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Epsilon-near-zero and epsilon near-pole materials enable reflective systems supporting a class of symmetry-
protected and accidental embedded eigenstates (EEs) characterized by a diverging phase resonance. Here we show
that pairs of topologically protected scattering singularities necessarily emerge from EEs when a non-Hermitian
parameter is introduced, lifting the degeneracy between oppositely charged singularities. The underlying topo-
logical charges are characterized by an integer winding number and appear as phase vortices of the complex
reflection coefficient. By creating and annihilating them, we show that these singularities obey charge conserva-
tion, and provide versatile control of amplitude, phase, and polarization in reflection, with potential applications
for polarization control and sensing. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.424247

1. INTRODUCTION

Along with the progress in fabrication technologies observed in
the last few decades, the concepts of metamaterials [1], meta-
surfaces [2], and photonic crystals [3] have brought forward a
previously unattainable level of control of visible, infrared, and
microwave electromagnetic waves. More recently, the pursuit of
wave control has been expanded with tools borrowed from the
field of topology [4], enabling phenomena such as robustness to
imperfections and immunity to backscattering [5,6], as well as
unidirectional transport [7]. Topological photonics has been
rapidly growing in recent years, transferring established con-
cepts from condensed-matter systems to electromagnetics re-
search and metamaterials. Topological systems are usually
quantified with an invariant—an integer-valued quantity, such
as the Chern number [8], which does not change upon con-
tinuous deformations that preserve the topological nature
[9]. Although topological aspects of photonic systems have
mostly been driven through the condensed matter physics per-
spective, recently there has been an expansion of topological
photonics beyond these boundaries, leveraging the distinct fea-
tures of photons [10,11]. Contrary to the fermionic nature of
electrons, photons have a bosonic nature, thus offering different
opportunities for the realization of topological phenomena
[12]. Specifically, topological effects are increasingly being
found in scattering and radiative processes [13], moving be-
yond the limitations of the tight-binding model that commonly

models electronic systems [11]. Bound states in the continuum
(BICs) or embedded eigenstates (EEs), examples of peculiar fea-
tures associated with electromagnetic radiation and scattering,
provide topological features for the optical response rooted in
modes that are non-radiative yet embedded within the radia-
tion continuum [14–21].

Photonic EEs supported by periodic systems have indeed
been shown to possess topological features in the form of a
polarization singularity in the wave vector space. Their robust-
ness has been explicitly attributed to their topological nature
[22,23], rooted in the fact that these singularities comply
with topological charge conservation [24,25]. The topological
nature of EEs has spun-off several research efforts, exploring the
merging of EE charges to produce even more confined resonan-
ces in realistic systems [26] and unidirectional guided modes
within the continuum [27]. The topological properties of
EEs have been especially useful for polarization control, as it
was shown that topologically protected polarization conversion
is possible [28–30], and circularly polarized states can arise
from BICs by breaking spatial symmetries [31–33]. Recently,
the generation of vortex beams through EEs [34] and efficient
topological vortex laser generation [35] were demonstrated,
showing the potential of topological phenomena in radiative
and scattering processes. Further connection between novel
topological phenomena in the form of higher-order corner
states and EEs has also recently been established in Ref. [11],
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indicating the far-reaching topological consequences that non-
radiating states may have on the topological states of electro-
magnetic structures. Besides using the standard Hamiltonian
formalism, the topological features of these systems can be stud-
ied through the scattering matrix formalism, and specifically by
analyzing the complex reflection coefficient, where phase vor-
tices arise [28,36,37]. This approach is very valuable because
the features of the scattering matrix correspond to actual ob-
servables that can be looked for experimentally.

Although the topological aspects of EE-related phenomena
are well understood in periodic systems, there has been little
exploration into the topological features of other photonic sys-
tems that support EEs. Specifically, EEs arising in structures
with singular values of the permittivity, mainly using epsilon-
near-zero (ENZ) materials, have been recently studied [38–41],
showing that they enable versatile optical and thermal emission
properties [42,43]. However, their topological nature has not
been discussed yet, which may further boost their potential in
photonic and thermal applications. Furthermore, scattering
anomalies such as EEs can be well studied in the complex fre-
quency plane [44], which has not been applied so far to the
analysis of topological scattering phenomena.

In this paper, we extend the concept of topological photon-
ics to planar reflective systems that support EEs and, using the
scattering matrix formalism and complex frequency analysis, we
unveil their topological nature and the emergence of topologi-
cally protected scattering singularities. The proposed system
supports symmetry-protected and accidental EEs, which are

shown to be the origin of scattering singularities emerging upon
insertion of loss/gain in the constituent materials. We focus on
the lossy case and show that perfect-absorption singularities are
intrinsically connected to the underlying EEs. Methods of for-
mation, annihilation, and control of these topological charges
are discussed, providing a versatile tool to manipulate ampli-
tude, phase, and polarization of reflected waves. Using these
concepts, we demonstrate several applications of these phenom-
ena for polarization control and sensing.

2. RESULTS

A. Symmetry-Protected Embedded Eigenstates and
Emerging Singularities
We consider a basic planar structure, infinitely extended in two
dimensions as shown in Fig. 1(a) (left panel) and analyze the
leaky mode dispersion of a perfect electric conductor (PEC)-
backed slab with Drude permittivity dispersion ε1 �
ε0�1 − ω2

p∕�ω2 � jγω�� in the proximity of the plasma fre-
quency ωp. Transverse magnetic (TM) bulk modes in a plasma
slab have been well-studied in the literature [45]. However,
only recently it has been realized that such a slab supports a
symmetry-protected EE in the lossless limit (γ � 0) [43,46].

