InGaAs
photodetector (PD) with a bandwidth greater than 10 GHz

to detect the pulse signal. Then, the pulse signal is monitored
and recorded by the oscilloscope with a bandwidth of 4 GHz.
The oscilloscope and the FPGA that controls the EPC are con-
nected to the router through their own network ports. The
computer wirelessly communicates with the oscilloscope and
the FPGA through the form of the wireless network. In this
system, it is simple to remotely realize the monitoring of the
system status and the automatic mode-locked control.

The computer sends read instructions to the oscilloscope to
read fixed-length time–frequency-domain data. The reading
length of the time-domain signal is 4 μs, and the reading range
of the frequency-domain signal is set to 0–3.75 GHz. After
receiving the read instructions, the oscilloscope transmits the
currently collected time-domain data and processed frequency-
domain data to the computer. Next, the computer executes the
corresponding mode discrimination program to determine
whether the system is in the FML state. In this work, there
are three formulas in the program to determine the status
of the system. The first equation characterizes the stability
of the time-domain signal, and its form is

costtime �
�

20 if n�t_p� ≠ nt_lock
std�t_p� � abs�avg_t_pcur − avg_t_plock� else

, (4)

where t_p represents the peak sequence of time-domain pulse
data within 4 μs, n is the length of t_p, nt_lock means the num-
ber of pulses within 4 μs laboratory time, std denotes the op-
erator for taking variance, abs is the absolute value operation,
and avg_t_pcur and avg_t_plock , respectively, mean the average
values of the time-domain peak sequence in the current state

Fig. 4. Characterization of the output when the laser is in the FML
state. (a) Time-domain pulse output within 0.2 μs laboratory time.
The pulse interval is 25.34 ns. (b) Frequency-domain signal charac-
terization in 4 GHz bandwidth. The f rep is 39.459 MHz. (c) The
pulse autocorrelation and the result of fitting using sech2 function.
(d) The spectrum of the laser output.
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and the FML state. The t_p is obtained by processing the time-
domain pulse sequence collected from the oscilloscope using
the peak-finding algorithm, which shows the intensity and
quantity of the time-domain pulse output from the fiber laser
in the current state. The lowest threshold of the peak-finding
algorithm needs to be selected appropriately to ensure that the
peak point of the mode-locked pulse could be searched. When
the costtime is smaller, the output pulse is more stable.

The second equation reflects the stability of the frequency
comb, and its expression is

costfreq �
�

20 if n�f _p� ≠ nf _lock
std�f _p� � abs�min_f _pcur∕avg_f _plock� else

, (5)

where the variables and functions are similar to those expressed
in Eq. (4), except that the parameters correspond to the fre-
quency domain. The f _p is the peak sequence of frequency-
domain pulse data in the range of 0–3.75 GHz, which is
calculated by the oscilloscope. By comparing f _p with the peak
sequence of frequency-domain data under the stable mode-
locked state, its mean and variance will reflect the mode-locking
stability of the fiber laser in the current state. nf _lock represents
the number of comb teeth of the mode-locked pulsed optical
frequency comb in the range of 0–3.75 GHz. Similarly, when
the value of costfreq is smaller, the frequency comb is more uni-
form and steadier.

The last function combines time–frequency information to
give a quantitative FML state judgment standard; the expres-
sion is as follows:

r � 20 − �costtime � costfreq�, (6)

where the system is considered to be in the stable FML state
when the r reaches 5 or more. Otherwise, the system is con-
sidered to be not in the FML state. This quantitative judge-
ment comes from a large number of experimental tests and
empirical analysis. The value is also used in the action reward.
In the DELAY algorithm, the reward is defined as the sum of r
obtained by adjusting the polarization state multiple times in
one iteration. The idea to define reward function mainly comes

from two aspects. On the one hand, the definition of r can well
reflect the target state to be achieved by the system. This helps
the algorithm to quickly distinguish the different states of
the system and ensures the effectiveness of the algorithm.
On the other hand, the parameters that need to be measured
in the reward function are only the time-domain and fre-
quency-domain data of the laser output detected by the PD,
which can be shown in real time by an oscilloscope. The use
of parameters that can be obtained in real time to define a cost
function can improve the efficiency of the algorithm.

