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Quantum manipulation of individual phonons could offer new resources for studying fundamental physics and
creating an innovative platform in quantum information science. Here, we propose to generate quantum states of
strongly correlated phonon bundles associated with the motion of a trapped atom. Our scheme operates in the
atom–phonon resonance regime where the energy spectrum exhibits strong anharmonicity such that energy
eigenstates with different phonon numbers can be well-resolved in the parameter space. Compared to earlier
schemes operating in the far dispersive regime, the bundle states generated here contain a large steady-state
phonon number. Therefore, the proposed system can be used as a high-quality multiphonon source. Our results
open up the possibility of using long-lived motional phonons as quantum resources, which could provide a broad
physics community for applications in quantum metrology. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.427062

1. INTRODUCTION

Engineering special nonclassical quantum states are of para-
mount importance in quantum information science, metrology,
and exploring fundamental physics [1–5]. In particular,
n-photon states play an essential role in a wide range of quan-
tum technologies, including high-NOON states [6], quantum
communication [7], lithography [8], spectroscopy [9,10], and
biological sensing [11,12]. Methods for generating n-photon
states were proposed theoretically in cavity quantum electrody-
namics (QED) [13–15], Rydberg atomic ensembles [16,17],
and atom-coupled photonic waveguides [18–20]. Among
them, n-photon bundle states generated through either Mollow
physics [13,14] or deterministic parametric downconversion
[15] are of particular interest since they possess special statistic
properties. However, due to the intrinsic weak scattering inter-
actions between photons, the experimental realization of
n-photon states still remains a challenge.

On the other hand, the ability to manipulate individual pho-
non allows the experimental creation of n-phonon states in both
circuit quantum acoustodynamics [21,22] and macroscopic
mechanical resonators [23–25]. These low-energy and long-lived
novel phonon states could facilitate the study of the decoherence
mechanisms [26] and the building of the quantummemories and
transducers [27–29]. More interestingly, it was also proposed that
n-phonon bundle states can be generated in acoustic cavity QED

by employing the Stokes processes [30] and hybrid system of ni-
trogen-vacancy centers and nanomechanical resonators via side-
band engineering [31].

We note that existing schemes [13–15,30] for creating n-
quanta bundle states operate in the far dispersive regime where
the frequency of the photonic/phononic mode is far detuned
from the transition frequency of the two-level system. Hence
the resulting steady-state photon/phonon numbers are
typically very small. Moreover, in order to resolve states with
distinct phonon numbers, many schemes [21–25,30] also re-
quire that the two-level system is strongly coupled to the pho-
nonic modes, which demands high-finesse acoustic cavities or
mechanical resonators with long coherence time and poses a
challenge to the current experiments.

In this work, we propose to generate n-phonon bundle states
by utilizing the motional degrees of freedom of a trapped
alkaline-earth atom. A position-dependent clock laser is intro-
duced to couple the atom’s center-of-mass motion to its elec-
tronic ground and the long-lived excited states, which leads to a
generalized quantum Rabi model (QRM) with unprecedented
tunability. We then investigate the n-phonon bundle states pre-
pared in the resonant regime where the frequency of the mo-
tional mode is in resonance with the two-level atom. We show
that due to the strong anharmonicity of the energy spectrum,
distinct motional n-phonon bundle states can be well resolved
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in the atom–phonon resonance regime. Compared to the
existing schemes for generating n-quanta bundle states, the sys-
tem proposed here has the following advantages. (i) Since our
scheme operates in the resonant regime, the typical average
steady-state phonon number is much larger than that of the
schemes operating in the far dispersive regime. (ii) A strong
coupling regime can be readily achieved here as both the mo-
tional state and the atomic internal states possess long lifetimes.
(iii) In our configuration, the effective pump field is provided
by the high tunable clock detuning, and our system also facil-
itates the study of Mollow physics without suffering heating
and decoherence. Therefore, the proposed system can be used
as a high-quality source for multiphonon states.

2. MODEL AND HAMILTONIAN

Without loss of generality, we consider a single 87Sr atom
trapped in a one-dimensional (1D) harmonic potential along
the x direction. Figure 1(a) illustrates the level structure and
laser configuration of the system. An ultranarrow clock laser
with wavelength λC � 698 nm drives the single-photon tran-
sition between the ground state 1S0 (jgi) and the long-lived
excited state 3P0 (jei) with the atomic clock transition fre-
quency ωa. Since the lifetime of the excited state is roughly
160 s [32], the spontaneous emission and decoherence of this
state can be safely ignored. We assume that the Rabi frequency
of the clock laser takes a position-dependent form, Ωl �x� �
�Ω0x − iΩ∕2�e−iκx , where Ω0 and Ω are coupling strengths
and κ � kC cos ϕ is the effective laser wave vector that is tun-
able by varying the tilting angle ϕ of the clock laser. As shall be
shown, the position-dependent Rabi coupling of Ωl �x� is cru-
cial to the success of our scheme and it can be experimentally
generated by tailoring the clock laser by using a spatial light
modulator [33–37]. We further assume that the 1D harmonic

potential is state independent which can be generated by a trap
laser at the “magic” wavelength λL � 813 nm. After perform-
ing a gauge transformation jgi → eiκx∕2jgi and jei → e−iκx∕2jei
[38], the resulting Hamiltonian of the system is

H∕ℏ � ωâ†â�Ω
2
σy � δσz �

gx
2
�â† � â�σx

� igk
2
�â† − â�σz , (1)

where ω is the frequency of the harmonic trap which, unlike the
detuning of an optical cavity mode, is always positive; â is the
annihilation operator of the bosonic phonon for the external mo-
tional mode; σx,y,z are the Pauli matrices; δ is the single-photon
detuning from the bare clock transition; and gx � 2Ω0x0 and
gk � κωx0 with x0 being the zero-point fluctuation amplitude
of the harmonic oscillator. Here, gx and gk can be understood as
the strengths of the spin–orbit coupling (SOC) in the real
(∼xσx) and momentum (∼pxσz) spaces [39], respectively.