Namely, for zero transverse wavenumber kjj � 0 at fre-
quency ωp, the quality factor of such a mode diverges
[Fig. 1(a), right panel], and the charges in this self-sustained
mode of the slab oscillate along the z-direction in the entire
volume (Ex,y � 0, Ez ≠ 0). Consequently, an incoming wave

Fig. 1. (a) Sketch of a PEC-backed slab with Drude dispersion; bulk mode dispersion for TM-polarized light. At kx � ky � 0 and ωp the system
supports a symmetry-protected EE, as indicated by the Q-factor divergence on the right. (b) Dispersion of scattering matrix singularities in the
imaginary frequency space—zeros (perfectly absorbing states) and poles (eigenmodes). Lossy or gainy Drude model enables the creation of a ring of
perfect absorption/lasing points at the real frequency axis. (c) Vector flow of the complex reflection coefficient rTM in the wavenumber–frequency
plane. The EE splits into two vortices—a saddle point and a source point—which move away from each other as loss increases.
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impinging at normal incidence (E inc
z � 0) cannot excite this

dark mode, according to reciprocity, since the mode is not
coupled to the radiation continuum.

In order to obtain a better picture of the leaky nature of
these modes in this basic geometry, we analyze the problem
in the complex frequency space ω � ωr � jωi, which enables
a detailed and intuitive description of the underlying scattering
phenomena [44]. We consider the exp�−jωt� time convention
and compute the scattering matrix eigenvalues in the complex
frequency plane. The singularities of the scattering matrix ei-
genvalues, i.e., poles and zeros, have a straightforward interpre-
tation—poles correspond to source-free solutions of Maxwell’s
equations and correspond to the system eigenmodes as purely
outgoing waves, while zeros of the scattering matrix eigenvalues
correspond to modes with purely incoming nature [47]. These
singularities are connected via complex conjugation in
Hermitian (lossless) systems and are time-reversed versions
of each other [48].

Since the structure under consideration is backed by a PEC,
it can be described by a one-port network, whose scattering
matrix has only one element: the reflection coefficient,
S � �r�. Thus, computing the reflection singularities is suffi-
cient in this scenario, which can be achieved using a transmis-
sion line model for the structure (Appendix A), from which the
conditions for zero/pole are derived as

tanh�jk1z t� � �Z 0

Z 1

, (1)

where t is the layer thickness, k1z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ε1 − k

2
x − k2y

q
is the

wavenumber along the z axis in the Drude material, and
Z 0 � k0z∕ωε0 and Z 1 � k1z∕ωε0ε1 are the TM wave imped-
ances in air and the Drude material, respectively. The plus sign
refers to the reflection-zero condition, while the minus sign is
the reflection-pole condition. More details on the derivation are
given in Appendix A.

Figure 1(b) shows the dispersion of the poles and zeros (red
and blue) of r in the ωi − kjj parameter space. In the lossless
case, the parabolic dispersions of poles and zeros mirror each
other due to Hermiticity (ωpole

i � −ωzero
i ), and they touch

on the real frequency axis (ωi � 0) for zero transverse wave-
number kjj � 0, forming an EE. By introducing loss (gain)
in the slab, the dispersion surfaces translate down (up) along
the imaginary frequency axis, creating a ring of real–frequency
zeros (poles). The intersection of scattering singularities with
the real–frequency axis represents a topological object—a
charge with a non-zero winding number of a physical parameter
in given parameter space. The topological signature of these
states can be observed in the wavenumber–frequency plane
by plotting the vector flow of r; see Fig. 1(c). In the ωr − kjj
two-dimensional space, taking into account a single incidence
plane, it is easily observable that, upon adding loss, the EE splits
into two vortices, a saddle-type (green) and a source-type (or-
ange). We only use loss in the following discussion to control
the non-Hermiticity of the system, since the loss is unavoidable
while gain cannot be as readily obtained in most practical sce-
narios, but similar considerations may be applied to gain as
well. As we will discuss later, the non-zero winding number
associated with these vortices arises in the phase of the reflection
coefficient in the real–frequency space, as the phase acquires

a �2π increment when encircling them in the frequency–
incident angle space.

These types of vortices have been studied extensively in the
context of singular optics [49,50]. The splitting of EE into a
pair of charges, in this case a pair of perfectly absorbing points,
sheds a new outlook to previous reports on pairs of perfect ab-
sorption occurring in reflective systems [36,51,52]. As we show
later, each one of the analyzed EEs produces exactly two charges
on the kjj axis (incidence angle θ � arcsin jkjj∕k0j), due to the
parabolic dispersion of the scattering singularity around the EE.
These perfectly absorbing states can only be destroyed by
charges of opposite polarity if they are available. In the case
studied in Fig. 1(c), there are no additional charges available,
and thus there is no mechanism to annihilate charges except
going back to an EE in the lossless limit (γ � 0), which rep-
resents a special case of merging charges. This merging is, in
fact, necessary due to energy conservation, as no energy can
be absorbed in a lossless system. Another way to interpret this
result is to notice that perfect absorption (reflection-zero) cor-
responds to the condition of critical coupling, where absorption
and radiation losses are perfectly matched. If absorption losses γ
turn to zero, radiation losses must also turn to zero to yield a
singularity, and the eigenstate is decoupled from the environ-
ment, thus showing the close correlation between critical cou-
pling and EEs in one port systems.

