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We demonstrate, both analytically and experimentally, free-space pin-like optical vortex beams (POVBs). Such
angular-momentum-carrying beams feature tunable peak intensity and undergo robust antidiffracting propaga-
tion, realized by judiciously modulating both the amplitude and the phase profile of a standard laser beam.
Specifically, they are generated by superimposing a radially symmetric power-law phase on a helical phase struc-
ture, which allows the inclusion of an orbital angular momentum term to the POVBs. During propagation in free
space, these POVBs initially exhibit autofocusing dynamics, and subsequently their amplitude patterns morph
into a high-order Bessel-like profile characterized by a hollow core and an annular main lobe with a constant or
tunable width during propagation. In contrast with numerous previous endeavors on Bessel beams, our work
represents the first demonstration of long-distance free-space generation of optical vortex “pins” with their peak
intensity evolution controlled by the impressed amplitude structure. Both the Poynting vectors and the optical
radiation forces associated with these beams are also numerically analyzed, revealing novel properties that may be
useful for a wide range of applications. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.420872

1. INTRODUCTION

During the last decades, there has been an increasing interest in
the study of structured light and associated optical beam shap-
ing techniques [1,2]. Prior to this enthusiasm, optical vortex
beams constituting the fundamental element of singular optics
[3–5] have already attracted a great deal of attention due to the
peculiar characteristics associated with their phase singularity,
topological charge, and hollow intensity distribution [6–12].
Their ability to carry orbital angular momentum (OAM),
transferrable to an illuminated object, along with a number
of related properties has further paved the way toward novel
opportunities for scientific research and advanced applications
[7]. These include, for example, optical tweezers and spanners
[8,9] and high-order quantum entanglement [10,11]. The hol-
low-core intensity shape allows to circumvent the particles
being susceptible to elevated absorptive heating, due to the
high-intensity peak located at the center of the fundamental
Gaussian beam typically emitted by a standard laser. All these
applications require a comprehensive understanding of the

intensity distribution and OAM flux within optical vortices.
In this regard, a larger variety of optical vortex structures have
been reported in the literature [6,7]; some classical examples are
optical Laguerre–Gaussian [13–15], high-order Bessel [16,17],
helical Ince–Gaussian [18,19], and vector vortex [20,21]
beams. Among them, high-order Bessel beams offer significant
advantages with respect to other hollow beams because of their
nondiffracting properties, which make them ideal for long-dis-
tance particle and atom transport [22]. It has also been shown
that it is possible to generate high-order Bessel-like beams
with the radius of the hollow core and maximum intensity fully
controllable as a function of the propagation distance [23]. In
general, diffraction is an undesired effect of light that causes
beam expansion and peak intensity deterioration. A great
amount of research efforts have been devoted in recent years
to finding optical beams that are capable to counteract diffrac-
tion in different long-distance frameworks [24–27]. Although
nondiffracting beams can be achieved via nonlinear effects
forming spatial solitons [28–30] or via localized modes in
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photonic structures [31], the requirement of nonlinear media
and/or complex structure design could hamper the applicability
of such beams. In free space, the first introduction of optical
Bessel beams [32,33] has stimulated the generation of a variety
of light beams with propagation-invariant properties such as
Mathieu [34,35] and Bessel-like [23,36–38] beams.