To transfer Eq. (1) into a more familiar form, we introduce a
spin rotation, eiπσx∕4, which rotates spin operators according to
σx → σx , σy → σz , and σz → −σy. As a result, Hamiltonian of
Eq. (1) becomes a generalized QRM,

H 0∕ℏ � ωâ†â� Ω
2
σz − δσy �

gx
2
�â† � â�σx

−
igk
2
�â† − â�σy, (2)

which is an essential building block in quantum information
and quantum optics [40–43]. Apparently, H 0 reduces to the
standard QRM by setting δ � 0 and letting either gx or gk
be zero. Furthermore, Hamiltonian of Eq. (2) has an extremely
high tunability. For instance, it turns into the Jaynes–
Cummings model (JCM) when gk � gx and the anti-JCM
when gk � −gx . Comparing with the experiment using the
standard sideband transitions [43], the emerged Hamiltonian

Fig. 1. (a) Schematic of the system. A 87Sr atom is trapped in a one-dimensional potential formed by two counter-propagating lasers of the
“magic” wavelength. The 1S0 − 3P0 transition of the atom is coupled by the clock laser at wavelength λC . The clock laser lies on the xy plane
making an angle ϕ to the trap lasers. (b) Anharmonic energy spectrum of the Hamiltonian H 0 with gk � gx and Ω � ω. Here jn,�i denote
the nth pair of dressed states with eigenenergies En,� � ℏ�nω� gx

ffiffiffi
n

p �.
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of the JCM or the anti-JCM is exact without rotating-wave
approximation, and correspondingly the high-frequency term
is completely eliminated in Eq. (2). In particular, the δσy term
in Eq. (2) which represents an effective classical pumping field
of the atom is physically realized through the clock shift δ.
Consequently, the strong pumping regime (δ ≫ ω) can be
readily achieved without suffering severe laser-induced heating,
in contrast to the Raman-induced SOC in atomic gases [44].

3. GENERALIZED QUANTUM STATISTICS

For a complete description of the system, we should also take
into account the dissipation of the phonons. As a result, the
dynamics of the atom–phonon system is now described by
the master equation
dρ

dt
� −i�H 0, ρ� � κe

2
D�σ−�ρ�

κd
2
D�â�ρ� γdD�â†â�ρ, (3)

where ρ is the density matrix of the atom–phonon system; κe is
the atomic spontaneous emission rate of the clock state with
σ− � �σx − iσy�∕2; κd and γd are, respectively, the decay rate
and the dephasing factor of the phonons; and D�ô�ρ �
2ôρô† − ô†ôρ − ρô†ô denotes the Lindblad type of dissipation.
For a given set of parameters, Eq. (3) can be numerically evolved
in the basis fjn, σig until a steady-state density matrix is obtained,
where jni is the Fock state of the phonon and jσi � jei or jgi
represents the atomic state.We should emphasize that the realized
effective Hamiltonian of Eq. (2) of the generalized QRM is origi-
nating from the rotating-wave approximation since
jgx,k∕ωaj < 10−10. Thus, the standard Lindblad Eq. (3) is valid
even at the coupling strength gx,k comparable to the effective
atom (phonon) detuning Ω (ω) [45]. Therefore, the dissipative
terms of the two-level atom and phonon emerged by external
environment in our mode can be treated as independent with
safely neglecting atom–phonon coupling [46,47].

To characterize the statistic properties of the phonons, we
introduce the generalized kth-order correlation function,

g �k�n �τ1,…, τn� �

DQk
i�1 �â†�τi��n

Qk
i�1 �â�τi��n

E
Qk

i�1h�â†�τi��n�â�τi��ni
, (4)

first introduced in Ref. [13], where τ1 ≤ … ≤ τn. As can be seen,
this definition generalizes the standard kth-order correlation func-
tion [48] for isolated phonons to bundles of n phonons. We note
that the equal time correlation function g �k�n �0� for τ1 � … � τk
is straightforwardly calculated using the steady-state density matrix
solution of Eq. (3); while the multitime correlation function
g �k�n �τ1,…, τk� with τ1 < … < τk can be obtained by utilizing
the quantum regression theorem [49]. Now, an n-phonon bundle
state (n > 1) should satisfy two conditions: g �2�1 �0� > g �2�1 �τ� to
ensure bunching with respect to single phonon and
g �2�n �0� < g �2�n �τ� to secure antibunching between separated bun-
dles of phonons [13,15]. We point out that the correlation func-
tions of g�2�1 and g �2�n can be directly extracted from the steady-
state phonon-number distribution p�q� � tr�jqihqjρ� which, for
the motional phonons, can be measured via spin state-resolved
projective measurement [43,50]. While for acoustic phonons,
although g �2�1 can be measured via a Hanbury Brown and
Twiss interferometer [51], experimental measuring of the multi-
phonon g�2�n is still a challenging task.

Finally, we specify the parameters used in numerical simu-
lations. For the 87Sr atom, the single-photon recoil energy
EC∕h � 4.68 kHz sets up the typical energy scale for the sys-
tem, where h is the Planck constant. In current experiments,
the phonon frequency ω is tunable and can be up to about
�2π�100 kHz [32]. As a result, we realize a tunable gk∕h bound
between −21.6 kHz and 21.6 kHz. For convenience, we fix the
value of the SOC strength in real space at gx∕h � 9 kHz such
that it is of the same order as gk∕h, which yields the atomic
decay for the clock state κe∕gx � 1.1 × 10−8 [32]. We further
fix the values of the decay rate and the dephasing factor at
κd∕gx � 0.005 and γd∕gx � 0.0005, respectively. Now, the
free parameters of the system reduce to phonon frequency
ω, Rabi frequency Ω, laser detuning δ, and SOC strength
gk. In below, we study the statistic properties of the phonon
state by varying these parameters.

4. MOTIONAL n-PHONON BUNDLE STATES

Before presenting our results on phonon statistics, it is instructive
to explore the energy spectrum of the system. In Fig. 1(b), we
demonstrate the familiar level structure of a JCM (gk � gx) with
Ω � ω and δ � 0. The eigenenergies of the nth pair of dressed
states jn,�i are En,� � ℏ�nω� gx

ffiffiffi
n

p �, where n � 1, 2,…
and “�” (“−”) denotes the upper (lower) branch. Particularly,
n-phonon resonance occurs when the lower dressed state jn, −i
is tuned on resonance with the vacuum state of the system,
ω � ωn, where ωn � gx∕

ffiffiffi
n

p
is the n-phonon resonance fre-

quency. The energy spectrum for themore general case is presented
in Appendix B, where ωn should also depend on other parameters.