B. Accidental EEs, Creation and Annihilation of
Topological Charges, and Their Phase Signatures
To further enrich the discussion, we move to a more general
scenario and analyze the system shown in Fig. 2(a), consisting
of a dielectric spacer sandwiched between a PEC and a resonant
top layer. We model the top layer with a Lorentz type of per-
mittivity response, as shown in Fig. 2(b):

ε1 � ε0

�
1� ω2

p

ω2
0 − ω

2 − jγω

�
, (2)

where ε0 is the vacuum permittivity, ωp is the plasma fre-
quency, ω0 is the Lorentz resonance frequency, and γ is the
damping or absorption loss. This type of permittivity describes
the electric response of different naturally occurring materials,
including metals, semiconductors, and polar dielectrics such as
SiC or AlN [53]. Moreover, such a response can be induced by
resonant metasurfaces, either with metallic or dielectric realiza-
tions [36,54]. Thus, our theoretical discussion can be applied
to various scenarios, whether using isotropic bulk materials, 2D
materials, or metasurfaces.

The spectral points of particular interest are the Lorentz res-
onance frequency ω0 and zero-crossing ωENZ frequency. In the
lossless case (γ � 0), the permittivity attains singular values at
these frequencies, jεj � ∞ and ε � 0, respectively. We refer
to these regions as epsilon near-pole (ENP) and ENZ [55].
Under these conditions, such a layer imposes a hard boundary
condition [17]; at ω0 it effectively acts like an electric wall or
PEC [for both transverse-electric (TE) and TM polarizations],
while at ωENZ it acts like a magnetic wall or perfect magnetic
conductor (PMC, for TM polarization only). This can be attrib-
uted to the surface impedance of the layer going to 0 (PEC atω0)
or infinity (PMC at ωENZ). With the bottom PEC,
such a theoretical structure can provide perfect light trapping
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at the frequencies of singular permittivity, since the top and bot-
tom layers act like perfect mirrors.

The dielectric spacer supports a continuum of modes above
the light line, which couple to free-space radiation, as this struc-
ture is electromagnetically open from the top. However, if a
mode of the spacer, i.e., a Fabry–Perot mode, overlaps with
one of the top layer material resonances, a leaky mode with
zero radiation decay (EE) is supported [38]. At ω0 � 2πf 0,
the spacer thickness required to support such a mode is

d � nλr
2

� nc

2f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εd − sin

2 θ
p , n � 0, 1, 2,…, (3)

where c is the speed of the light in vacuum, f 0 is the Lorentz
resonance frequency, εd is the dielectric layer permittivity, and
θ is the incidence angle. The tangential component of the elec-
tric field is required to be zero at both top and bottom boun-
daries, as sketched in the inset of Fig. 2(a). On the other hand,
at ωENZ � 2πf ENZ the magnetic field has a null at the boun-
dary with the top layer, and thus the resonant thickness is

d � �2n� 1�λr
4

� �2n� 1�c
4f ENZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εd − sin

2 θ
p , n � 0, 1, 2,…:

(4)

We first focus on the ENZ case. Figure 2(c) shows
the dispersion of the reflection-zeros in ωi − θ plane. We note
here that the reflection-zero condition is identical to the
condition of perfect absorption, perfect impedance matching,
and critical coupling, as all of these describe the same phenome-
non in one-port systems. Like in the previous discussion, the
reflection coefficient was obtained using the transmission
line method (Appendix A). At the plasma frequency, this
structure supports a symmetry-protected EE at 0° and an ac-
cidental EE at a designed angle of 45°. Namely, the dispersion
of the resonant mode is “pinned” to the point of normal-
incidence and ENZ frequency for any dielectric thickness,
and thus this symmetry-protected EE is intrinsic to this con-
figuration and cannot be controlled or moved. On the other
hand, the accidental EE can freely move along the incident an-
gle axis at ωp, and the angle of EE can be chosen according
to Eq. (4).

Although the magnitude of the reflection coefficient is unity
for any frequency and angle in the lossless case, the EEs are
visible in the reflection coefficient phase. In real–frequency
space, they manifest themselves as phase resonances with
diverging linewidth, as visible in Fig. 2(f ). These features
are only available for TM excitation due to the plasmonic
nature of the underlying modes. A similar result with diverging

Fig. 2. (a) Sketch of the planar multilayer structure under oblique illumination. (b) Permittivity dispersion of the top layer. (c), (d) Reflection-zero
dispersion in the ENZ and ENP regions. For the ENZ case, thicknesses were chosen as t∕λENZ � 0.05 and d � λENZ∕4, and for the ENP case
t∕λENZ � 0.007 and d � λ0∕2. Dielectric permittivity is εd � 1. (f )–(h) Phase and amplitude plots of TM reflection in the lossless and lossy cases
for ENZ EEs. (i)–(k) Phase and amplitude of TM reflection in the lossless and lossy cases for ENP EEs. (l)–(n) Phase and amplitude of TE reflection
in the lossless and lossy cases for ENP EEs.
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phase resonances was reported in Ref. [56], although the origin
of EE here is quite different.

The utility of phase analysis becomes apparent when losses
are introduced; see Figs. 2(c) and 2(f )–2(h). Namely, the
dispersion of reflection-zeros shown in Fig. 2(c) shifts down
along the imaginary frequency axis, creating intersections with
the θ-axis and thereby creating topological charges. These
charges appear as phase vortices, whose charge and polarity
are defined by the amount of phase accumulation when encir-
cling them counter-clockwise in the plane:

q � 1

2π

I
dϕ: (5)

As shown in the amplitude plot, pairs of reflection-zeros and
consequently perfect absorption points emerge from EE, where
the charge emerging from the symmetry-protected EE has a
mirror copy in the negative θ-axis and thus is not visible in
the plot.

