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Photonic brain-inspired platforms are emerging as novel analog computing devices, enabling fast and energy-
efficient operations for machine learning. These artificial neural networks generally require tailored optical el-
ements, such as integrated photonic circuits, engineered diffractive layers, nanophotonic materials, or time-delay
schemes, which are challenging to train or stabilize. Here, we present a neuromorphic photonic scheme, i.e., the
photonic extreme learning machine, which can be implemented simply by using an optical encoder and coherent
wave propagation in free space. We realize the concept through spatial light modulation of a laser beam, with the
far field acting as a feature mapping space. We experimentally demonstrate learning from data on various clas-
sification and regression tasks, achieving accuracies comparable with digital kernel machines and deep photonic
networks. Our findings point out an optical machine learning device that is easy to train, energetically efficient,
scalable, and fabrication-constraint free. The scheme can be generalized to a plethora of photonic systems, open-
ing the route to real-time neuromorphic processing of optical data. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.423531

1. INTRODUCTION

Artificial neural networks excel in learning from data to per-
form classification, regression, and prediction tasks of vital im-
portance [1]. As data information content increases, simulating
these models becomes computationally expensive on conven-
tional computers, making specialized signal processors crucial
for intelligent systems. Training large networks is also costly in
terms of energy consumption and carbon footprint [2].
Photonics provides a valuable alternative toward sustainable
computing technologies. For this reason, machine learning
through photonic components is gaining enormous interest
[3]. In fact, many mathematical functions, which enable com-
plex feature extraction from data, find a native implementation
on optical platforms. Pioneering attempts using photosensitive
masks [4] and volume holograms [5,6] have been recently de-
veloped into coherent optical neural networks that promise fast
and energy-efficient optical computing [7–16]. These schemes
exploit optical units such as nanophotonic circuits [7], on-chip
frequency combs [14–16], and spatial light modulators to
perform matrix multiplications in parallel [17] or to carry
out convolutional layers [18–20]. Training consists in adjusting
the optical response of each physical node [21], also by adopt-
ing external optical signals [22], which is demanding [23].
Moreover, photonic neural networks based on nanofabrication

still have a considerable energy impact. A general and promis-
ing idea to overcome the issue is to adapt machine-
learning paradigms and make them inclined to optical plat-
forms. In this paper, we pursue this approach by constructing
an easy-to-train optical architecture that requires only free-
space optical propagation.

Photonic architectures that do not need control of the entire
network are particularly attractive. A remarkable method for
their design and training is reservoir computing [24–26], in
which the nonlinear dynamics of a recurrent system processes
data, and training occurs only on the readout layer. Optical
reservoir computing has demonstrated striking performance
on dynamical series prediction by using delay-based setups
[27–30], laser networks [31], multimode waveguides [32],
and random media [33]. Since several interesting complex sys-
tems can be exploited as physical reservoirs, the inverse ap-
proach is also appealing, i.e., the scheme can be trained for
learning dynamical properties of the reservoir itself [34].

Extreme learning machines (ELMs) [35,36], or closely re-
lated schemes based on random neural networks [37,38], sup-
port vector machines [39] and kernel methods [40], are a
powerful paradigm in which only a subset of connections is
trained. ELMs perform comparably with basic deep and recur-
rent neural networks on the majority of learning tasks [36].
The basic mechanism is to use the network to establish a non-
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linear mapping between the data set and a high-dimensional
feature space, where a properly trained classifier performs
the separation. Training occurs at the readout layer; however,
at variance with reservoir computing, ELMs have no recur-
rences in the connection topology and do not possess dynami-
cal memory. In optics, an interesting case of this general
approach has been implemented by using speckle patterns
emerging from multiple scattering [41] and multimode fibers
[42] as a feature mapping. Although in principle many optical
phenomena can form the building block of the architecture
[43,44], the general potential of the ELM framework for pho-
tonic computing remains largely unexplored.