Since Airy wave packet was introduced to optics [2,39,40],
the nondiffracting properties of the light have also been ex-
tended beyond a straight-line propagation into curved paths,
where various families of self-accelerating beams that are mostly
based on an Airy-like profile have been proposed and demon-
strated [41,42]. Of particular interest is the class of so-called
“abruptly autofocusing beams,” especially for potential uses
in material ablation and medical surgery, driven by the fact that
such radially symmetric self-accelerating beams can exhibit a
low-intensity propagation combined with a controllable abrupt
autofocusing right before a target [43–47]. Further research
advances have also shown the possibility for the propagation
of autofocusing vortex beams carrying OAM [48]. Due to their
intrinsic characteristics, all these optical beams present signifi-
cant diffraction and hence a rapid decrease in their peak inten-
sities during subsequent propagation after the focal point.
Applications exploiting the inherent properties of nondiffrac-
tive beams can benefit in many areas, including biomedical im-
aging, filamentation, particle manipulation, and free-space
optical communications [2,49–55]. Ideally, every nondiffrac-
tive beam carries infinite power, thanks to which it can counter-
act diffraction indefinitely. Such a “perfect generation” with a
stable amplitude profile over any propagation distance would
require the illumination of an infinite transforming element
with an ideal plane wave. Nevertheless, due to physical limita-
tions present in all experimental settings, real beams must be
truncated by an aperture and, as a consequence, diffraction
takes place, resulting in antidiffracting beams with propagation
distances extending from only a few centimeters to meters.
(Note that the term “antidiffracting beam” is now widely used
to refer to an arbitrary structured light that is capable of coun-
teracting diffraction for a certain range of distances, although it
is not “diffraction-free” in a strict sense. Such a mixed use of
terms can be confusing because antidiffracting could be asso-
ciated with a special propagation regime [56] such as free-
scale dynamics achieved in a particular type of nonlinear media
[57–59].)

Recently, a new class of antidiffracting light waves, named
“optical pin beams” (OPBs), has been demonstrated, showing a
robust propagation through atmosphere turbulence over dis-
tances of kilometers when compared to a standard Gaussian
beam [27]. Further research advances have also generalized the
class of OPBs and demonstrated their robustness and intensity
stability even in a strong scattering medium [60], with a better
performance when compared with other nondiffracting beams
such as abruptly autofocusing [43,45,46] and Bessel-type
[32] beams.

In this paper, we report the first experimental demonstration
of long-distance generation of pin-like optical vortex beams
(POVBs) in free space, representing a topological extension
of the previously introduced OPBs [27,60]. We analyze the
existence of such POVBs. Compared to previous works based

on fundamental Bessel configurations, the POVBs exhibit an
initial autofocusing stage followed by an amplitude reshaping
into a high-order Bessel-like beam, however, the hollow-core
radius and the annular main-lobe width vary with the propa-
gation distance. Interestingly, the peak intensity evolution can
be easily controlled by imposing a properly designed amplitude
modulation. POVBs are investigated not only from the view-
point of their propagation properties, where several examples
are numerically and experimentally illustrated, but also from
their energy characteristics through calculating the associated
Poynting vectors and optical forces.

2. THEORY

The analysis starts by introducing the vector potential of an
arbitrary optical beam, ~U �r,θ,z,t��ψ�r,θ,z�exp�ikz−ωt�x̂,
assuming linear polarization along the x axis directed by the
unity vector x̂. Under a slowly varying envelope approximation,
the linear wave equation describing the beam propagation dy-
namics can be expressed in cylindrical coordinates as
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In Eq. (1), ψ�r, θ, z� denotes the electric field envelope, where r
and θ represent the radial and azimuthal coordinates, and z is
the longitudinal distance. In addition, k � 2π∕λ is the wave-
number of the optical wave, λ is the wavelength, ω is the an-
gular frequency, and t is the time. The integral representation of
Eq. (1) is given by the Fresnel integral
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where A�ρ� and ϕ�ρ,φ� � −kCρ�ρ∕wρ�γ − lφ are the ampli-
tude and the phase of the optical wave on the input plane, with
ρ and φ indicating the radial and azimuthal coordinates at the
onset of propagation, Cρ is an arbitrary scaling parameter for
the phase, γ the power exponent of phase modulation, l the
topological charge, and wρ the phase normalization factor.
To find an asymptotic solution to Eq. (2), we apply the sta-
tionary phase method by carrying out a procedure similar to
the one in Ref. [60]. The beam envelope near the symmetry
axis can be well approximated by the following expression:
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where Jl is the l th-order Bessel function, and ρ�z� �
�Cγz�1∕�2−γ�, with C equal to Cρ∕w

γ
ρ. The overall propagation

range depends on the maximum radius ρm at the onset distance
through the relation zm � ρ2−γm ∕�Cγ�. In this work, we limit
the value of γ in the interval between 0 and 2. Additionally,
Eq. (3) shows that the peak intensity evolution of a POVB
can be controlled by properly engineering the initial amplitude
structure A� ρ�z��.
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3. EXPERIMENTAL DEMONSTRATION