A similar scenario arises for the ENP case. An accidental EE
appears at a designed angle of 45°. More interestingly, however,
both TM and TE modes have real-eigenfrequencies at the same
point in the dispersion diagram; see Figs. 2(d) and 2(e). This
happens because at ω0 the impedance of the top layer goes to
zero, essentially acting as a perfect mirror regardless of polari-
zation. Additionally, for TM polarization a symmetry-protected
EE appears at the light line (90° incidence) and, analogously to
the ENZ case, it is “pinned” to the same point regardless of the
spacer thickness. We again introduce loss and notice topologi-
cal charges emerging. Symmetry-protected EE produces one
charge with the oppositely charged mirror copy in the negative
θ space (due to symmetry), while the accidental EEs split into
two charges. It should be noted that the ENP layer used as a
mirror here has a finite thickness, and thus hosts an infinite
number of Fabry–Perot (FP) modes in the lossless case as
the permittivity approaches �∞, for ω → ω−

0. However, for
structures and materials considered here, these modes are sup-
pressed, and their effect on the scattering properties can be dis-
regarded as the response is dominated by the spacer mode (see
Appendix C). Another remarkable difference between the ENP
and ENZ cases is that the former can produce perfect absorp-
tion points at normal incidence, whereas ENZ requires a non-
zero incident angle to engage plasmons and absorb waves. More
details on the scattering properties in the ENP case can be
found in Appendix C.

To verify the conservation of topological charge, we intro-
duce a mechanism to annihilate charges. As evident from the
reflection-zero dispersion diagrams in Figs. 2(c)–2(e), non-zero
loss γ creates and pushes closer together charges originating
from neighboring EEs. It is then reasonable to assume that
a further increase of loss can eventually bring these charges to-
gether, causing their mutual annihilation. This would be equiv-
alent to moving the reflection-zero dispersion in the lower
complex half-plane, thus removing the intersection with the
θ-axis; see Figs. 2(c)–2(e). However, instead of changing the
absorption loss in the material, we can induce more radiation
loss by lowering the Q factor of the underlying eigenmode.
This can be done by reducing the top layer thickness, which
essentially reduces its reflectivity (weaker “light-trapping”)

and consequently moves charges closer to each other until they
eventually annihilate.

Figure 3 shows the ENZ and ENP cases for TM-polarized
light with reduced top-layer thickness. Comparing these results
to Figs. 2(g), 2(h) and 2(j), 2(k), the neighboring charges have
been annihilated and consequently the reflection-zeros associ-
ated with them have vanished. A useful rule-of-thumb can be
inferred here: the angles at which EEs arise represent vertical
walls impenetrable to these charges, and charges can move
and annihilate only with the ones originating from neighboring
EEs. For example, the remaining charge in the ENZ case in
Figs. 3(a) and 3(b) cannot be destroyed for any level of material
loss and thickness. Although there is a mirror copy of this
charge in the negative θ half-plane due to the symmetry, these
charges cannot merge since they are separated by “impen-
etrable” EE walls. The only way to annihilate this charge is to
increase the resonator length such that second-order Fabry–
Perot mode EE appears, and its associated charge is brought
into contact with the other charge (Appendix B). In the
ENP case in Figs. 3(c) and 3(d), however, the remaining charge
and its mirror copy in the θ-plane do not have an EE between
them, and they are free to annihilate for a proper amount of
radiation (or absorption) loss.

This result opens the question of material loss. Indeed, some
of the naturally occurring materials have high absorption loss
and, consequently, some features discussed here are not avail-
able, i.e., charges may already be destroyed due to large loss.
However, if we constrain the discussion to low-loss or moder-
ately lossy materials, e.g., polar dielectrics such as SiC, all of the
previously described aspects hold. Furthermore, artificial mate-
rials as well as 2D materials, can provide ENZ or ENP response
in different frequency regimes, thus expanding the validity of
the presented analysis to a wide range of realistic geometries.
For example, a Lorentzian (ENP) response can be induced as
an electric dipole resonance in metasurfaces [36,51] or

Fig. 3. Charge annihilation for the lossy structures (γ � 0.003ωp)
considered in Fig. 2. (a) Phase of reflection for the ENZ case. Two
charges annihilated and one remaining. (b) The reflection-zeros asso-
ciated with these charges have vanished. (c) Same as (a) for the ENP
case. (d) Same as (b) for the ENP case.
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graphene strips [57], where similar features have been observed.
In addition, an ENZ response can also be induced in the optical
regime [58].

It is worth noting that the accidental EE at the designed
angle θ, and its mirror copy at −θ, are part of a ring of EEs
in k-space, as they represent intersection points of a chosen in-
cidence plane and the EE condition in the whole kjj plane. This
condition, which can be derived from Eqs. (3) and (4), is
described by a circle, whose radius is defined by the spacer
thickness:�

kx
k0

�
2

�
�
ky
k0

�
2

� sin2 θ �
�
εd −

�nλ0
2d

�
2, k0 � 2π

λ0

εd −
�nλENZ

4d

�
2, k0 � 2π

λENZ

:

(6)

This is in contrast to EEs in photonic crystals, where acci-
dental EEs arise at isolated k-points. This property implies that
EEs here do not represent singularities in k-space, and thus
have different features than EEs in periodic systems.

The discussion here adds new insights on previous observa-
tions of phase singularities and perfect absorption in metasur-
faces [36], establishing a connection between topologically
protected scattering features and EEs, and showing that prop-
erly designed planar structures can host a variety of topological
scattering phenomena. The interplay of material and radiation
losses provides control of the singularities and enables a versatile
platform for the control of intensity and phase in reflection,
which is important in applications such as thermal engineering,
polarization control, and sensing.