Here, we propose a photonic extreme learning machine
(PELM) for performing classification and regression tasks using
coherent light. We find that a minimal optical setting com-
posed by an input element, which encodes embedded input
data into the optical field, a wave layer, corresponding to propa-
gation in free space, and a nonlinear detector, enables simple
and efficient learning. The encoding method plays a crucial role
in determining the learning ability of the machine. The archi-
tecture is experimentally implemented via phase modulation of
a visible laser beam by a spatial light modulator (SLM).
We benchmark the realized device on problems of different
classes, achieving performance comparable with digital ELMs.
These include a classification accuracy exceeding 92% on the
well-known MNIST database, which overcomes fabricated
diffractive neural networks [8]; further, it is comparable with
convolutional artificial networks that employ photonic acceler-
ators [15,16,19]. Given the massive parallelism provided by
spatial optics and the ease of training, our approach is ideal
for big data, i.e., extensive data sets with large dimension sam-
ples. Our PELM is intrinsically stable and adaptable over time,
as it does not require engineered or sensitive components. It can
potentially operate in dynamic environments as an intelligent
device performing on-the-fly optical signal processing.

2. PELM ARCHITECTURE

An ELM is a feed-forward neural network in which a set of
input signals is connected to at least one output node by a large
structure of generalized artificial neurons [35]. An outline of
the architecture is illustrated in Fig. 1(a). The hidden neurons
form the computing reservoir. Unlike for neurons in a deep
neural network, they do not require any training, and their
individual responses can be unknown to the user [36].
Given an input data set with N samples X � �X1,…,XN �,
the reservoir furnishes an hidden-layer output matrix
H � �g�X1�,…, g�XN ��, where g�x� is a nonlinear feature
mapping, H is linearly combined with a set of weights β to
give the output Y � Y�H; β� performing the classification,
and Y � Hβ. To train an ELM classifier, the optimal output
weights βi are the sole parameters that need to be determined, a
problem that can be solved via ridge regression. Details on this
technique are reported in Appendix A.

We transfer the ELM principle into the optical domain by
considering the three-layer structure illustrated in Fig. 1(b). In
the encoding layer, the input vectors Xi are embedded into the
phase and/or amplitude of the field by an optical modulator.
The reservoir consists of linear optical propagation and nonlin-

ear detection of the final state. The output is recovered in the
readout layer, where weights βi are applied to M measured
channels. The β set is trained by solving the regression problem
via digital hardware. For an extensive training set, with size
larger than the number of channels (N ≫ M ), an effective sol-
ution reads as [36]

β � �HTH� cI�−1HTT, (1)

where T indicates the training targets, I the identity matrix, and c
is a regularizing constant. H contains projections of input sam-
ples in the feature space, where data are separated according to
their features. This mapping is the key ingredient for learning
and occurs entirely by means of optical propagation.
Mapping functions can be constructed starting from the elemen-
tary components of the optical setup. For a general PELM based
on the scheme in Fig. 1(b), we construct the feature mapping

Hji � gi�Xj� � G�M · p�Xj� · q�W��i , (2)

which describes linear propagation of input optical data and their
nonlinear detection. In Eq. (2), G is a detection function, M is
the complex transfer matrix modelling field transmission, p and q
are two encoding functions, and W is a fixed character of the
encoder that we term embedding matrix.W has no direct equiv-
alent in the basic ELMmodel and serves taking into account that
any laser beam has spatial amplitude modulations and phase in-
homogeneities. The elements of this matrix can be understood as
biases or as entries of a fan-in matrix connecting the input signal
to the reservoir. We remark that, at variance with the ELM

(a)

(b)

Fig. 1. Schematic architecture of the photonic extreme learning ma-
chine (PELM). (a) General ELM scheme with the input data set X,
which is fed into a reservoir and gives out the hidden-layer output
matrix H. The trainable readout weights βi determine the network
output Y � Y�H; β�. (b) In the optical case, the input (a mushroom
in the example) is encoded on the optical field, and hidden neurons
have been replaced by modes that interact during propagation.
Training of the photonic classifier is enabled byM detection channels.
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model, in the optical architecture, input and output data, net-
work connections, and processing functions are all complex
quantities. This fact can add an important degree of freedom
to the network operation [45].