Figure 5 sketches the time-domain and frequency-domain
signal output by the laser in different polarization states, which
are FML andQ switch mode-locked states. The laser pulse signal
in the time-frequency domain in the FML state has high flatness,
and the number of pulses in a certain time-frequency range is
fixed. The time-domain signal in the Q switched mode-locked
state is uneven, and the number of pulses is also unstable. In
addition, the laser output has many other states, such as second-
harmonic mode-locked state, third-harmonic mode-locked state,
and Q switching state. In most non-FML states, the numbers of
time-domain pulses and frequency-domain combs collected by
oscilloscope are not equal to the corresponding values in the
FML state. Therefore, the value of r in these states is usually
−20. By comparing the actual state of the oscilloscope with
the program processing results, it is found that the corresponding
reward value is greater than 5 when the UFL is in the stable FML
state. When the system is in other states, the r value will be lower
than 5.Within the value range of r, the larger the value, the more
stable the FML state of the system. The smaller the value of r, the
further the system state deviates from the FML state. There-
fore, Eq. (6) is used for the reward definition of the laser envi-
ronment in the DELAY algorithm.

4. RESULTS AND DISCUSSION

After completing the design and implementation of the algo-
rithm, two tests are carried out. The external factors that affect
the mode-locked state of the UFL are mainly environmental
vibrations and large changes in temperature. On the one hand,
the motor vibration is applied to simulate the environmental
vibrations so as to quickly disturb the mode-locked state of

Fig. 5. Comparison of the time-domain and frequency-domain sig-
nal output by the laser in different polarization states. From left to
right: FML state and Q switch mode-locked state. In each column,
the top row shows the time-domain signal within 40 μs laboratory
time, and the bottom plot is the frequency-domain signal within
the 4 GHz bandwidth.
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the UFL. Then the DELAY algorithm is used to verify whether
the mode-locked state can be quickly recovered. On the other
hand, the UFL is controlled at different temperatures to test
whether the DELAY algorithm can train a suitable model for
automatic mode-locked state recovery. This will provide a sol-
ution to realize the automatic mode-locked state recovery when
the temperature change causes the UFL to lose the mode-
locked state slowly. The experimental results are given from
the two parts separately.

A. Vibration Test
Generally, sudden vibration has a great influence on the polari-
zation state of the UFL. When severe jitter is applied to the
laser, the FML state is generally easily lost. Even if the jitter
is stopped, it is difficult for the laser to recover the FML state
automatically. To verify the effect of the algorithm in recover-
ing the mode-locked state when the sudden jitter causes the
mode-locked state to disappear, a large number of experiments
are carried out.

To expand the range of the laser jitter, all of the cavity
parts of the laser except EPC and its pigtails are put in a
14 cm × 13.5 cm × 5 cm aluminum box. A motor with a volt-
age of 5 V and a limited current of 0.12 A is attached to the
surface of the aluminum box to introduce vibrations. By veri-
fication, it is found that when the vibration time reaches 1.5 s,
the FML state of the laser cannot be automatically recovered. A
relay is used to power the motor so that the experiment could
be executed many times without manual operation. The pro-
gram written in Python language is used to realize the control of
the motor power switch by sending instructions. Therefore,
both the time and the interval of motor vibrations can be con-
trolled by the program without manual intervention.

Before performing the test experiment of recovering the
mode-locked state after vibration, a model of the DELAY algo-
rithm in the experimental environment was trained. Figure 6(a)
shows the record of the variation of the reward value of the
algorithm model during the last 100 iterations. In the last 30
training sessions, the reward value basically remained near 0.
This implies that the trained model can find the mode-locked
state quickly. After the entire algorithm models are trained, the
actor model is used in the automatic mode-locked state recov-
ery algorithm.

In addition, the influence of motor vibration on the FML
state of the fiber laser is tested. In the experiment, the motor is
controlled to vibrate for 1.5 s after the system is in a stable FML
state for 120 s. Within 60 s after the motor vibrates, there is no
external disturbance to the system. During this process, the
output of the system has been recorded by the power meter
and frequency meter. As illustrated in Fig. 6(b), within 60 s
after vibration, the system has not been in the FML state.
At the moment of 180 s, the mode-locked recovery algorithm
is started. It is shown in the figure that after the algorithm is
started, the system recovers the FML state in a short time.
Moreover, the system can maintain a stable output power
and f rep since then. This process confirmed that motor vibra-
tion can disturb the mode-locked state of the UFL. The process
also shows that the DELAY algorithm can recover the FML
state of the laser, which reflects the effectiveness of the
algorithm.

To test the performance of the algorithm to recover the
mode-locked state in the system, more than 1500 experiments
were carried out. In each experiment, the operating state of the
mode-locked recovery algorithm is maintained, and the system
output power and f rep are continuously recorded. The vibra-
tion frequency of the motor is set to once per minute. These
operations are controlled by the program. Figure 6(c) shows the
counts of the number of different mode-locked recovery time
intervals. Among them, the number of times of resuming the
mode-locked state within 3 s accounted for 88.15% of the total
number of experiments. After the system loses mode-locked
state due to vibration, the average mode-locked recovery time
is 1.948 s, and the fastest recovery time tested in the experiment
is 0.472 s.