We have experimentally observed the POVBs described theo-
retically in the previous section. In our experimental setup, as
illustrated in Fig. 1(a), a phase-only spatial light modulator
(SLM), i.e., a liquid crystal device (Holoeye PLUTO-VIS-016,
8-bit gray phase levels, 1920 × 1080 pixels, 8 μm × 8 μm pixel
area) is employed to modulate the phase of a CW solid-
state green laser (MGL-F-532 at λ � 532 nm, waist �
2 mm). Before impinging on the surface of the SLM, the
Gaussian-like profile of the laser is expanded by a microscope
system (40×,NA � 0.65, and f � 300 mm) to illuminate the
active area of the device. According to Eq. (2), the generation of
a POVB requires simultaneous reshaping of both the amplitude
and phase profiles of an initial beam in real space. Since our
SLM device does not provide the functionality of direct ampli-
tude modulation, we employ an indirect technique as devel-
oped by Davis and his collaborators [61], which consists of
encoding both the amplitude and phase information of a
target beam onto a phase-only filter and then performing

the generation in the Fourier domain. To this purpose, a
spherical lens (f � 300 mm) is used to compute the Fourier
transform of the light reflected by the SLM, and an opaque
mask of radius 0.5 mm is also placed at the Fourier plane
to block the zeroth-order diffraction. Increasing the diffraction
efficiency of the light to the first diffraction order is important
for getting better results. To achieve higher diffraction effi-
ciency, the spectral amplitude encoded into the phase-only
mask of the SLM is not the one obtained by directly applying
the formula of the encoding process, but it is created by means
of a homemade lookup table compensating for eventual ampli-
tude distortions. For detection, a costumed imaging system
composed of a spherical lens (f � 100 mm) and a CCD
camera (Coherent LaserCam-HR II, 12-bit dynamic range,
1280 × 1024 pixels, 4.6 μm × 4.6 μm pixel area) is used to rec-
ord the transverse intensity distributions of POVBs.
Furthermore, to retrieve the corresponding longitudinal inten-
sity evolutions, the imaging system is also mounted on a
manual translation stage that allows for recording the beam

Fig. 1. Experimental observations of POVBs in free space for different values of the phase modulation exponent γ. (a) Schematic of the ex-
perimental setup used for the generation and detection of the POVBs. Path 1 highlights the beamline used for the generation, while path 2
the beamline used for carrying out the interferograms. (b1)–(d1) Normalized side-view of the beams in the y−z plane for (b1) γ � 0.5, (c1)
γ � 1, and (d1) γ � 1.5. (b2)–(d2) Intensity distributions and (b3)–(d3) interferograms recorded at the distance z � 250 mm, marked by dashed
white lines in (b1)–(d1). l � −2 is the topological charge. L, lens; M, mirror; BE, beam expander; BS, beam splitter; IS, imaging system; TS,
translation stage; SLM, spatial light modulator.
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profiles at selected distances with 1 mm resolution over long
propagation (50 cm) in free space. We point out that such
POVBs can in principle propagate to much longer distances
whenever they are not limited by the size of both SLM and
lab space [27].

Figures 1(b1)–1(d3) present experimental results associated
with three different cases of POVBs, where the power-law
phase exponent coefficient γ takes the values 0.5, 1, and
1.5. Without loss of generality, the topological charge l is
chosen to be −2 for all the cases under consideration. The scal-
ing parameter Cρ related to the three values of γ is, respectively,
5.96, 3.77, and 3.12 μm, while wρ is 1 mm. The choice of Cρ

is not arbitrary, rather these coefficients are purposely calculated
to obtain beam peak intensities appearing to a comparable
propagation distance. The initial amplitude modulation is ap-
propriately designed to generate POVBs exhibiting a low-
varying peak intensity over a long range of distances. In this
case, a quasi-constant peak intensity evolution can be achieved
using the formula

A�ρ� � APOVB�ρ�ijl jρ−γ∕2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − γ