In the PELM architecture, each operation is defined by the
corresponding optical elements. Therefore, Eq. (2) can re-
present the feature space of different optical settings. For in-
stance, in the optical classifier demonstrated by Saade et al.
[41], in which amplitude modulated data propagate through
a scattering medium, p�Xj� � Xj (amplitude encoding) and
M is a random complex Gaussian matrix. We validate and ex-
perimentally realize a three-component system composed by
a phase-only SLM, free space, and a camera. In our case,
Eq. (2) can thus be specified as follows. Phase encoding of
the input data by spatial light modulation corresponds to
p�x� � exp�ix�, and, since a single encoder is employed,
p � q, and H � G�M · exp i�X �W��. The nonlinear
function G models the detection of the transmitted field.
Using the saturation effect of the camera pixels, we have
G�I� ≃ I∕�I � I s�, with I � jAj2, optical amplitude A, and
saturation intensity I s. For free-space optical propagation,
i.e., the light distribution in the far field or in the focal plane
of a lens,M corresponds to the discrete Fourier transform [46].

We first validate the free-space PELM architecture and as-
sess the condition for learning via numerical simulations. We
consider digit recognition and train our classifier on the
MNIST handwritten digit database. Figure 2 reports the learn-
ing properties for two representative phase-encoding methods:
(i) noise embedding and (ii) Fourier embedding. In (i), W is a

disordered matrix modelling a distortion on the encoder
(see Appendix A for details). It remains unchanged during both
training and testing. Each input is encoded by phase modula-
tion in �0, π�, and the embedding signal is encoded in the same
phase interval. The effect of the noise embedding is illustrated
in Fig. 2(a), where a typical digit is shown as a phase mask.
Figure 2(b) shows the classification performance of the
PELM withM � 1600 channels when varying the mean noise
amplitude. The machine always reaches accuracies close to that
allowed by training. The classification error shows a sharp de-
crease as noise increases from zero, and it converges to a plateau
already for small perturbations. Results varying the noise cor-
relation length at fixed noise level are in Fig. 2(c). This behavior
indicates that optimal learning occurs for small-scale noise,
i.e., when W has its maximum information content (rank L).
The relevance of W for learning extends to embedding
matrices without randomness. In (ii), W is a modulated carrier
signal [Fig. 2(d)]. We are superimposing the input data on
a carrier pulse; feature mapping corresponds to analyzing the
intensity of the entire spectrum after a nonlinear amplifier.
In this case, the learning process can be interpretable: the
learned features point out resonances between the input signal
and the carrier pulse. As shown in Fig. 2(e), a few frequencies
in the carrier are sufficient for the learning transition. The
PELM is much more accurate in the classification as the
frequency content of the embedding signal is larger. These
results reveal that the embedding matrix plays a key role in
enabling data-set learning. Although, in our experiments, we
control this matrix via the encoder, we note that it can be

(a) (b)

phase embedded digitinput digit

(d) (e) (f)

(c)

+

noise embedding 

input digit phase embedded digit
+

Fourier embedding 
rELM
RP
kELM

Fig. 2. Learning ability of the PELM architecture. The optical computing scheme is evaluated on the MNIST data set by varying the encoding
properties and feature space. (a) Input digit and 2D phase mask showing its encoding by noise embedding: the input signal overlaps with a disordered
matrix. PELM training and testing error for noise embedding when varying the (b) noise amplitude and (c) its correlation length, for M � 1600.
(d) Input vector encoded over a carrier signal (Fourier embedding). (e) Classification error versus the number of frequencies of the embedding signal.
(f ) Minimum testing error with the increasing number of featuresM . The indicated accuracies are the best ones reported with random ELM (rELM)
[47], random projections (RP) [41], and kernel ELM (kELM) [47] on the same task.
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intrinsic in any optical setup, e.g., a distortion of the optical
wavefront.

Another key hyperparameter of the scheme is the number of
features (channels)M , which sets the dimensionality of the fea-
ture (measurement) space. Figure 2(f ) reports the testing error
with varying M . The performance rapidly increases with the
number of features, whereas only hundreds of channels are
necessary for a proficient PELM. For M ≳N∕20, the error
approaches 2%, a value very close to the optimal accuracy
achievable with learning machines based on the same paradigm
[47]. In these digital machines, the main computational cost
both for training and performing the classification is imputable
to large matrix multiplications and their processing with non-
linear functions. In the optical device we carry out, these oper-
ations occur simply by free-space light propagation and
detection. The only calculation we kept on digital hardware
is the offline training via simple regression.