Figure 6(d) shows the changes in f rep and output power of
the system within 10 min during the experimental tests. The
motor vibrates continuously for 1.5 s per minute. After the al-
gorithm detects signal fluctuations in the time-frequency do-
main, it will immediately search for a new polarization state
for the UFL to recover the mode-locked state of the system.
Every time the system loses the mode-locked state due to motor
vibration, it can quickly recover the mode-locked state under
the correction of the algorithm. During the period of no vibra-
tion interference, the system can maintain a stable mode-locked
state. This means that the polarization state found by the
mode-locked recovery algorithm could make the system main-
tain a stable FML state.

B. Temperature Test
It is known that when the experimental temperature changes
greatly, the intracavity polarization distributions of the UFL

Fig. 6. Effect diagram of algorithm recovery after the laser loses
mode-locked state due to motor vibration. (a) The convergence curve
of the reward value in the last 100 rounds of stable mode-locked cal-
culation model-training iterations. (b) The f rep and power change of
the laser output during the process of applying vibration to the laser
and starting the recovery algorithm. (c) The recovery time statistics of
1500 vibration tests. (d) The output f rep and power change of the
system within 10 min under the condition of vibrating for 1.5 s
per minute and running the mode-locked recovery algorithm all of
the time.
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will also be changed slowly. This means that the actor network
model trained at room temperature might not adapt to various
temperature conditions. A feasible solution is to train appropri-
ate actor network models at different temperatures. According
to the temperature in the laser cavity, applying a corresponding
trained actor network model can recover the stable mode-
locked state quickly. Through experimental verification, the
model trained at room temperature (25°C) is not applicable
in environments where the temperature exceeds 30°C or is be-
low 20°C. Therefore, a set of experiments are designed to train
the algorithm every 5°C in the range of 15°C–40°C.

Figure 7 presents the results of the DELAY algorithm train-
ing at different temperatures. According to statistics, the num-
ber of network model training iterations at each temperature is
mostly 300 or 400. It can be seen that in the last 30 rounds of
network model training at each temperature, the reward value
of the system tends to stabilize. This shows that these models
can already be used for automatic mode-locked state recovery.
At different temperatures, the motor is used to disturb the
polarization state of the laser to test the effectiveness of the
trained model. The results show that all trained models can
recover the FML state of the system at the corresponding
temperature.

Table 3 shows the statistical results of the average mode-
locked state recovery time of the trained model at different tem-
peratures, where 10 times of mode-locked state recovery tests
were performed at each temperature. As a result, the statistics at
different temperatures are all in about 2 s, and their difference
is negligible.

The experiment verifies the robustness of the DELAY algo-
rithm, i.e., the algorithm can adapt to a variety of temperature
environments. Combined with the trained network models at
different temperatures, automatic mode-locked state recovery
can be realized in a real temperature-varied environment. By
monitoring the temperature of the environment in real time,

a suitable model can be selected to recover the mode-locked
state of the UFL. In this way, the DELAY algorithm can be
used to automatically recover the mode-locked state even when
the ambient temperature changes significantly.

5. CONCLUSIONS

In this paper, a low-latency deep-reinforcement learning algo-
rithm based on the DDPG strategy was proposed and imple-
mented for automatic mode-locked control of UFL. Based on
the DELAY algorithm and the UFL, an automatic mode-locked
control system was built to maintain and monitor the FML
state of the laser. Experimental results show that the DELAY
algorithm can recover the FML state of the laser in an average
of 1.948 s after the laser loses its mode-locked state due to
the motor vibration, which is 62.8% of the fastest average re-
covery time in the past research to the best of our knowledge.
The shortest mode-locked state recovery time in the system is
0.476 s. Meanwhile, the DELAY algorithm realizes fast mode-
locked state recovery of the UFL when the system is at any
ambient temperature of 15°C–40°C. Equally important, since
the data feedback between the DELAY algorithm and the laser
in the system is completed through the wireless network, the
system can realize remote mode-locked control. This means
that this system can be used in unmanned scenarios to com-
plete important functions such as distance measurement and
gas detection. Furthermore, the remote-control feature makes
the system conducive to the large-scale centralized control of
multiple UFLs. The DELAY algorithm is also applicable to
other actual systems with feedback delays. The source code of
the implemented algorithm has been opened in Gitee [46],
which encourages others to use, modify, and add new solutions.
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