C. Topological Charges near EE for Polarization
Control
So far, our discussion has been constrained to the analysis of
phase and amplitude of the reflection coefficient around EEs.
However, an important aspect intrinsically connected to these
features is polarization. Traditionally, manipulation of the
polarization state of light has been based on wave plates [59].
When light propagates through birefringent crystals, orthogo-
nal linear polarizations (LPs) experience different absorption
coefficients and phase accumulation, enabling the generation
of purely horizontal, vertical, or circular polarization (CP) at
the output.

As we have shown in the previous discussion, the system of
Fig. 2 displays co-located EEs with TE and TM polarization in
the ENP case, and after accounting for loss, reflection-zeros of
both polarizations emerge in the vicinity of each other. This
property has interesting consequences for polarization control,
as the two orthogonal polarization states experience dramati-
cally different absorption coefficients and phase accumulation
in the region containing these charges, allowing for different
linear transformations of the polarization state upon reflection.
To test the potential of this property, we use isotropic SiC to
model the top-layer permittivity [60]. We choose t � 100 nm
for the SiC layer, and the dielectric layer thickness is calculated
according to Eq. (3) at the transverse optical phonon frequency
ωTO � 2π ⋅ 23.89 THz for the angle of 50°. Namely, the ENZ
and ENP regions are available at the longitudinal and transverse
optical phonon frequencies of SiC. In the present model, we
use a PEC as the bottom boundary; however, it can be readily

replaced with a realistic gold reflector in this frequency range, as
there are no substantial differences between the two in this
setup, as discussed in Appendix D.

We plot the ellipsometric parameter arctan�rTM∕rTE� to
visualize both charges, in Fig. 4(a), where the maximum value
in the density plot represents the TE-zero, while the minimum
represents the TM-zero. It is clear that these two points in the
parameter space can work as polarization filters or polarizers; for
a mixed polarization input, only TM- or TE-polarized light ex-
its from the structure. This is in contrast to the ENZ case,
where only the TM-zero is available. We note that this was
the basis for the polarization switching scheme studied in
Ref. [61]. Beyond admitting zeros of both polarizations, the
phase difference between orthogonal polarizations induced
by the structure also dramatically changes around the charges,
as they represent phase vortices. This property opens up pos-
sibilities for generation of various polarization states in the out-
put for a mixed input; for example, converting LP to CP light.
To analyze these possibilities, we apply standard Jones calculus
and express the input and output Jones vectors as

Ji �
�

a
bejδi

	
, J0 �

�
rTEa

rTMbejδi

	
�

�
A

Bejδ0

	
, (7)

δr � δ0 − δi, (8)

where a, b, and δi are the input amplitudes and phase difference
of orthogonal polarizations; A, B, and δo are the output ampli-
tudes and phase difference of orthogonal polarizations; and δr
represents the phase retardation between orthogonal polariza-
tions that the structure introduces. The reflection matrix used
here has zero off-diagonal elements since there is no polariza-
tion cross-coupling mechanism.

To illustrate the opportunities for polarization control, we
plot the total reflectance and the contour lines with specific δr

Fig. 4. Polarization manipulation. (a) Ellipsometric parameter
ψ � arctan�rTM∕rTE� normalized to π. (b) Total reflectance as an ef-
ficiency indicator. (c) Polarization ellipses in the output for CP input.
Red and black colors indicate handedness (red for RCP, black for
LCP). (d) Polarization ellipses in the output for 45° LP input.
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values. In this way, we can find conversion points from LP to
CP and vice versa; see Fig. 4(b). Namely for a � b and jrTEj �
jrTMj the output amplitudes are equal, A � B. Thus, by find-
ing the intersection of jrTEj � jrTMj and δr � π∕2, we have an
LP to CP conversion point and vice versa. This is represented
by the blue dot in Fig. 4(b). The orange dot represents the
point that preserves polarization, as jrTEj � jrTMj and δr � 0,
and the green and red circles represent phase vortices. Thus, the
proposed system has polarization conservation, filtering, and
LP↔CP conversion capabilities, all in the EE proximity.

In order to better visualize this effect, we plot the output
polarization ellipses for both CP and 45° LP inputs; see
Figs. 4(c) and 4(d). Singular phase points produce purely ver-
tical or horizontal polarization states in the output. This can be
done efficiently since most of the desired polarization is re-
flected, while the other is fully absorbed. However, extracting
horizontal or vertical polarization from a 45° LP or CP input is
limited to 50% in efficiency, as no conversion from one to the
other happens, jrTE−TMj � jrTM−TEj � 0. CP to LP or LP to
CP conversion is also possible (blue dot), preserving around
80% of incident power. Due to the vicinity of the different
polarization features, the output polarization state is sensitive
to small changes in the system, and specifically to the permit-
tivity (loss) of the SiC layer (Appendix D). This could lead to a
versatile polarization switching platform based on active control
of material permittivity; for example, a moderate change in per-
mittivity of InAs in the Reststrahlen region was recently dem-
onstrated using laser-induced non-linear processes [62].
Polarization control in the long-wave infrared range is especially
important, as birefringent materials are scarce in this range of
the electromagnetic spectrum [63], and the presented topologi-
cal features using SiC and other IR materials may help circum-
vent this challenge. More details about the dependence of
output polarization state on material losses, our general model,
as well as the numerical evaluation of a realistic structure can be
found in Appendix D.

D. Singular Phase and Near-Annihilation Point for
Sensing Applications
Phase vortices are characterized by an undefined phase point in
their center, around which the phase changes dramatically. This
feature, most commonly observable around reflection-zeros,
has been used as a basis for interferometric phase sensing

schemes [64–69]. Namely, even small changes in the environ-
ment can result in giant phase changes, thus creating one of the
most sensitive schemes. Various systems exhibit these types of
singular points, including metasurfaces [64], 1D photonic crys-
tals [65], hyperbolic [66] and 2D materials [67]. Instead of us-
ing a traditional interferometric setup, most of these schemes
use ellipsometric measurements, which measure phase and
amplitude differences between orthogonal linear polarization
components.