3. EXPERIMENTAL DEVICE

The experimental setup for the free-space photonic extreme
learning machine is illustrated in Fig. 3(a) and detailed in
Appendix B. A phase-only SLM encodes both the input data
set and the embedding matrix on the phase spatial profile of the
laser beam. In practice, distinct attributes of a data set are ar-
ranged in separate blocks, a data sample corresponds to a set of
phase values on these blocks, and a preselected phase mask is
superimposed [inset in Fig. 3(a)]. Phase information self-mixes
during light propagation, a linear process that corresponds to
the matrix multiplication in Eq. (2). The far field is detected

on a camera that performs the nonlinear activation function.
As shown in Fig. 3(b), the resulting acquired image is a satu-
rated function of the optical amplitude in the lens focal plane.
From this data matrix, we extract the M channels to construct
the PELM feature space. An example of an input data measured
on a feature space is reported in Fig. 3(c). In analogy with the
numerical implementation, the device is trained by finding the
weights βi that, when applied the optical output, allow per-
forming the classification.

We test the optical device on various computing tasks and
data sets. The aim is to point out that, when the PELM is fully
effective on a given task, it can be also easily and rapidly re-
trained for a different application. The main results are sum-
marized in Fig. 4 and demonstrate the learning capability of the
optical device. We first use the MNIST data set to prove clas-
sification on a large-scale multiclass problem. When trained us-
ing M � 4096 output channels, the PELM reaches a mean
classification accuracy of 92% ��0.005� over N t � 10;000
test images [Figs. 4(a) and 4(b)]. We obtain accuracy that ex-
ceeds recent optical convolutional processors [15] and is com-
parable with optical deep neural networks [8], but without the
fabrication of specific optical layers and the heavy training they
require. The best classification performance is not sensitive to
the embedding matrix employed on the encoder, which exper-
imentally confirms our numerical findings (Fig. 2). Figure 4(b)
shows a confusion matrix measured using the random embed-
ding method, which gives 92.18% accuracy, compared with the
92.06% [Fig. 4(a)] when using Fourier embedding. Our free-
space PELM hence surpasses diffractive neural networks [8]

1

(a) SLM

camera

(b)

feature space

embedding matrix training set

1

N

objective

lens

M

1

(c)

channels

Fig. 3. Experimental implementation. (a) Sketch of the optical setup. A phase-only spatial light modulator (SLM) encodes data on the wavefront
of a 532 nm continuous-wave laser. The far field in the lens focal plane is imaged on a camera. Insets show a false-color embedding matrix and
training data encoded as phase blocks, respectively. (b) Detected spatial intensity distribution for a given input sample. White-colored areas reveal
camera saturation in high-intensity regions, which provides the network nonlinear function. Pink boxes show some of theM spatial modes (blocks of
pixels) that are used as readout channels. (c) Example of an input data in a feature space of dimensionM � 256, as projected by the optical device.
Each bar represents an output channel, and training consists in finding the vector that properly tunes all the bar heights.
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and competes with cutting-edge photonic hardware in terms of
accuracy. In particular, convolutional opto-electronic setups
also achieve a coarse accuracy of 92% [19]. Ultrafast photonic
processors reach 95% precision with the help of electronic
layers [15], whereas similar photonic accelerators operate with
88% accuracy [16].

By only updating the input training set and the output
weights, the PELM can be quickly reconfigured for classifying
different objects. We consider a binary class problem, i.e., the
mushroom task, where the goal is to separate poisonous from
edible mushrooms from a series of features (see Appendix C for
details). Figure 4(c) shows that, on this data set, we achieve
95.4% accuracy, usingN t � 4124 test samples andN � 4000
training points, which is close to the precision of digital ELMs
[36]. The excellent properties of the experimental device as a
classifier generalizes to regression problems. We test the abalone
data set (see Appendix C), a task where the input data ciphers a
sea snail, and the output is expected to furnish its age. It is a solid

benchmark since it has low-dimensional inputs (L � 8) but con-
tains extreme events that are difficult to predict. Figure 4(d)
shows experimental abalone predictions obtained via a feature
space of dimension M � 2000. The testing error measured
as normalized root mean square displacement (NRMSD) is
≈0.12, i.e., regression is performed with remarkable accuracy
by using only linear optical propagation [44].