Let us first consider the single phonon states by fixing the
phonon frequency at ω � gx . Figures 2(a) and 2(b) display,
respectively, the equal time second-order correlation function
g �2�1 �0� and steady-state phonon number ns � tr�â†âρ� in
the Ωgk parameter plane with δ∕gx � 0.005. As can be seen,
when gk and Ω are changed, the values of g �2�1 �0� and ns
vary over a wide range. Particularly, around �Ω, gk� �
��1, �1�gx , the system reaches the strong sub-Poissonian sta-
tistics region with g �2�1 �0� ∼ 10−4. In these regions, a consider-
ably large number of phonons (ns > 0.2) are observed as
well. In Fig. 2(c), we further plot the interval dependence of
the second-order correlation function g �2�1 �τ� at �Ω, gk� �
��1, �1�gx , which shows phonon antibunching since
g �2�1 �0� < g �2�1 �τ�. The evidence clearly shows that strong pho-
non blockade (SPB) is achieved in these regions.

The SPB around �Ω, gk� � �1,1�gx can be understood by
noting that the energy spectrum of the resulting JCM at
gk � gx is highly anharmonic in the strong coupling regime
gx∕κ ≫ 1 [Fig. 1(b)]. Therefore, the condition for one phonon
excitation at single-phonon resonance (Ω � gx) will block the
excitation of a second phonon. At first sight, the SPB around
�Ω, gk� � �−1, −1�gx may seem strange, as the anti-JCM real-
ized at gk � −gx breaks the conservation of the number of the
total excitations due to the counter-rotating terms. To explain
this, we note that an anti-JCM is equivalent to a JCMunder the
unitary transformation e−iπσx∕2, i.e., σ� → σ	 and σz → −σz .
Consequently, an SPB should occur at −Ω � gx . We point out
that, because of the small phonon decay in the clock transition,
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the lifetime of the phonon blockade (τ ∼ κ−1d ) in our system can
be very long.

To reveal more details, we also plot, in Fig. 2(d), the dis-
tributions of g�2�1 �0� and ns along the line gk � Ω on the
Ωgk plane. As can be seen, both g

�2�
1 �0� and ns possess two local

minima close to gk � �gx . In addition, g �2�1 �0� grows rapidly
from these minima when gk is slightly tuned away from �gx .
g �2�1 �0� approaches unity for a coherent phonon state at gk � 0
where Hamiltonian of Eq. (2) reduces to a standard QRM.

We now turn to study the properties of phonon states in the
atom–phonon resonance regime, i.e., Ω � ω. In addition, due
to the equivalence of two SPB regions in Fig. 2(a), we shall
focus, without loss of generality, on the SPB region with
gk � gx . The atom–phonon resonance condition can be satis-
fied by tuning external atom trap potential and/or power of the
classical laser field in the experiment. In particular, it should
be noted that our results remain qualitatively unchanged even
deviating from the resonance condition, corresponding to the
slight shift in the position of n-phonon resonance ωn.

Figure 3(a) shows the phonon number ns as a function of the
phonon frequency ω and clock shift δ. In particular, the dashed
lines plot the δ dependence of the n-phonon resonance frequency
ωn obtained by numerically diagonalizing H 0. An immediate ob-
servation is that, for a given δ, ns�ω� exhibits multiple peaks at
exactly the phonon resonance frequencies ωn, signaling the exist-
ence of possible multiphonon states. Remarkably, because our
scheme operates in the resonant regime, the average phonon num-
ber of the phonon states generated here is much larger than that of
the phonon states produced in the dispersive regime. In addition,
there exists a large area on the ωδ plane in which the average pho-
non number is higher than 0.2.

To explore the statistic properties of the phonon emissions, we
first map out, in Fig. 3(b), g �2�1 �0� on the ωδ parameter plane
around ω � ω1. As can be seen, phonon blockade is realized

for the whole parameter space covered by Fig. 3(b). There even
exists a large area on the ωδ plane such that the strong phonon
blockade condition, say g �2�1 �0� < 10−2, is satisfied. Then com-
bined with requirement of large phonon emission number, say
ns > 0.2, our system can be used as a high-quality single motional
phonon source operating in a parameter regime that is easily
accessible to current experiments. To further quantify the quality
of the single-phonon states around ω1, we introduce
p̃�q� ≡ qp�q�∕ns, which measures the fraction of q-phonon states
among the total emitted phonons. In Fig. 3(c), we plot the dis-
tribution of p̃�1� on the ωδ plane. As can be seen, for the param-
eter region of our interest, nearly 100% of phonon emission is of
the single-phonon nature. It should also be noted that p̃�1� alone
is not sufficient to judge the quality of the single-phonon source,
because, by comparing Figs. 3(b) and 3(c), the main feature of
p̃�1� is inconsistent with that of g �2�1 �0� when ns is small.

Finally, we study the properties of the emitted phonon in
the multiphonon resonance regime. As shown in Fig. 3(a), only
for sufficiently large pumping, i.e., δ∕g ≥ 0.015 and 0.094 for
two- and three-phonon resonances, respectively, the phonon
numbers ns around ω2 and ω3 become significant (>0.2).
We shall then explore the statistic properties of the multipho-
non resonances in these regions. Figure 4 summarizes the main
properties of the motional multiphonon states. Due to the
similarity between the two- and three-phonon states, we shall
only discuss the two-phonon emissions. In Fig. 4(a), we map
out the third-order correlation function in the two-phonon res-
onance regime of the ωδ plane. As can be seen, there exists a
large parameter regime with g �3�1 �0� < 1 in which the �n� 1�-
phonon emission is blockaded. Meanwhile, the minimum
value of g �3�1 �0� is achieved at ω � ω2, where the highest pho-
non numbers for the multiphonon resonance is reached. This
indicates that at the strongest three-phonon blockade, we have
the highest phonon number.

Fig. 2. Distributions of (a) g �2�1 �0� and (b) ns on the Ωgk parameter plane. (c) Time interval τ dependence of g�2�1 �τ� for �Ω, gk� � �1,1�gx.
(d) Distributions of g �2�1 �0� (solid line) and ns (dashed line) along the line gk � Ω on theΩgk parameter plane. In (a)–(d), the phonon frequency and
the clock detuning are fixed at ω∕gx � 1 and δ∕gx � 0.005, respectively.
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To further confirm the bundle-emission nature of the
phonon states, we plot, in Fig. 4(c), the typical interval depend-
ence of the correlation functions g�2�1 �τ� and g �2�2 �τ�. As can be
seen, the criteria for motional two-phonon bundle states,
g �2�1 �0� > g �2�1 �τ� and g�2�2 �0� < g �2�2 �τ�, are indeed satisfied.
Another observation from Fig. 4(c) is that the decay times
for both g �2�1 �τ� and g �2�2 �τ� are proportional to κ−1d , which in-
dicates that the decay of the bunching for single phonon and
the decay of the antibunching for the separated bundles of pho-
nons are of the same time scale for the two-phonon bundle
states. The two-phonon nature of the emission is also demon-
strated by the phonon-number distribution p̃�q� shown in
Fig. 4(e). Indeed, for the two-phonon emission case, p̃�q� be-
comes negligibly small for q > 2. We point out that, as shown
in the right panels of Fig. 4, the three-phonon emission
possesses similar statistic properties as those of two-phonon
emission. The observed phonon probability for steady-state
n-phonon bundle states exhibits a monotonical decreasing
distribution with increasing q for 1 ≤ q ≤ n, arising in dynami-
cal processes of bundle emissions [13]. In general, the n-pho-
non bundle states contain the various dynamical processes of
emissions in Fock state jqi with a distinguishable short tempo-
ral window ∼1∕�qκd �. Thus, the multiphonon state (jqi) can
be directly extracted with a high phonon probability by choos-
ing a very short temporal window [13,30]. Moreover, we
should note that the generated motional n-phonon bundle
states are essentially different from the experimentally observed
n-quanta blockade, i.e., two-photon blockade [52], where the
quantum statistic for the latter only characterizes the single