The caveat of this sensing method is the following: by ap-
proaching the singular point of the vortex, the phase changes
more dramatically, thus increasing the sensitivity of the system.
However, the amplitude of the reflection coefficient drops at
the same time. The sensitivity diverges as the singular point
is reached, but there is no reflection to be measured at the de-
tector. This inverse relationship between sensitivity and jrj
plays an essential role in such devices.

There are indeed qualitative differences between different
realizations. Engineering structures with lower possible values
of jrj lead to higher sensitivity. Furthermore, higher Q factors
of the underlying mode can improve the sensitivity, as these
modes produce stronger fields and interactions with the envi-
ronment. A critical issue to be reconciled in such devices is the
need for a highly precise angle of incidence to engage abrupt
phase jumps, e.g., extremely high sensitivity was reported in
Ref. [67]. However, the angle for such performance requires
precision on the order of 10−4 degrees, and any deviation from
the exact angle reduces the sensitivity. Thus, the sensitivity of
such devices is hard to predict.

To address these issues, we exploit the unusual physics
around the EE and the related topological charges discussed
in this paper. First, we show that using EEs in SiC provides
high-Q factors and enables remarkably high sensitivities around
the reflection-zeros associated with EEs. Second, we introduce
the concept of near-annihilation point sensing and show that
we can alleviate the requirement for precise angle of incidence
by manipulating charges, thus creating an extended angular
range with stable sensitivity.

To achieve these goals, we envision a gold-backed air gap
(spacer) covered by a SiC layer to be used as a trace gas sensor,
operating at long-wave infrared wavelengths [Fig. 5(a)]. Gold is
highly reflective at long-wave IR wavelengths; thus, it can work

Fig. 5. (a) Sensing scheme based on phase singularities. (b) Phase of the reflection coefficient as the frequency is changed and passes near the
vortex. Inset: jrTMj near the EE at 50°; phase sensitivity to small changes of the gap permittivity. (c) Sensitivity for three different configurations;
improvement due to enhanced Q factor with antireflection coating and DBR.
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as an efficient reflective bottom layer. For the chosen gap size
d � 32 μm, several higher-order FP modes are engaged.
However, the spectrum is not overcrowded, due to the long
operating wavelength of 10.3 μm. Furthermore, having a
gap of this size is advantageous because a nanofluidic channel
can also be integrated to function as a spacer, therefore expand-
ing the possible applications of the proposed structure.

As shown in the previous discussion, the SiC-capped reso-
nator can support an EE around 10.3 μm (ENZ region) and
the accompanying reflection-zeros. To demonstrate the phase
jump, we plot the reflection coefficient near EE and its phase as
it passes near the vortex at 52.3° [Fig. 5(b)]. Based on this phase
jump, we can detect tiny changes in the sensing layer, as indi-
cated in the bottom left inset in Fig. 5(b). At a constant fre-
quency and angle, the phase of reflected waves changes
dramatically for permittivity changes of the order of 10−4, pro-
ducing very high sensitivity, of the order of 105 �°�∕RIU.
However, as mentioned before, the sensitivity is highly depen-
dent on the amplitude of the reflection coefficient, i.e., the
proximity of the measurement to the singular point. To better
grasp this correlation, we plot the sensitivity calculated at differ-
ent values of jrj [red curve in Fig. 5(c)]. As expected, we see an
increase in sensitivity as jrj approaches zero. However, instead
of relying on extremely small values of jrj to get higher sensi-
tivity, which could make the signal at the detector indistin-
guishable from noise, we can improve the sensitivity by
increasing the Q factor of the mode instead. This can be done
by placing a high-index antireflection coating or a distributed
Bragg reflector (DBR) between the spacer and SiC, improving
the reflectivity of the top layer. To this end, we can use low-loss
long-wave IR materials, for example, Ge and BaF2, as high- and

low-index materials, respectively. As shown in Fig. 5(c), this
results in an increase by order of magnitude at constant jrj,
making the scheme comparable to or better than the most sen-
sitive available schemes [64–68].

However, the displayed increase in sensitivity requires
resolving the incidence angle in the order of 0.01°. For the
DBR structure displayed in Fig. 5(c), the sensitivity drops
by 1 order of magnitude with the angle changing by just
0.02°; see Fig. 6(a). Although the presented system has superior
sensitivity, it suffers from the same drawback as in Ref. [67], as
sensitivity is exceptionally dependent on the chosen incidence
angle. This may result in unreliable sensitivity values, as most
instruments cannot resolve at that level of precision.

To alleviate this stringent requirement, we exploit the phe-
nomenon of merging charges introduced above. Interestingly,
we show that by bringing two neighboring charges in close
proximity, the reflection coefficient between them displays al-
most constant magnitude while keeping the strong phase jump;
see Figs. 6(b)–6(d). Furthermore, by fine tuning the SiC thick-
ness, we show that jrj can be steadily controlled and kept
constant over an extended angular range, thus eliminating
the stringent requirement on incidence angle and providing sta-
ble sensitivity. However, this comes at the cost of lower absolute
sensitivity, because bringing two charges together requires
lowering the overall Q factor. A trade-off emerges between
the sensitivity of the system and robustness to incidence angle
variations. For example, the structure in Fig. 6(a) has 3 times
larger absolute sensitivity than the structure in Fig. 6(d) (cal-
culated for the same value of jrj ). However, in most practical
scenarios, it would be much easier to access the required angles
of the latter structure and get the predicted sensitivity.