A key point of the PELM architecture is a testing error that
rapidly converges to its optimal value as the feature space di-
mension increases. Experimental results demonstrating this
property are shown in Figs. 4(e) and 4(f ), respectively, for the
MNIST and abalone data set. Good classification/regression
performance is maintained even for a very small number of
trained channels, if compared with the data set size. For in-
stance, useful abalone predictions can be obtained with only
M � 128 channels, i.e., with a training process that consists
only in inverting a modest matrix (128 × 128 elements).
Heuristically, we find that the accuracy reaches a limiting value

(a) MNIST

1980 153

195437

956 0 3 1 3 5 8 1 4 3

0 1110 4 2 1 3 5 0 13 0

5 17 887 23 13 7 10 23 16 1

6 7 25 893 2 27 3 24 18 6

1 5 4 2 932 1 14 3 6 31

10 10 9 15 18 726 23 13 21 10

17 7 8 1 11 14 907 0 3 1

4 23 14 9 10 2 1 922 2 19

6 10 7 5 8 11 12 7 957 12

6 9 0 10 14 4 7 21 14 916

MNIST

(f)(e)

abalone

(d)
abalone

954 0 2 1 3 7 2 1 9 0

0 1117 6 1 1 3 5 0 10 3

4 18 891 9 11 6 6 19 27 4

3 4 18 901 4 31 7 12 11 8

2 8 5 2 924 1 7 3 10 41

16 11 3 27 19 724 23 6 15 12

15 3 5 1 12 8 913 1 5 0

2 22 20 3 10 2 2 936 5 13

11 7 7 8 7 11 18 11 947 7

4 8 4 8 21 7 7 25 15 911

MNIST(b)

mushroom(c)

Fig. 4. Experimental performance of the PELM on classification and regression tasks. Confusion matrices on the MNIST data set for a free-space
PELM, which makes use of (a) Fourier and (b) random embedding (92.18% and 92.06% accuracy,M � 4096). (c) Performance on the mushroom
binary classification problem (95.4%). (d) Optical predictions and true values for the abalone data set. (e) Classification and (f ) regression error as a
function of the number of features. Rapid convergence to optimal performance is found. Experimental results are compared with numerical sim-
ulations and training errors.
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asM ∼ N∕20, in agreement with numerical simulation for the
same machine hyperparameters. The same behavior is found
for training errors, which indicates that input data are already
completely separated by the optical setup.

It is worth noting that the device does not need training at
each use. Once we learn a given data set, we store the corre-
sponding output weights and program a different problem;
then, we are able to accomplish any of the posed tasks on-
demand. The diverse classification and regression instances
in Fig. 4 can be tested without any sequential order, simply
specifying the type of task they belong to.

4. DISCUSSION

A. Improving the Photonic Hardware
The limit provided by training errors in Figs. 4(e) and 4(f ) al-
lows us to identify the various factors toward improving the
computational resolution of the optical machine. We ascribe
residual errors to practical nonidealities of the device. The finite
precision of both encoding and readout, including noise in op-
tical intensities, introduces errors that are absent in the digital
implementation [48]. Considering a camera precision of 8 bit
in the numerical model, we find a relevant decrease of the maxi-
mum accuracy. This indicates that improved performance is
attainable by fine-tuning the optical components. Flickering
effects of the phase modulator, which give a tiny but variable
inaccuracy each time the machine is interrogated, are identified
as another relevant source of error. Moreover, optical and
mechanical fluctuations of the tabletop optical line during
training can result in further inconsistencies. These fluctuations
can be compensated in future experiments using incremental
learning [36], a refined technique that allows us to adaptively
adjust the weights while training is ongoing. Training by use of
sparse regression methods may be also useful when dealing with
larger data sets.