2πγkC

r
, (4)

with APOVB�ρ� being a constant coefficient related to the aver-
age beam power. The initial Gaussian beam is significantly ex-
panded (radius � 8 mm) to meet the theoretical plane wave
approximation of the initial condition. However, in case the
influence of the Gaussian beam truncation cannot be neglected,
it can also be embedded in the amplitude modulation for im-
proving the maximum propagation range. Looking at the longi-
tudinal intensity evolution in Figs. 1(b1)–1(d1), the POVBs
undergo an initial autofocusing dynamic, reaching the highest
peak intensity at a distance of about z � 200 mm and then
exhibiting a dramatic reshaping of the intensity pattern into
a high-order Bessel-like beam. A better visualization is provided
in Figs. 1(b2)–1(d2), where the corresponding transverse inten-
sity distributions recorded by the CCD camera at the distance
z � 250 mm are presented. For γ � 0.5, both the hollow-core
radius and the annular main-lobe width of the Bessel-like beam
increase during propagation. In contrast, an opposite propaga-
tion dynamic occurs as γ takes a value larger than 1.0, for in-
stance, 1.5 as used in Fig. 1. Indeed, no appreciable variation of
the beam size is observed for a unitary value γ after the focal
distance. Additionally, the beam intensity evolutions after the
focal distance are examined. Since the initial amplitude is ap-
propriately modulated to maintain a quasi-constant peak inten-
sity during evolution, we observe a high intensity after 500 mm
long propagation in free space for all these three cases. For com-
parison, we also performed a series of measurements of the
POVBs without including any initial amplitude. Under such
conditions, the beam intensities reach a maximum at a certain
distance and decay significantly afterward, with undetectable
light intensity at z � 500 mm, indicating the essential role
played by the amplitude modulation. Finally, interferograms
are recorded to examine the topological charge carried by
the POVBs [see Figs. 1(b3)–1(d3)]. For each case, the inter-
ference fringes display a fork structure stemming from the
phase singularity, indicating a topological charge l of −2.
These results clearly demonstrate the robustness of the
OAM carried by the vortex pin beams.

4. NUMERICAL SIMULATIONS

The above experimental observations can be corroborated with
numerical simulations. To this purpose, Fig. 2 presents
numerical results for the three cases corresponding to the mea-
surements illustrated in Fig. 1. In particular, computations are
carried out by solving Eq. (1) via the split-step Fourier trans-
form method. All values of the parameters used in simulations
are consistent with physical dimensions in our experimental
setting. For the sake of completeness, we also list the other
parameters used in our simulations: ρ0 � 0.5 mm,
λ � 532 nm, APOVB �ρ� � 3.23. The initial condition is con-
stituted by a phase- and amplitude-modulated Gaussian beam,
whose intensity value is zero inside a circle of radius ρ0. This
assumption is motivated by the fact that the amplitude is
diverging at the axis origin. As shown in Figs. 2(a1)–2(c1),
the POVBs are observed to initially experience autofocusing
dynamic at the earlier stage of their propagation followed by
a subsequent reshaping into a high-order Bessel-like beam pro-
file. Furthermore, normalized transverse intensity distributions
retrieved at the distance z � 250 mm highlight the Bessel-like
shape expected for the POVBs after the focal distance
[Figs. 2(a2)–2(c2)]. For different values of the γ coefficient, the
beam main lobes behave differently during propagation,
hence exhibiting a propagation dependence. This behavior is
also expected from the analytical solution in Eq. (3).
Indeed, if Rl0 is the full width at half-maximum (FWHM)
of the l th-order Bessel function in Eq. (2), the radius of a
POVB is given by

R�z� � Rl0

2k�Cγzγ−1� 1
2−γ

, (5)