photon but not for separated bundles of photons with satisfying
n-photon bunching g �n�1 �0� > 1 and �n� 1�-photon anti-
bunching g �n�1�

1 �0� < 1 as well.
We remark that the underlying reason that n-phonon bundle

states are well-resolved in the parameters space is the strong an-
harmonicity of the energy spectrum such that the condition
jωn − ωmj ≫ κd is satisfied for any n ≠ m. This is in striking
contrast to the proposed n-photon bundle emission utilizing
Mollow physics [53] in which the �n� 1�th-order process of
quantum states is used [13,14]. In addition, the whole process
must be operated in the far dispersive regime and under a strong
pump field, which, in terms of our model, requires jω −Ωj ≫
gx

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
and jδj ≫ gx

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, simultaneously. Finally, we

check that our numerical results are not affected when we in-
clude the weak atomic decay of the clock state (κe∕κd ≪ 1)
and phonon dephasing (γd∕κd ≪ 1), albeit the strong damping
of γd and γe could induce a significant decoherence for realiza-
tion of nonclassical quantum states [54–56].

5. CONCLUSIONS

Based upon the currently available techniques in experiments,
we have proposed to generate motional n-phonon bundle states
using a trapped alkaline-earth atom driven by a clock laser.
Since our system works in the resonant regime, the steady-state
phonon number contained in the bundle states is 3 orders of
magnitude larger than those obtained in the earlier theoretical
schemes operating in the far dispersive regime. Moreover, the
quality of the n-phonon bundle states is also demonstrated by
the strong antibunching for the separated bundles of phonons

Fig. 3. (a) Distribution of ns on the ωδ parameter plane. The solid lines are the contour lines with ns � 0.2 and the dashed lines show the δ
dependence of ωn. (b) and (c) are, respectively, the distributions of g �2�1 �0� and p̃�1� on the ωδ parameter plane around ω � ω1. All solid lines in
(b) and (c) are contour lines.
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and bunching for single phonons. Finally, we emphasize that
the nonclassical nature of the long-lived motional n-phonon
bundle states can be quantum-state transferred to the photonic
mode by applying a readout cavity field with phonon–photon
beam-splitter interaction [57,58]. Moreover, as the scheme mit-
igates the laser-induced heating, it could inspire an interesting
opportunity of exploration of Dicke phase transition for the
external motional modes [59], superradiances from the clock
transition [60], and novel quantum states of matters hindered
by heating [61–63]. Our proposal for trapped single atoms
could be equivalently applied to the hybrid spin–mechanical
systems [64,65]. In particular, the parameter in our model is
outside the Lamb–Dicke regime with jκx0j ∼ 0.2, which could
provide a versatile platform for exploring long-lived mesoscopic
entanglement for trapped atoms [66]. Furthermore, we could
expect that the proposed system provides versatile applications
in quantum metrology limited by decoherence [50,67] and in
fundamental tests of quantum physics [68].

APPENDIX A: MODEL HAMILTONIAN

Wepresent the derivation of the generalizedQRMof phonon by
utilizing optical clock transition in an ultracold single atom. For
specificity, we consider an optical clock transition frequency of

1S0 −
3P0 is ωa in a single ultracold 87Sr atom, which includes a

ground-state jgi and an excited-state jei. Here the jgi � 1S0 is
the ground state and jei � 3P0 is an exceptionally long-lived
electronic state (160 s). The single atom is resonantly coupled
by a linearly π-polarized classical plane-wave laser with the fre-
quencyωc and wavelength λC � 698 nm, which is propagating
in the xy plane making an angle ϕwith respect to the x axis. As a
result, the spontaneous emission and decoherence of the excited
state can be safely ignored, which is of paramount importance to
realizations of motional n-phonon states in our model.

In addition, the single two-level atom is confined in a spin-
dependent one-dimensional harmonic trap V �x� � 1

2Mω2x2

generated by a π-polarized laser at the “magic” wavelength
λL � 813 nm, where M is the mass of the atom and ω is the
trap frequency. Now, it can be read out that the Hamiltonian
for the internal states of an atom under the rotating-wave
approximation reads

H∕ℏ � p2

2M
� Ωl �x�σ− �Ω


l �x�σ� � δσz � V �x�, (A1)

where Ωl �x� � �Ω0x − iΩ∕2�e−iκx is the spatially dependent
Rabi frequency with Ω0 and Ω being the coupling strengths,
δ � ωa − ωc is the highly tunable single-photon detuning of
clock transition, and κ � kC cos ϕ is the effective tunable laser

Fig. 4. Statistic properties of motional two-phonon (left column) and three-phonon (right column) states. (a) and (b) show the distributions of
g �3�1 �0� and g �4�1 �0�, respectively, on the ωδ parameter plane. Solid lines in (a) and (b) are contour lines marking g �3�1 �0� � 1 and g�4�1 �0� � 1,
respectively. The dashed lines in (a) and (b) represent the δ dependence of ω2 and ω3, respectively. (c) plots g

�2�
1 �τ� (solid line) and g �2�2 �τ� (dashed

line) for �δ,ω� � �0.025,0.708�gx, i.e., the red square in (a). (d) shows g�2�1 �τ� (solid line) and g �2�3 �τ� (dashed line) for �δ,ω� � �0.1,0.58�gx,
i.e., the red square in (b). (e) and (f ) plot the steady-state phonon-number distribution p̃�q� corresponding to parameters marked by red squares in
(a) and (b), respectively.
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wave vector corresponding to a tilted angle ϕ with respect to the
x axis. Here, σx,y,z are Pauli matrices for a spin-1/2 system with
σ� � �σx � iσy�∕2. It is easy to check that these operators
satisfy the commutation relations.