B. Comparison with Digital Kernel Methods
The learning principle of the PELM lies on the basis of various
kernel methods [49]. In kernel classification, mapping of the
input data to the high-dimensional feature space is not explicit,
and correlations between samples are evaluated through a ker-
nel function over the input space. Such a kernel K contains the
inner product of all pairs of data points in the feature space,
i.e., all the information sufficient to perform data separation.
When trained via ridge regression, the output Y of a kernel
classifier can be generally expressed as

Y � K�K � cI�−1T, (3)

whereK � k�Xi,Xj� is anN × N kernel matrix, with k being a
given kernel function. Comparing Eqs. (3) and (1) indicates
that, in our PELM scheme, the free-space optical setup acts
as an effective photonic kernel [41]. To provide a comparison
with standard digital kernels, we have evaluated their perfor-
mance on the MNIST data set. We exploit the modularity
of the approach, i.e., we use the same training algorithm
[Eq. (3)] with different kernel functions. We focus on the rel-
evant case of the element-wise Gaussian kernel k�Xi,Xj� �
exp�−γkXi − Xjk2), with tunable parameter γ. Using this ker-
nel, we obtain an average classification accuracy of 96%, to be
compared with the 85% given by a linear kernel (K � XXT).

Smaller classification errors can be obtained with more
elaborate kernel functions [41]. Although the evaluation of
the kernel matrix elements can be time-efficient, training requires
storing and inverting this large matrix (N × N ), which becomes
unfeasible on large-scale data sets. This enormous memory con-
sumption represents a major drawback, which makes digital ker-
nels energetically inefficient with respect to the photonic
implementation. In fact, in the PELM scheme, we make use
of explicit feature mapping, and the output matrix used for train-
ing has a much smaller size (M ×M ). This implies that the com-
putational cost for training the device does not depend on the
data set size N but only on the selected number of channels
M . The advantage of the proposed approach extends also to ker-
nel methods based on different algorithms. For instance, a sup-
port-vector machine on MNIST takes about 107 multiply-adds
(MACs) per recognition [50], whereas in our PELM the optical
processors enables adequate classification of the single handwrit-
ten digit using only 104 digital MAC operations.

C. Application Potentials
Besides computing effectiveness comparable with its digital
counterpart, the PELM hardware offers several advantages that
are promising for fast processing of big data, especially for in-
puts that naturally present themselves as optical signals. In fact,
unlike deep optical neural networks [51,52], training is simple
and scales favorably with the data set size. It can also be per-
formed online with affordable computational resources. Once
trained, forward information propagates optically in a fully pas-
sive way and in free space. This can provide a key advantage
with respect to ELM algorithms and kernel methods both
in terms of scalability and latency. In fact, the matrix multipli-
cation in Eq. (2), which maps input data to the feature space,
on a digital computer requires a time and memory consump-
tion that grows quadratically with the data dimension L. The
optical hardware performs this operation totally in parallel,
independently of the input data size, and without power dis-
sipation. Since onlyM scalar multiplications are necessary from
the optical detection to the final classification, the PELM has a
low latency, which is independent on the data-set dimension.
This is a crucial property in applications that require fast re-
sponses, such as in real-time computer vision. The main speed
limitation of our free-space PELM is related to the frame rate of
the input optical modulator. Liquid-crystal SLMs currently
have typical frame rates of the order of 100 Hz, but phase mod-
ulators based on micro-electro-mechanical, electro-optical, or
acousto-optical technologies are approaching GHz frequencies
[53,54]. With similar components available, PELM hardware
could perform R � L ×M × 109 operations per second (OPS),
a value that, for large L, can overcome the current limits of
electronic computing (peta OPS).