which depends in general on the propagation distance z except
for the case γ � 1. R�z� increases (or decreases) as γ acquires a
value smaller (or larger) than 1. Nevertheless, despite the
progressive “expansion” or “shrinking” of the POVBs, their
peak intensity remains almost constant over a long distance
due to the initial amplitude modulation. Indeed, the peak in-
tensity shows only slight oscillations around a constant value,
with the oscillation frequency being increased for higher values
of γ [see solid white lines in Figs. 2(a1)–2(c1)]. It is worth
pointing out again that the amplitude modulation plays a pri-
mary role in the propagation dynamics of these vortex beams.
Should only the phase modulation be applied to the initial
Gaussian beam, the peak intensity of the POVB would have
reached a maximum at a certain distance and then rapidly de-
cayed to zero, similarly to the OPBs in Ref. [27]. The topologi-
cal charge carried by the POVBs can be envisaged from their
phase structures as shown in Figs. 2(a3)–2(c3). Wrapped phase
patterns extracted at z � 250 mm from the numerical simu-
lations show a clockwise spiral shape whose number of cycles
is larger for low values of γ, and more importantly, they reveal a
topological charge l � −2. Besides, in order to prove the val-
idity of the analytical approximation on modeling the linear
dynamics of POVBs, we also compare numerical results with
analytical predictions from Eq. (3). Plots in Figs. 2(a4)–2(c4)
show the overlapped output intensity profiles after 500 mm
long propagation in free space for all the three cases of
POVBs. The analytical curves match very well the numerical
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simulations, especially in proximity of the main-lobe ring. The
agreement further improves for even longer distances, thus
quantitatively confirming the reshaping of the amplitude-
and phase-modulated Gaussian beam at the onset into a
high-order Bessel-like shape in the far field. These numerical
and analytical results agree well with those from the experi-
ments presented in Fig. 1.

5. CONTROL OF THE PEAK INTENSITY
EVOLUTION

So far, the discussion has been only restricted to the PVOBs
that display a constant or low-varying peak intensity evolution
during subsequent propagation after initial autofocusing. Now
we explore the tunability of the peak intensity over a long range
of distances by properly engineering the initial amplitude
modulation A�ρ�. Three typical examples are illustrated in
Figs. 3(a1)–3(c1), where the peak intensities follow a hyper-
bolic secant, a flat-top, and a sinusoidal curve (as outlined
by the white solid lines in Fig. 3). For these three cases, the
POVBs are generated with the same power-law phase exponent
coefficient γ � 1.5 but under different amplitude modulations
as follows. The profile of the initial amplitude modulation A�ρ�
can be estimated by determining the function APOVB�ρ� to be
inserted in Eq. (4) as

APOVB�ρ� � 3.23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I �ρ2−γ∕�Cγ��∕I0

q
, (6)

where I�z� is the analytical peak intensity curve as a
function of z. The exact profiles of APOVB�ρ� for all specific
cases of POVBs analyzed in this paper are listed in Table 1.
Furthermore, we perform a series of experiments to demon-
strate POVBs featuring such predesigned peak intensity evolu-
tions. Experimental results are presented in Figs. 3(a2)–3(c2),
showing a clear modulation of the maximum intensity value
along the propagation direction. The measured intensity varia-
tions show an evolution trend similar to the predicted curves.

6. POYNTING VECTORS AND OPTICAL FORCES

As seen above, the POVBs can be designed to exhibit tunable
features, with either a constant or a pin-like vortex core as well
as a controllable peak intensity evolution, in addition to pre-
served OAM during propagation. Besides the propagation
properties, for both fundamental understanding and applica-
tions, it is also useful to investigate the energy-linked features
associated with this class of optical beams. In this section, two
key quantities related to the electromagnetic energy carried by
POVBs are numerically explored: the Poynting vectors and the
optical forces.

A. Poynting Vectors of POVBs
The Poynting vector represents the energy flux of the radiation
field per unit area and is defined as ~S � μ−10 ~E × ~B, with
~B � ∇ × ~U and ~E � ic2ω−1∇ × ~B denoting, respectively, the

Fig. 2. Numerical simulation of POVBs for different values of the parameter γ, with topological charge l � −2 and initial amplitudes predesigned
to achieve a low-varying peak intensity over a long range of distances. (a1)–(c1) Normalized longitudinal intensity distributions in the y−z plane for
(a1) γ � 0.5, (b1) 1, and (c1) 1.5; solid white lines in each panel plot the peak intensity evolutions. Corresponding (a2)–(c2) transverse intensity
distributions and (a3)–(c3) wrapped phase patterns extracted at a distance z � 250 mm, marked by dashed white lines in (a1)–(c3).
(a4)–(c4) Comparison between numerical (blue dashed lines) intensity profiles in (a1)–(c1) and analytical (red solid lines) prediction from
Eq. (3), performed at the output after 500 mm long propagation.
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magnetic and electric field, while μ0 is the vacuum magnetic
permeability, c the speed of light, and ∇ the nabla operator.
For harmonic electromagnetic fields, the measured beam inten-
sity directly relies on the time-averaged value of the Poynting
vector over the wave cycle T � 2π∕ω. By applying the Lorentz
gauge condition and the paraxial approximation, the average
power flow can be expressed as [62,63]