After performing the gauge transformations jgi → eiκx∕2jgi
and jei → e−iκx∕2jei [38] for eliminating the prefactor e�iκx in
the spin-flip Raman term, the single-particle Hamiltonian of
Eq. (A1) is given by (with ignoring the constant term)

H∕ℏ��p−A�2
2M

��Ω0x − iΩ∕2�σ−��Ω0x� iΩ∕2�σ��V �x�,

��p−A�2
2M

�Ω0xσx�
Ω
2
σy�δσz�V �x�,

≡
p2

2M
�κsopxσz�Ω0xσx�

Ω
2
σy�δσz�V �x�, (A2)

where A � −ℏκσz∕2 is the vector potential through Raman proc-
esses [39]; κso � ℏκ∕2M andΩ0 characterizes the strength of the
1D SOC in real and momentum space, respectively. In particular,
the position-dependent Raman term of Ω0xσx is equivalent to
applying a spatially dependent gradient magnetic field along the
x axis, which can be experimentally generated by tailoring the
clock laser by using a spatial light modulator [33–37]. We should
note that this linear spatially dependent Rabi frequency has been
experimentally realized for studying the spin Hall effect of ultra-
cold quantum gases in Ref. [33]. As can be seen, the spatially de-
pendent Rabi coupling Ωl �x� plays an essential role in generating
SOCs in both real and momentum spaces, simultaneously.

To gain more insight, we introduce the position-

momentum representation, x � 1ffiffi
2

p
ffiffiffiffiffiffi
ℏ

Mω

q
�â† � â�, px �

iffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
Mℏω

p
�â† − â� with â denoting the annihilation operator

of the bosonic phonon mode with harmonic oscillator
frequency ω. Then the Hamiltonian of Eq. (A2) can be
rewritten as

H∕ℏ � ωâ†â� Ω
2
σy � δσz �

gx
2
�â† � â�σx

� igk
2
�â† − â�σz , (A3)

where the single-phonon atom coupling strengths gx � 2Ω0x0
and gk � κωx0 are emerged by the two-type SOC in real and
momentum spaces, corresponding to x0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕�2Mω�

p
being

the zero-point fluctuation amplitude of the trapped atom os-
cillator. Finally, we obtain the tunable generalized QRM
Hamiltonian of Eq. (1) in the main text.

APPENDIX B: ENERGY SPECTRA FOR
GENERALIZED QRM

We present the details on the derivation of the energy spectrum
for the generalized QRM. By introducing a gauge transforma-
tion of the spin rotation Rx � eiπσx∕4, the Hamiltonian
Eq. (A3) reduces to

H∕ℏ � ωâ†â� Ω
2
σz − δσy �

gx
2
�â† � â�σx −

igk
2
�â† − â�σy

� ωâ†â� Ω
2
σz − δσy � λ��â†σ− � âσ��

� λ−�â†σ� � âσ−�, (B1)

corresponding to the unitary transformations R†
xσzRx � −σy

and R†
xσyRx � σz . Here λ� � �gx � gk�∕2 are introduced

for shorthand notation. For fixing δ � 0, Eq. (B1) satisfies the
parity with �H,P� � 0, where the parity operator P �
expfiπ�â†â� �1� σz�∕2�g measures an even–odd parity of
total excitation number. Note that the Hamiltonian terms pro-
portional to âσ− (counter-rotating wave coupling terms) do not
conserve the number of bare excitations. However, since the
simultaneous creation or destruction of two excitations is de-
scribed, the parity of the excitation number is conserved.

For fixing gk � gx and δ � 0, the Hamiltonian Eq. (B1)
can be reduced to a seminal Jaynes–Cummings model whose
Hamiltonian only possesses the rotating terms with hosting the
number of total excitations. As a result, the energy eigenvalues
for the nth pair of dressed states satisfy jn,�i �
�jn, gi 	 jn − 1, ei� ffiffiffi

2
p

with ω∕Ω � 1, corresponding to the
energy eigenvalues En,� � ℏ�nω� gx

ffiffiffi
n

p �. Here n is the pho-
non emissions number and � (−) denotes the higher (lower)
branch. We find that the dressed states splittings of jn,�i are
�gx

ffiffiffi
n

p
, corresponding to the typical anharmonic energy spec-

trum, as shown in Fig. 5. In addition, the n-phonon resonance
occurs at ωn � gx∕

ffiffiffi
n

p
(ωn > 0) when the lower dressed state

jn, −i is tuned resonantly with the vacuum state of the system.
In the presence of δ, the Hamiltonian of Eq. (B1) breaks P-

symmetry and lacks the analytical solution. Without loss of
generality, we may expand the wave function of the system that
is formally given as

jψi �
X∞
n�0

Cn,g jn, gi �
X∞
n�0

Cn,ejn, ei, (B2)

where a set of eigenstates jn, gi � jni ⊗ jgi and
jn, ei � jni ⊗ jei are the product states of the two-level atomic
states and Fock states of the phonon, and jCn,g j2 and jCn,ej2
denote the atomic occupation probability for eigenstates jn, gi
and jn, ei, respectively. Thus, the Schrödinger equation of the
QRMHamiltonian Eq. (B1) reads i djψidt � Hjψi, which yields

i
djψi
dt

�
X∞
n�0

� _Cn,g jn, gi � _Cn,ejn, ei�, (B3)

Fig. 5. Typical energy spectrum of Hamiltonian Eq. (B1) with the
zero-clock shift δ � 0. The red square shows the position of n-phonon
resonance ωn. jn,�i � �jn, gi 	 jn − 1, ei� ffiffiffi

2
p

denotes the nth pair
of dressed states of the system. The other parameters are gk∕gx � 1
and Ω∕ω � 1.
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Hjψi�
X∞
n�0

�nωCn,g jn,gi��nω�Ω�Cn,ejn,ei�

�
X∞
n�0

�iδCn,ejn,gi− iδCn,g jn,ei�

�
X∞
n�0

� ffiffiffi
n

p
λ�Cn,g jn−1,ei�

ffiffiffiffiffiffiffiffiffiffi
n�1

p
λ�Cn,ejn�1,gi

�

�
X∞
n�0

� ffiffiffiffiffiffiffiffiffiffi
n�1

p
λ−Cn,g jn�1,ei� ffiffiffi

n
p

λ−Cn,ejn−1,gi
�
,

(B4)

leading to the evolution equations that are given by

_Cn,g � nωCn,g � iδCn,e �
ffiffiffi
n

p
λ�Cn−1,e �

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ−Cn�1,e ,

(B5)

_Cn,e � �nω� Ω�Cn,e − iδCn,g �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ�Cn�1,g

� ffiffiffi
n

p
λ−Cn−1,g : (B6)

As a result, the QRM Hamiltonian decouples into an infinite
direct product of 2 × n-matrix Hamiltonian:

0
BBBBBBBBBBBBBBBB@

. .
. ..