The absence of any optical element or medium along the
network path, which differentiates our scheme from all other
optical neuromorphic devices previously realized, is a valuable
aspect for various reasons. The tiny optical absorption and scat-
tering of light in air imply that our scheme needs low-power
optical sources (μW or lower), i.e., it requires minimal energy
consumption. More importantly, our device is extremely stable
to mechanical and optical perturbations, because its operation
does not depend on components that must be kept completely
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static after training. This suggests that the proposed optical
processor is promising for use in dynamic environments. In
fact, tolerance to external disturbances requires only the relative
alignment between the SLM plane and the camera plane, which
can be carried out with mechanical or optical stabilization. We
thus expect the free-space PELM can operate even when being
subject to shocks. For small perturbations, tolerance is already
guaranteed by the finite spatial extent of the input and output
modes. Specifically, the output channels are made by averaging
over several camera pixels (see Appendix B), which reduces the
effect of vibrations. Therefore, we expect that re-training the
device would be necessary only when the perturbation is large
enough that a change of the channel positions cannot be re-
trieved via some feedback mechanism.

In view of edge-computing applications, the PELM can be
further adapted toward ease of use and energy efficiency. In fact,
using optical signals from the environment as input data, the
encoding operation performed by the SLM is reduced to the
sole embedding. This operation can be integrated directly into
optical propagation, removing the need for a phase modulator.
For example, we can divide the coherent input field and recom-
bine it after a digital micromirror device (DMD) has performed
the embedding. The intensity extracted from a selected plane
along the optical path gives the output matrix, which can be
enriched with phase and spectral information. Similar schemes
promise a miniaturization of our free-space device and its op-
eration as a fast and stable optical processor.

5. CONCLUSION

Nowadays, artificial intelligence is permeating the field of pho-
tonics [55,56] and viceversa [57]. Optical platforms are ena-
bling computing functionalities with unique features,
ranging from photonic Ising machines for complex optimiza-
tion problems [58–65] to optical devices for cryptography [66].
We have realized a novel photonic neuromorphic computing
device that is able to perform classification and feature extrac-
tion only by exploiting optical propagation in free space. Our
results demonstrate that fabricated optical networks, or com-
plex physical processes and materials, are not mandatory ingre-
dients for performing effective machine learning on a optical
setup. All the essential factors for learning can be included
in optical propagation via encoding and decoding methods.
On this principle, we demonstrated a photonic extreme-learn-
ing machine that, given its unique adaptability and intrinsic
stability, is attractive for future processing of optical data in
real-time and dynamic conditions. More generally, our ap-
proach envisions the exceptional possibility of harnessing
any wave system as an intelligent device that learns from data,
in photonics, and far beyond.

APPENDIX A: NETWORK DETAILS

1. ELM Framework
The basic ELM structure is a single-layer feedforward neural
network in which hidden nodes are not tuned [35]. For
real-valued random internal weights, the scheme matches sin-
gle-layer random neural networks [37,38]. Considering an
N × L input data set X and one output mode, the output func-
tion is

Y � Hβ �
XM
j�1

Hj�X�βj, (A1)

where β is the weight vector determined by training, and
H�X� � H is the N ×M hidden-layer matrix outcome.
H�X� � �g�X1�,…, g�XN ��, where g�x� maps the input
sample x from the L-dimensional input space to the
M -dimensional feature space. Under appropriate conditions,
the machine is able to interpolate any continuous function
(universal interpolator) and acts as a universal classifier [36].
Given the target labels T, training corresponds to solving the
ridge regression problem: argminβ�kHβ − Tk2 � c−1kβk2�,
where c is a parameter controlling the trade-off between the
training error and the regularization. This constrained optimi-
zation can be recast as a dual optimization problem [36].
A solution that is computationally affordable for large data
sets is given by Eq. (1): β � �HTH� cI�−1HTT: In this case,
matrix inversion involves the M ×M matrix HTH, which
makes the method scalable and effective for large-scale applica-
tions. The output function of the classifier is thus

Y � H�HTH� cI�−1HTT: (A2)

In the case of a single-output node performing binary clas-
sification [as for the problem in Fig. 4(c)], the decision function
is f �X� � sign fH�X��HT�X�H�X�� cI�−1HT�X�Tg. It gen-
eralizes for a multiclass classifier with multiple output nodes as
f �X� � arg maxkYk�X�, where Yk�X� denotes the output Y of
the kth node.