h~Si � 1

2μ0
�~E × ~B� � ~E� × ~B�

� ω

2μ0
�i�ψ∇⊥ψ

� − ψ�∇⊥ψ� � 2kjψ j2ẑ�, (7)

where the symbol (*) denotes the complex conjugate,
∇⊥ � ∂∕∂xx̂ � ∂∕∂yŷ is the transverse nabla operator, and
x̂, ŷ, and ẑ are the unit vectors. In Eq. (7), the first term on the
right side refers to the transverse component of the Poynting
vector in the x−y plane, whereas the second term describes the
energy flux flowing along the propagation direction z, revealing
a direct proportionality with the beam intensity.

Numerically calculated Poynting vectors of the POVBs from
Eq. (7) are illustrated in Figs. 4(a1)–4(a5) and 4(b1)–4(b5) at
selected distances for two different values of γ. In particular,
blue arrows displaying the transverse components of the
Poynting vectors are superimposed to the corresponding

intensity distributions shown in the background. At the first
stage, the energy flux radially flows from the beam sub-lobes
toward the center [see Figs. 4(a1) and 4(b1)], leading to the
focused vortex structure of the beam. After that, the energy flux
mainly localizes and circulates around the high-intensity main
lobe for subsequent long-distance propagation. Since for
γ � 1.5 both the hollow-core radius and the main-lobe width
of the POVB decrease during propagation, the transverse en-
ergy flux around the main lobe becomes gradually more local-
ized [Figs. 4(b1)–4(b5)]. In contrast, the power flux remains
invariant for γ � 1 as shown in Figs. 4(a1)–4(a5).

B. Optical Forces of POVBs
Optical forces originate from the transfer of linear or angular
momentum from an optical beam to an illuminated object, es-
sential for optical trapping and manipulation. As an illustrative
example, we study here the optical forces exerted by a linearly
polarized POVB on a spherical dielectric nanoparticle, sus-
pended in a medium with a dielectric constant εm and featuring
a radius a as well as a dielectric constant εp. If the particle size is
sufficiently smaller than the light wavelength, the nanoparticle
behaves like an electric dipole in accordance with Rayleigh scat-
tering [64]. A simple description can be established by model-
ing the radiation pressure forces acting on an electromagnetic
dipole, known as the Rayleigh regime, which consists of two
components: the scattering and the gradient forces. The former
is associated with the linear momentum changes through [64]

~F scat�r, θ, z� �
nm
c
Cprh~Siz , (8)

where h~Siz � I�r, θ, z�ẑ � 0.5nmε0cjψ�r, θ, z�j2ẑ is the
longitudinal component of the time-averaged value of the
Poynting vector and Cpr is the cross-section pressure of the par-
ticle. For isotropic and non-absorbing particles, Cpr is equal to
the scattering cross section C scat:

Fig. 3. Numerical (left) and experimental (right) results of POVBs in free space with γ � 1.5, topological charge l � −2, and different initial
amplitudes designed to achieve a desired peak intensity evolution. Left-column panels illustrate the normalized longitudinal intensity distributions of
POVBs whose peak intensity along the propagation direction follows (a1) a hyperbolic secant, (b1) a flat-top, and (c1) a sinusoidal curve as marked
by a solid white line in each panel. Right-column panels show the corresponding experimental results. To provide a better comparison, experimental
peak intensity evolutions (yellow dots) extracted from measurements at each distance z are overlapped to the corresponding curves from predictions
(solid white lines).