. ..
. ..

. ..
. ..

. ..
.

⋰
� � � nω iδ 0

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ− 0 0 � � �

� � � −iδ nω�Ω
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ� 0 0 0 � � �

� � � 0
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ� �n� 1�ω iδ 0

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
λ− � � �

� � � ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
λ− 0 −iδ �n� 1�ω� Ω

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
λ� 0 � � �

� � � 0 0 0
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
λ� �n� 2�ω iδ � � �

� � � 0 0
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
λ− 0 −iδ �n� 2�ω�Ω � � �

⋰ ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCCCCA

: (B7)

Fig. 6. (a) Energy spectrum of Hamiltonian Eq. (B1) with δ∕gx � 0.05. The vertical dashed lines denoting the positions of ωn are guides for the
eyes. The δ dependence of (b) ωn and (c) Δn for the n-phonon states, respectively. The other parameters are gk∕gx � 1 and Ω∕ω � 1.
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In general, the matrix equation Eq. (B7) can be solved nu-
merically to yield the energy spectrum of the system.

Figure 6 shows the typical energy spectrum in the presence
of the clock shift δ∕gx � 0.05. As can be seen, the level struc-
ture is slightly distorted for weak enough clock detuning. In
particular, the energy spectrum at the n-phonon transition
(ω � ωn) becomes anticrossing with opening the gap Δn when
δ ≠ 0. To further characterize the energy spectrum, we plot the
n-phonon resonance ωn and corresponding energy gap Δn as a
function of δ, as shown in Figs. 6(b) and 6(c), respectively.
Although the ωn slightly respects to δ, the Δn is increasing with
increasing δ. Therefore, the clock shift δ can be used as a con-
trol knob for realizing motional n-phonon bundle states, such
that it plays a significant role for the phonon number emissions
and quantum statistics, as shown in the main text.

APPENDIX C: THE EFFECT OF DECAY AND
DEPHASING

We present the numerical results of the antibunching of the
phonon with different atomic decay and dephasing.
Figures 7(a) and 7(b) show the second-order correlation func-
tion g �2�1 �0� and corresponding phonon number ns as a func-
tion of the phonon frequency ω for different values of atomic
decay for clock state κe , respectively. As can be seen, both
g �2�1 �0� and ns are immune to the weak atomic decay when
κe∕κd ≪ 1. We should note that the atomic decay is very small
with κe∕κ � 2.2 × 10−6 by employing the advantages of en-
ergy-level structures in alkaline-earth-metal 87Sr atom, which
can be safely ignored in our numerical simulation.

To proceed further, we investigate the effect of dephasing γd
on the generation of phonon blockade, as shown in Fig. 8. For
large γd , it is clear that dephasing will play an important role in
the quantum system including the phonon excitation ns and
quantum statistic g �2�1 �0�. With increasing γd , the antibunching
g �2�1 �0� is rapidly growing, albeit ns is not insensitive to the
moderate dephasing with γd∕κd < 1. In particular, the strong
phonon blockade will be broken with the antibunching
g �2�1 �0� > 0.01 in the presence of large dephasing rate
γd∕κd ≫ 1. We also checked that the large dephasing γd could

induce a significant decoherence for realization of high-quality
motional n-phonon bundle states except for single phonon
blockade.

Funding. National Key Research and Development
Program of China (2018YFA0307500, 2017YFA0304501);
National Natural Science Foundation of China (NSFC)
(11874433, 11674334, 11974363, 11947302); Key-Area
Research and Development Program of Guangdong
Province (2019B030330001).

Acknowledgment. We are grateful to Yue Chang for in-
sightful discussions.

Disclosures. The authors declare no conflicts of interest.

REFERENCES
1. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance

quantum communication with atomic ensembles and linear optics,”
Nature 414, 413–418 (2001).

2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,”
Phys. Rev. Lett. 96, 010401 (2006).

3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J.
Milburn, “Linear optical quantum computing with photonic qubits,”
Rev. Mod. Phys. 79, 135–174 (2007).

4. L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein,
“Quantum metrology with nonclassical states of atomic ensembles,”
Rev. Mod. Phys. 90, 035005 (2018).

5. D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W.
Mitchell, and S. Pirandola, “Quantum-enhanced measurements with-
out entanglement,” Rev. Mod. Phys. 90, 035006 (2018).

6. I. Afek, O. Ambar, and Y. Silberberg, “High-noon states by mixing
quantum and classical light,” Science 328, 879–881 (2010).

7. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
8. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction

and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
9. J. C. López Carreño, C. Sánchez Muñoz, D. Sanvitto, E. del Valle, and

F. P. Laussy, “Exciting polaritons with quantum light,” Phys. Rev. Lett.
115, 196402 (2015).

10. K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical sig-
nals and spectroscopy with quantum light,” Rev. Mod. Phys. 88,
045008 (2016).

Fig. 7. ω dependence of g�2�1 �0� in (a) and ns in (b) for different
values of κe with δ∕gx � 0.005 and γd∕κd � 0.1.

Fig. 8. ω dependence of g �2�1 �0� in (a) and ns in (b) for different
values of γd with δ∕gx � 0.005 and κe∕κd � 2.2 × 10−6.

Research Article Vol. 9, No. 7 / July 2021 / Photonics Research 1297

https://doi.org/10.1038/35106500
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1126/science.1188172
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevLett.87.013602
https://doi.org/10.1103/PhysRevLett.115.196402
https://doi.org/10.1103/PhysRevLett.115.196402
https://doi.org/10.1103/RevModPhys.88.045008
https://doi.org/10.1103/RevModPhys.88.045008


11. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scan-
ning fluorescence microscopy,” Science 248, 73–76 (1990).

12. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B.
Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical
structures within an intact mouse brain,” Nat. Photonics 7, 205–209
(2013).

13. C. S. Muñoz, E. del Valle, A. G. Tudela, K. Müller, S. Lichtmannecker,
M. Kaniber, C. Tejedor, J. J. Finley, and F. P. Laussy, “Emitters of
n-photon bundles,” Nat. Photonics 8, 550–555 (2014).