Fig. 6. Sensitivity of the reflection coefficient and sensitivity for different incidence angles. (a) The reflection coefficient of the DBR structure in
Fig. 5(c) is extremely sensitive to small changes in incidence angle, resulting in 1 order of magnitude change in sensitivity for extremely small angle
changes. (b)–(d) Near annihilation point sensing with stabilized sensitivity. The amplitude of the reflection coefficient is more robust to incidence
angle variations, with the sensitivity not changing substantially for 1° changes in angle for (b) and (c), and 0.2° for (d).
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Nevertheless, these results demonstrate that the topological fea-
tures of EEs offer a versatile tool for sensing and can address
different challenges of advanced sensing systems.

3. DISCUSSION

The theoretical results discussed in this paper extend the notion
of topological scattering effects to planar structures and show
that topological quantities can find their use in various scenar-
ios of interest. Although the presented theory builds upon the
topological features of EE-related phenomena, it is worth
stressing the differences between the homogeneous planar sys-
tems analyzed here and EEs emerging due to the periodicity in
photonic crystals (PCs). EEs in PCs come as isolated points in
k-space, whereas in the homogeneous planar systems studied
here, EEs generally emerge in rings in k-space and isolated
points in real space. Thus, a topological charge cannot be de-
fined by integrating in k-space like in PCs, but in real space
(either in ω − d or ω − θ space). Somewhat analogous to break-
ing spatial symmetries in PCs, which splits the EE into two
half-integer charges [30], dissipation in our system lifts the
degeneracy of two singularities of opposite integer charge, de-
stroying the EE. Since all real systems have losses, this degen-
eracy is always lifted, whereas EEs in PCs remain topologically
protected as long as spatial symmetries are not broken.
Although PCs have more degrees of freedom to control the
topological properties of EE scattering, we have shown that pla-
nar structures offer a versatile tool for intensity, phase, and
polarization control based on the topological nature of the re-
flection coefficient. Moreover, our proposed structures do not
require complicated lithography fabrication process, as in the
case of periodic structures.

The scattering matrix approach used here has also been uti-
lized in a different area of topological photonics—Weyl physics
[70]—where topologically non-trivial states have been shown
to have a non-zero winding number of the phase of scattering
matrix eigenvalues [71]. This approach is especially valuable
because the scattering matrix features can be observed experi-
mentally, differently from the standard Hamiltonian approach.
Furthermore, recent studies show that accounting for dissipa-
tion turns Weyl points into rings [72], somewhat analogous to
what happens to EEs in our structures. A comprehensive study
addressing Weyl physics in structures supporting both sym-
metry-protected and accidental EEs, and their effects on scat-
tering/reflection, is yet to be done. As discussed in the previous
paragraph, breaking spatial symmetries in PCs leads to the split-
ting of EEs into half-integer, CP states. Similarly, breaking
time-reversal symmetry by applying a magnetic field in plasma
was shown to split Dirac points into Weyl points associated
with CP and helical states [73]. Thus, applying a symmetry-
breaking mechanism to our system may provide rich topologi-
cal phenomena and establish a deeper connection between
different branches of topological photonics.

To conclude, we have introduced a topological perspective
on scattering singularities in planar systems supporting EEs,
connecting several research areas. We have unveiled that singu-
larities of the scattering matrix necessarily emerge from EEs and
carry topological charges observable as phase vortices. Charge
conservation was demonstrated by proposing a method of

charge annihilation, where tuning the underlying radiation
losses provides control over the features and motion of charges.
It was shown that perfect absorption and phase vortices asso-
ciated with these charges enable extreme control of the inten-
sity, phase, and polarization of the reflected waves. Based on
these concepts, we have proposed applications for versatile
polarization control and switching, as well as for phase sensing
schemes that may be implemented using silicon carbide.

APPENDIX A: REFLECTION COEFFICIENT

Throughout the paper, the reflection coefficient has been cal-
culated using a transmission line model with a short-circuit at
the end, making it equivalent to a one-port circuit backed with
a PEC. For a single slab of ENZ, the simple model in Fig. 7(a)
provides a condition for pole/zero dispersion:

Z in � Z 1 tanh�jk1z t�, (A1)

r � Z in − Z 0

Z in � Z 0

, (A2)

tanh�jk1z t� � �Z 0

Z 1

: (A3)

For the spacer structure, following the same method, the
reflection-zero condition reads

tanh�jk2zd � �
Z 1

Z 2

�
Z 1 tanh�jk1z t� − Z 0

Z 0 tanh�jk1z t� − Z 1

	
: (A4)

For the realistic structures in the paper, the ABCD matrix
method was used to obtain the reflection/transmission/absorp-
tion coefficients [74].

APPENDIX B: CHARGE ANNIHILATION

As demonstrated in the main text, charge conservation is con-
firmed through charge annihilation. We show here in more de-
tail how charges behave and what role embedded eigenstates
have. As charges emerge in pairs around the angle at which em-
bedded eigenstate occurs, it is evident that these cannot anni-
hilate each other (except for precise EE with zero losses).
Figure 8 shows how neighboring charges for the ENZ case an-
nihilate in a system with several EEs. Starting from a system
with d � λ0 and t � 250 nm, we reduce the top layer thick-
ness t and lower the Q factor of the modes. This system sup-
ports three orders of the Fabry–Perot resonances and
consequently supports three non-symmetry-protected EEs.