Table 1. Analytical Peak Intensity of the POVBs in Fig. 3
as a Function of z

POVBs Analytical Peak Intensity versus z

Steady state I�z� � I0 with I 0 � 2.467 W=m2

Hyperbolic secant I�z� � I0 sech�22z − 6.49�
Flat-top I�z� � I0 exp�−�7.106z − 2.096�4�
Sinusoidal I�z� � I0f1−0.5�sin�6πz − 1.649��2g
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Cpr � C scat �
8

3
πk4a6

�
m2 − 1

m2 � 2

�
2

, (9)

with m � np∕nm being the ratio between the refractive index of
the particle np and that of the medium nm. The other force,
i.e., the gradient force, is related to the Lorentz force induced
by the electromagnetic field on the dipole. In the steady state,
the time-averaged gradient force reduces to [64,65]

~F grad�r, θ, z� �
2πnma3

c

�
m2 − 1

m2 � 2

�
∇I�r, θ, z�: (10)

Figures 4(c1)–4(c3) present the scattering and gradient forces
from the three POVBs studied earlier (Figs. 1 and 2), calculated
numerically according to Eqs. (8) and (10). Specifically, we ex-
amined the case of polystyrene spheres (mass density
1050 kg=m3) suspended in water, with the parameters in
the simulations chosen as np � 1.592, nm � 1.33, and
a � 20 nm. The scattering force, which acts mainly along
the beam propagation direction, is shown in Fig. 4(c1), and
the maximum scattering force exerted by the three POVBs fol-
lows the corresponding beam peak intensity evolution (see solid
white lines in Fig. 2), reaching the highest value near the focal
distance and then oscillating asymptotically for a long distance.
On the other hand, the gradient force acts in the transverse
direction and determines the ability of POVBs to trap a par-
ticle. Numerical results show that the gradient force associated
with a higher value of γ is much larger than for the other two
cases with a lower value of γ, especially after a long propagation

distance [see Figs. 4(c2) and 4(c3)]. Physically, the increased
gradient force is mediated by the pin-like feature of the vortex
beams, as the hollow-core POVB gets focused closer to the size
of the particle, thus guaranteeing a better trapping capability.
We believe that our numerical study on the optical forces pro-
vides a guide for employing the POVBs in experiments of op-
tical trapping applications, including three-dimensional
particle manipulation [66].

7. CONCLUSION

In this work, we have experimentally demonstrated pin-like op-
tical vortex beams and investigated their energy flow properties
by numerically calculating the Poynting vectors and the optical
radiation forces. These vortex beams are generated by modu-
lating both the amplitude and the phase profile of an input laser
beam through a spatial phase structure composed of a radially
symmetric power-law phase chirp profile and an OAM phase
term with an arbitrary topological charge. A POVB initially
exhibits an autofocusing evolution and reaches the maximum
intensity, and then it displays a reshaping of the amplitude pat-
tern into a high-order Bessel-like beam whose annular main-
lobe width and hollow-core radius change during propagation.
An appropriate design of the initial amplitude based on the
theoretical analysis allows control of the beam peak intensity
along with the propagation range. Moreover, we have also
shown that the transverse power flux initially flows radially
from the beam sub-lobes toward the beam center to form

Fig. 4. Numerical calculations of Poynting vectors associated to the POVBs with topological charge l � −2 for two different values of the ex-
ponent coefficient γ: (a1)–(a5) γ � 1 and (b1)–(b5) γ � 1.5. Background distributions show normalized intensity patterns of the POVBs at (vary-
ing) distances z � 100, 200, 300, 400, and 500 mm. Blue arrows highlight the magnitude and direction of the transverse components of the
Poynting vectors in the x−y plane. (c1)–(c3) Numerical calculations of the optical forces on a test polystyrene sphere suspended in water exerted
by the three POVBs studied in Figs. 1 and 2. (c1) Maximum scattering force as a function of the propagation distance z. (c2) and (c3) Transverse
gradient force from the POVB, calculated at two selected distances (c2) z � 200mm and (c3) 500 mm.
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the vortex structure and then localizes and rotates with the
higher values of the Poynting vectors concentrated in the main
lobe of the annular beam. Finally, we have studied the optical
radiation forces associated with these vortex pins and shown
their dependence on the design parameters for the POVBs.
These specially designed beams can lead to optimal optical forces
for trapping and manipulating a nanoparticle under test.
Moreover, this research expands the understanding of free-space
generation of antidiffracting optical vortex beams and builds
up a connection between singular optics and structured light,
which may find applications in different areas such as optical
communication and quantum information technologies.
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