2. Encoding Methods
We consider phase encoding of the input data in all the pre-
sented results (phase-only light modulation). The embedding
matrix W is a fixed signal, independent of the specific input
data, which characterizes the phase encoder and modifies the
PELM feature space. In the noise embedding method, W is
chosen as a uniformly distributed random matrix with maxi-
mum amplitude ρ (noise level) made by blocks of size l (noise
correlation length). In the Fourier embedding method, we con-
struct the embedding matrix W � �W 1,…,W n� from n
frequencies, W k �

Pn
ω�1�aω∕n� exp�iωk∕n�, with coeffi-

cients aω of equal amplitude and arbitrary phase. Both the em-
bedding signal and input data are encoded within the phase
interval �0, π�. In experiments, the preselected embedding
matrix is discretized in gray levels and superimposed to each
input data.

APPENDIX B: EXPERIMENTAL SETUP AND
DEVICE TRAINING

A continuous-wave laser beam with wavelength λ � 532 nm
is expanded and polarized, and illuminates a reflective phase-
only SLM (Hamamatsu X13138, 1280 × 1024 pixels, 12.5 μm
pixel pitch, 60 Hz maximum frame rate), which encodes input
data within an embedding phase mask by pure phase modula-
tion. By grouping several SLM pixels, the modulator active
area is divided into L input nodes, with each node having
210 phase levels equally distributed in the 0–2π interval.
Phase-modulated light propagates in free space through a focus-
ing plano-convex lens (f � 150 mm). The optical field in the
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lens focal plane is collected by an imaging objective
(NA � 0.4) and detected by a CCD camera with 8 bit
(256 gray levels) intensity sensitivity. To obtain a nonlinear
saturated function of the transmitted field, the camera exposure
is manually increased to obtain overexposed images. We note
that similar performance is found using the camera in the
unsaturated regime, which corresponds to a square nonlinear
response.M output channels are preselected within the camera
region of interest, where the signal in each channel is obtained
by binning over few camera pixels (10 × 10 for MNIST clas-
sification) to reduce detection noise.

Training is performed by loading one by one the N input
samples on the SLM and keeping fixed the embedding matrix.
At each training step, values from the M output channels are
acquired [Fig. 3(c)] and stored on a conventional computer
controlling the setup. The readout weights are obtained by ap-
plying Eq. (1) on the entire set of measurements. They are
readily used in the testing phase, where each of N t testing sam-
ples is sent through the photonic machine and passively clas-
sified by weighing the detected output. Different tasks can also
be performed on-demand without retraining the device. As ex-
pected, practical effects limit the time for which the device
maintains its ability to perform well on a given task without
retraining. We found that good performance is maintained
for more than 1 h. On longer times, laser fluctuations and local
variations of the SLM response due to thermal effects and
liquid crystal relaxation become relevant.

APPENDIX C: DATA SETS FOR CLASSIFICATION
AND REGRESSION

Recognition of handwritten digits is tested on the MNIST data
set, a standard benchmark for multiclass classification. The data
set, which includes 10 classes, consists of 60,000 training sam-
ples (N ) and N t � 10;000 digits for testing, each with size
L � 28 × 28. Although state-of-the-art convolutional neural
networks reach accuracies exceeding 99.8% on MNIST
(https://github.com/Matuzas77/MNIST-0.17), the task re-
mains the basic test for any novel machine learning device.
In fact, superior algorithms are application-specific and require
massive data processing.

The mushroom (https://archive.ics.uci.edu/ml/datasets/
Mushroom) is a binary class data set with relatively large size
and low dimension. It includes 8124 samples with L � 22 fea-
tures in random order. The goal is to separate edible from poi-
sonous mushrooms. A typical ELM accuracy is 88.9 % for a
split ratio N∕N t ≈ 0.23 [36].

The abalone data set (https://archive.ics.uci.edu/ml/
datasets/Abalone) is one of the mostly used benchmarks for
machine learning and concerns the identification of sea snails
in terms of age and physical parameters. Each training point has
L � 8 attributes, and the entire data set has 8177 samples.
Digital ELMs report testing errors around 0.07 for N∕N t ≈ 2.
Errors are evaluated using the root mean square displacement

RMSD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN t

i �Y i − T i�2∕N t

q
.
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