Charges associated with symmetry-protected EE and the
first accidental one at a small angle (EE1) are of lowerQ factors,
and thus annihilate first. As thickness is further reduced,

Fig. 7. Transmission line model for (a) single slab and (b) spacer
structure.
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charges between EE1 and EE2, and finally, the pair between
EE2 and EE3 annihilate. Thus, the resonant angle of EE be-
haves as an impenetrable wall for these charges. The last un-
paired charge of EE3 remains in the spectrum and cannot
be annihilated unless a fourth-order EE is made available.

APPENDIX C: ENP CASE SCATTERING
FEATURES

In terms of scattering/absorption properties, ENZ can offer
various opportunities; however, it cannot absorb normally in-
cident waves due to the TM plasmonic nature of the underlying
modes. On the other hand, ENP-based structures analyzed in
Fig. 2 of the main text do not have that drawback and can ab-
sorb waves at normal incidence for different resonator thick-
nesses (Fig. 9).

Another important aspect of ENP-based structures is that, at
ω0, the permittivity changes from one extreme to another, dras-
tically changing the nature of the top layer in the spacer struc-
tures considered throughout the main text. Namely, in the
lossless case, by approaching the Lorentz resonance from the
right ω → ω�

0 , the permittivity of the top layer goes to −∞,
providing metallic, and ultimately PEC character for the layer
and in this way enabling perfect light trapping of the Fabry–
Perot mode existing in the spacer. However, by approaching the
resonant frequency from the left side ω → ω−

0, permittivity of
the top layer goes to �∞, allowing for an infinite number of
propagating solutions in the top layer, which complicates the
picture in terms of scattering [Fig. 10(a)]. By reducing the
thickness of the top layer, these modes are confined very close

to the resonant frequency ω0, and thus are not visible in the
graphs in Figs. 10(d), 2(i), and 2(l) in the main text.
However, as shown in Figs. 10(b), 10(c), 10(e), and 10(f ), ap-
plying losses considered in the main text leads to strong sup-
pression of the modes propagating in the top layer, both for
thicker and thinner top layers. The emergence of three charges
remains apparent in both cases, and there is little difference in
terms of singularities associated with the spacer mode.
Nevertheless, certain material permittivities and thicknesses
might yield a more complicated scattering picture around
the resonance frequency and require a more careful analysis
of the topological scattering features.

Fig. 8. Annihilation of charges in a system with multiple embedded eigenstates. Reflection coefficient amplitude (left) and phase (right).

Fig. 9. Annihilation of charges in a system with multiple embedded
eigenstates.
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APPENDIX D: POLARIZATION DEFINITIONS,
DEPENDENCE OF THE OUTPUT POLARIZATION
STATE ON MATERIAL LOSS, AND DETAILS ON
THE REALISTIC MODEL

To assess the polarization properties of the structure, we define
the transverse electric field in the plane normal to the incident
k-vector, as sketched in Fig. 11(a):

Ei � EV � EH �
�

a
bejδi

	
e−j�k0x x�k0z z�, (D1)

where the incident electric field consists of vertically and hori-
zontally polarized components with amplitudes a and b as well
as the phase difference δi. The compact way to describe the
polarization is the Jones vector:

Ji �
�

a
bejδi

	
: (D2)

The reflected field now has

Er �
�

rTE rTE−TM
rTM−TE rTM

	�
a

bejδi

	
e−j�k0x x−k0z z�, (D3)

where the reflection matrix describes the connection between
the incident and the reflected fields. As there is no cross-
coupling mechanism between orthogonal polarizations, the
terms rTE−TM and rTM−TE are equal to zero. The output
Jones vector can then compactly be written as

Jo �
�

rTEa
rTMbejδi

	
�

� jrTEja
jrTMjejδr bejδi

	
�

�
A

Bejδo

	
, (D4)

with A, B, and δo being the output amplitudes and phase differ-
ence of orthogonal polarizations, and δr being the phase retar-
dation between horizontal and vertical polarizations that the
structure introduces.

As discussed in the main text, different topologically enabled
polarization features emerge in the vicinity of the embedded
eigenstate. Thus, there is a possibility of external control
and switching of polarization by changing the permittivity
(loss) of the top layer, where small changes would significantly
change the output polarization. To demonstrate the sensitivity
of the output polarization to material losses and its potential for
polarization switching implementation, we plot the output
polarization at two spectral points for different values of the
SiC loss parameter γ; see Fig. 11. We excite the system at
the singular points of vertical (TE) and horizontal (TM) polar-
izations at starting loss value γ1 � 0.04 THz. By increasing
loss to γ2 � 0.08 THz and γ3 � 0.012 THz, output polariza-
tion changes notably for the same frequency and angle of ex-
citation, indicating switching capabilities.

Although the structure we use for polarization control has an
ideal PEC as the backing material, nearly identical results can
be obtained using a realistic gold reflector. Namely, gold is
highly reflective at the intended frequency of operation and
can be easily implemented as a reflecting thin film on a sub-
strate. To demonstrate this feature, we plot the reflection

Fig. 10. ENP scattering features. (a) For t � 200 nm, propagating modes in the top layer are visible in the lossless case, along with the spacer
mode. (b) Phase vortices appear in the lossy case; top layer modes are strongly suppressed and not visible. (c) Perfect absorption points appear in the
lossy case. (d)–(f ) Same as (a)–(c) for t � 40 nm.
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coefficient for three different cases [Fig. 12(a)]. As the PEC is
replaced with a gold thin film, the charge (TE zero in this ex-
ample) is fully preserved, and only slightly moves in parameter
space. The minimum value of the reflection coefficient
amplitude also increases for thinner gold films, although mar-
ginally (shown in log-scale to accentuate the difference). To
further verify the validity of our model, we compare the
numerical and theoretical reflectance dispersion for a realistic
structure in Fig. 12(b), showing excellent agreement.
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