14. C. S. Muñoz, F. P. Laussy, E. del Valle, C. Tejedor, and A. González-
Tudela, “Filtering multiphoton emission from state-of-the-art cavity
quantum electrodynamics,” Optica 5, 14–26 (2018).

15. Y. Chang, A. González-Tudela, C. Sánchez Muñoz, C. Navarrete-
Benlloch, and T. Shi, “Deterministic down-converter and continuous
photon-pair source within the bad-cavity limit,” Phys. Rev. Lett.
117, 203602 (2016).

16. P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D.
Lukin, A. V. Gorshkov, and H. P. Büchler, “Scattering resonances and
bound states for strongly interacting Rydberg polaritons,” Phys. Rev.
A 90, 053804 (2014).

17. M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O.
Firstenberg, M. D. Lukin, H. P. Büchler, and A. V. Gorshkov,
“Coulomb bound states of strongly interacting photons,” Phys. Rev.
Lett. 115, 123601 (2015).

18. A. González-Tudela, V. Paulisch, D. E. Chang, H. J. Kimble, and J. I.
Cirac, “Deterministic generation of arbitrary photonic states assisted
by dissipation,” Phys. Rev. Lett. 115, 163603 (2015).

19. J. S. Douglas, T. Caneva, and D. E. Chang, “Photon molecules in
atomic gases trapped near photonic crystal waveguides,” Phys.
Rev. X 6, 031017 (2016).

20. A. González-Tudela, V. Paulisch, H. J. Kimble, and J. I. Cirac,
“Efficient multiphoton generation in waveguide quantum electrody-
namics,” Phys. Rev. Lett. 118, 213601 (2017).

21. B. A. Moores, L. R. Sletten, J. J. Viennot, and K. W. Lehnert, “Cavity
quantum acoustic device in the multimode strong coupling regime,”
Phys. Rev. Lett. 120, 227701 (2018).

22. L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert,
“Resolving phonon Fock states in a multimode cavity with a double-
slit qubit,” Phys. Rev. X 9, 021056 (2019).

23. P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang,
T. P. McKenna, J. D. Witmer, R. Van Laer, and A. H. Safavi-
Naeini, “Resolving the energy levels of a nanomechanical oscillator,”
Nature 571, 537–540 (2019).

24. R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G.
Tancredi, F. Nori, and P. J. Leek, “Circuit quantum acoustodynamics
with surface acoustic waves,” Nat. Commun. 8, 975 (2017).

25. Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J.
Schoelkopf, “Creation and control of multi-phonon Fock states in a
bulk acoustic-wave resonator,” Nature 563, 666–670 (2018).

26. M. Arndt and K. Hornberger, “Testing the limits of quantum mechani-
cal superpositions,” Nat. Phys. 10, 271–277 (2014).

27. M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen,
M. D. Lukin, and J. I. Cirac, “Universal quantum transducers
based on surface acoustic waves,” Phys. Rev. X 5, 031031
(2015).

28. A. Noguchi, R. Yamazaki, Y. Tabuchi, and Y. Nakamura, “Qubit-
assisted transduction for a detection of surface acoustic waves near
the quantum limit,” Phys. Rev. Lett. 119, 180505 (2017).

29. P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D. Witmer, J. T. Hill,
and A. H. Safavi-Naeini, “Coupling a superconducting quantum circuit
to a phononic crystal defect cavity,” Phys. Rev. X 8, 031007
(2018).

30. Q. Bin, X.-Y. Lü, F. P. Laussy, F. Nori, and Y. Wu, “n-phonon bundle
emission via the Stokes process,” Phys. Rev. Lett. 124, 053601
(2020).

31. X.-L. Dong and P.-B. Li, “Multiphonon interactions between nitrogen-
vacancy centers and nanomechanical resonators,” Phys. Rev. A 100,
043825 (2019).

32. S. Kolkowitz, S. Bromley, T. Bothwell, M. Wall, G. Marti, A. Koller, X.
Zhang, A. Rey, and J. Ye, “Spin–orbit-coupled fermions in an optical
lattice clock,” Nature 542, 66–70 (2017).

33. M. C. Beeler, R. A. Williams, K. Jiménez-Garca, L. J. LeBlanc, A. R.
Perry, and I. B. Spielman, “The spin hall effect in a quantum gas,”
Nature 498, 201–204 (2013).

34. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized
phase contrast matched to Gaussian illumination,” Opt. Express 15,
11971–11977 (2007).

35. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for design-
ing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190
(2008).

36. J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic elec-
tronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034
(2013).

37. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold
atom trapping,” Sci. Rep. 2, 721 (2012).

38. Y. Deng, J. Cheng, H. Jing, C.-P. Sun, and S. Yi, “Spin-orbit-coupled
dipolar Bose-Einstein condensates,” Phys. Rev. Lett. 108, 125301
(2012).

39. Y.-J. Lin, K. Jiménez-Garca, and I. B. Spielman, “Spin-orbit-coupled
Bose-Einstein condensates,” Nature 471, 83–86 (2011).

40. I. I. Rabi, “On the process of space quantization,” Phys. Rev. 49,
324–328 (1936).

41. M.-J. Hwang, R. Puebla, and M. B. Plenio, “Quantum phase transition
and universal dynamics in the Rabi model,” Phys. Rev. Lett. 115,
180404 (2015).

42. M. Liu, S. Chesi, Z.-J. Ying, X. Chen, H.-G. Luo, and H.-Q. Lin,
“Universal scaling and critical exponents of the anisotropic quantum
Rabi model,” Phys. Rev. Lett. 119, 220601 (2017).

43. D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata, E.
Solano, and K. Kim, “Quantum simulation of the quantum Rabi model
in a trapped ion,” Phys. Rev. X 8, 021027 (2018).

44. V. Galitski and I. B. Spielman, “Spin–orbit coupling in quantum gases,”
Nature 494, 49–54 (2013).

45. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).
46. F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and

ultrastrong coupling in circuit QED,” Phys. Rev. A 84, 043832
(2011).

47. A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade
in the ultrastrong coupling regime,” Phys. Rev. Lett. 109, 193602
(2012).

48. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev.
130, 2529–2539 (1963).

49. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master
Equations and Fokker-Planck Equations (Springer, 2013).

50. F. Wolf, C. Shi, J. C. Heip, M. Gessner, L. Pezzè, A. Smerzi, M.
Schulte, K. Hammerer, and P. O. Schmidt, “Motional Fock states
for quantum-enhanced amplitude and phase measurements with
trapped ions,” Nat. Commun. 10, 2929 (2019).

51. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and
H. J. Kimble, “Photon blockade in an optical cavity with one trapped
atom,” Nature 436, 87–90 (2005).

52. C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon block-
ade in an atom-driven cavity QED system,” Phys. Rev. Lett. 118,
133604 (2017).

53. B. R. Mollow, “Power spectrum of light scattered by two-level sys-
tems,” Phys. Rev. 188, 1969–1975 (1969).

54. A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani,
and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity
system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).

55. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff,
and J. Vučković, “Resonant excitation of a quantum dot strongly
coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104,
073904 (2010).

56. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J.
Vučković, “Ultrafast photon-photon interaction in a strongly coupled
quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012).

57. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang,
“Storing optical information as a mechanical excitation in a silica op-
tomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

58. S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum con-
trol of molecular gas hydrodynamics,” Phys. Rev. Lett. 112, 143601
(2014).

1298 Vol. 9, No. 7 / July 2021 / Photonics Research Research Article

https://doi.org/10.1126/science.2321027
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1038/nphoton.2014.114
https://doi.org/10.1364/OPTICA.5.000014
https://doi.org/10.1103/PhysRevLett.117.203602
https://doi.org/10.1103/PhysRevLett.117.203602
https://doi.org/10.1103/PhysRevA.90.053804
https://doi.org/10.1103/PhysRevA.90.053804
https://doi.org/10.1103/PhysRevLett.115.123601
https://doi.org/10.1103/PhysRevLett.115.123601
https://doi.org/10.1103/PhysRevLett.115.163603
https://doi.org/10.1103/PhysRevX.6.031017
https://doi.org/10.1103/PhysRevX.6.031017
https://doi.org/10.1103/PhysRevLett.118.213601
https://doi.org/10.1103/PhysRevLett.120.227701
https://doi.org/10.1103/PhysRevX.9.021056
https://doi.org/10.1038/s41586-019-1386-x
https://doi.org/10.1038/s41467-017-01063-9
https://doi.org/10.1038/s41586-018-0717-7
https://doi.org/10.1038/nphys2863
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevLett.119.180505
https://doi.org/10.1103/PhysRevX.8.031007
https://doi.org/10.1103/PhysRevX.8.031007
https://doi.org/10.1103/PhysRevLett.124.053601
https://doi.org/10.1103/PhysRevLett.124.053601
https://doi.org/10.1103/PhysRevA.100.043825
https://doi.org/10.1103/PhysRevA.100.043825
https://doi.org/10.1038/nature20811
https://doi.org/10.1038/nature12185
https://doi.org/10.1364/OE.15.011971
https://doi.org/10.1364/OE.15.011971
https://doi.org/10.1364/OE.16.002176
https://doi.org/10.1364/OE.16.002176
https://doi.org/10.1038/srep01034
https://doi.org/10.1038/srep01034
https://doi.org/10.1038/srep00721
https://doi.org/10.1103/PhysRevLett.108.125301
https://doi.org/10.1103/PhysRevLett.108.125301
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.119.220601
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1038/s41467-019-10576-4
https://doi.org/10.1038/nature03804
https://doi.org/10.1103/PhysRevLett.118.133604
https://doi.org/10.1103/PhysRevLett.118.133604
https://doi.org/10.1103/PhysRev.188.1969
https://doi.org/10.1103/PhysRevB.81.245419
https://doi.org/10.1103/PhysRevLett.104.073904
https://doi.org/10.1103/PhysRevLett.104.073904
https://doi.org/10.1103/PhysRevLett.108.093604
https://doi.org/10.1103/PhysRevLett.107.133601
https://doi.org/10.1103/PhysRevLett.112.143601
https://doi.org/10.1103/PhysRevLett.112.143601


59. C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, and P.
Engels, “Dicke-type phase transition in a spin-orbit-coupled Bose–
Einstein condensate,” Nat. Commun. 5, 4023 (2014).

60. M. A. Norcia, J. R. K. Cline, J. A. Muniz, J. M. Robinson, R. B. Hutson,
A. Goban, G. E. Marti, J. Ye, and J. K. Thompson, “Frequency mea-
surements of superradiance from the strontium clock transition,” Phys.
Rev. X 8, 021036 (2018).

61. N. Q. Burdick, Y. Tang, and B. L. Lev, “Long-lived spin-orbit-
coupled degenerate dipolar Fermi gas,” Phys. Rev. X 6, 031022
(2016).

62. X. Zhou, J.-S. Pan, Z.-X. Liu, W. Zhang, W. Yi, G. Chen, and S. Jia,
“Symmetry-protected topological states for interacting fermions in
alkaline-earth-like atoms,” Phys. Rev. Lett. 119, 185701 (2017).

63. F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio, and M. Dalmonte,
“Majorana quasiparticles protected by F2 angular momentum conser-
vation,” Phys. Rev. Lett. 118, 200404 (2017).

64. P.-B. Li, Y. Zhou, W.-B. Gao, and F. Nori, “Enhancing spin-phonon
and spin-spin interactions using linear resources in a hybrid quantum
system,” Phys. Rev. Lett. 125, 153602 (2020).

65. Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, “Preparing multiparticle
entangled states of nitrogen-vacancy centers via adiabatic ground-
state transitions,” Phys. Rev. A 98, 052346 (2018).

66. M. J. McDonnell, J. P. Home, D. M. Lucas, G. Imreh, B. C. Keitch, D. J.
Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, and A. M. Steane,
“Long-lived mesoscopic entanglement outside the Lamb-Dicke re-
gime,” Phys. Rev. Lett. 98, 063603 (2007).

67. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J.
Wineland, “Generation of nonclassical motional states of a trapped
atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).

68. M. G. Kozlov, M. S. Safronova, J. R. C. López-Urrutia, and P. O.
Schmidt, “Highly charged ions: optical clocks and applications in fun-
damental physics,” Rev. Mod. Phys. 90, 045005 (2018).

Research Article Vol. 9, No. 7 / July 2021 / Photonics Research 1299

https://doi.org/10.1038/ncomms5023
https://doi.org/10.1103/PhysRevX.8.021036
https://doi.org/10.1103/PhysRevX.8.021036
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevLett.119.185701
https://doi.org/10.1103/PhysRevLett.118.200404
https://doi.org/10.1103/PhysRevLett.125.153602
https://doi.org/10.1103/PhysRevA.98.052346
https://doi.org/10.1103/PhysRevLett.98.063603
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1103/RevModPhys.90.045005

	XML ID funding

