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Bound states in the continuum (BICs) and Fano resonances in planar photonic lattices, including metasurfaces
and photonic-crystal slabs, have been studied extensively in recent years. Typically, the BICs and Fano resonances
are associated with the second stop bands open at the second-order Γ point. This paper addresses the fundamental
properties of the fourth stop band accompanied by BICs at the third-order Γ point in one-dimensional leaky-
mode photonic lattices. At the fourth stop band, one band edge mode suffers radiation loss, thereby generating a
Fano resonance, while the other band edge mode becomes a nonleaky BIC. The fourth stop band is controlled
primarily by the Bragg processes associated with the first, second, and fourth Fourier harmonic components of the
periodic dielectric constant modulation. The interplay between these three major processes closes the fourth band
gap and induces a band flip whereby the leaky and BIC edges transit across the fourth band gap. At the fourth stop
band, an accidental BIC is formed owing to the destructive interplay between the first and second Fourier har-
monics. When the fourth band gap closes with strongly enhanced radiative Q factors, Dirac cone dispersions can
appear at the third-order Γ point. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.417150

1. INTRODUCTION

Subwavelength planar photonic lattices, such as metasurfaces
[1–5] and photonic-crystal slabs [6,7], are used extensively
to manipulate electromagnetic waves. Phase-matched Bloch
modes with finite Q factors in the radiation continuum enable
incident light to be absorbed and reemitted at a resonant fre-
quency [8]. Based on the Fano resonances, or guided-mode res-
onances, various optical devices, such as reflectors [9,10], filters
[11–13], polarizers [14,15], lasers [16,17], and sensors [18,19],
have been implemented to date. However, under appropriate
conditions, the Bloch mode in the radiation continuum is com-
pletely decoupled from radiating waves and becomes a bound
state in the continuum (BIC), thereby representing an excep-
tional eigensolution of Maxwell’s equations with infinite life-
time [20–25]. Recently, robust BICs in a photonic-crystal
slab geometry have received widespread attention because they
are associated with fascinating and diverse physical phenomena,
such as topological natures [26–28], enhanced nonlinear effects
[29], and sharp Fano resonances [30–32].

In one-dimensional (1D) and two-dimensional (2D) pho-
tonic lattice slabs, most of the important properties of Fano
resonances and BICs are associated with the second stop bands
that are open at the second-order Γ point [33–37]. With proper

in-plane rotational symmetry, photonic lattices admit both
leaky and nonleaky edges at the second stop bands [38–40].
In principle, not only the second stop bands but also the fourth
bands, which open at the third-order Γ point, can exhibit BICs
and diverse zero-order spectral responses in the subwavelength
regime. However, to the best of our knowledge, no detailed
study on the fourth stop band in leaky-mode photonic lattices
has been reported thus far. In this paper, we elucidate the fun-
damental properties of the fourth stop bands at the third-order
Γ point. In leaky-mode photonic lattices, the fourth band gaps
are controlled primarily by the first-order diffraction due to the
fourth Fourier harmonic lattice component and, to a lesser ex-
tent, by the second- and fourth-order diffractions produced by
the second and first Fourier harmonic components, respec-
tively. The interplay of these three major diffraction processes
closes the fourth band gap and induces a band flip whereby the
leaky edge and the BIC edge transit across the fourth band gap.
We show that at the fourth stop band, an accidental BIC is
formed owing to the destructive interplay between the diffrac-
tions by the first and second Fourier harmonic components.
When the fourth band gap closes with strongly enhanced Q
factors, Dirac cone dispersions can appear at the third-order
Γ point.
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2. LATTICE STRUCTURE AND PERSPECTIVE

Figure 1(a) depicts three representative 1D photonic lattices
that support BICs and Fano resonances. The binary dielectric
grating (BDG) comprises materials with a high (ϵa) and a low
(ϵb) dielectric constant. The lattice constant is Λ, the thickness
of the grating layer is t , and the width of the high dielectric
constant sections is ρΛ. The double-sided grating (DSG)
and one-sided grating (OSG) are composed of a slab waveguide
layer with a grating layer attached to both and one of its inter-
faces, respectively. The DSG and OSG consist of dielectric
material (ϵa) with thickness of ta and tb for the thick and thin
regions, respectively. As shown in Fig. 1(b), owing to these peri-
odic modulations of the lattice parameters, the representative
1D lattices exhibit photonic band gaps at the Bragg condition
kz � qK ∕2, where kz is the Bloch wavevector, K � 2π∕Λ is
the magnitude of the grating vector, and q is an integer repre-
senting the Bragg order. The fourth (n � 4) and second
(n � 2) stop bands in the white region can be useful in prac-
tical applications because they can allow diverse zero-order
spectral responses via resonant coupling with outgoing plane
waves. The first stop band (n � 1) in the yellow region is
not associated with the leaky-wave effects because it is protected
by total internal reflection, and the leaky third stop band
(n � 3) in the gray region is less practial because it generates
unwanted higher-order diffracted waves alongside the zero-
order waves [41]. In general, the 1D lattices shown in
Fig. 1(a) can support multiple TE-polarized guided modes pro-
vided that their effective dielectric constants are larger than that
of the surrounding medium (ϵs), and each mode may possess
multiple band gaps [42]. In this study, we focus on the fourth
stop band of the fundamental TE0 mode as it underlies the key
properties of the fourth stop band. Because the fundamental
TE0 mode is sufficiently separated from the higher-order
TEn≥1 mode, there is no interaction between the TE0 and
TEn≥1 modes in the vicinity of the fourth stop band.

The three representative 1D lattices shown in Fig. 1(a) are
investigated through the rigorous finite element method (FEM)
simulations. We use the commercial software COMSOL
Multiphysics 5.3a. Because the 1D periodic structures studied
here are invariant in the y-direction, simulations are performed
in the 2D xz-plane. A computational cell of size Λ × 15Λ is
employed to obtain dispersion relations, Q factors, spatial elec-
tric field distributions, and transmission spectra. Bloch periodic

boundary condition is used in the x-direction, and a perfectly
matched layer absorbing boundary condition is employed in
the z-direction. For reliable simulations, we use physics-
controlled mesh with extremely fine element size.

3. RESULTS AND DISCUSSION

Key properties of the BDG structure at the fourth stop band are
illustrated in Figs. 2(a)–2(d), with equivalent plots representing
the second stop band shown in Figs. 2(e)–2(h) for comparison.
As shown in Fig. 2(a) [Fig. 2(e)], the fourth (second) stop band
opens at kz � 0 owing to the periodic modulations in the di-
electric constants. Simulated spatial electric field (Ey) distribu-
tions in the insets in Fig. 2(a) [Fig. 2(e)] show that the upper
(lower) band edge mode with symmetric field distributions ra-
diates from the grating layer, whereas the lower (upper) edge
mode with asymmetric field distributions is within the BDG
structure. The existence of a symmetry-protected BIC at the
fourth (second) stop band can be observed clearly by investi-
gating the radiative Q factors plotted in Fig. 2(b) [Fig. 2(f )]. At
the fourth (second) stop band, the symmetry-protected BIC in
the lower (upper) band exhibits aQ factor exceeding 1014 at the
third-order (second-order) Γ point, but the Q values decrease
abruptly as kz moves away from the Γ point. Next, the trans-
mission properties through the BDG with different incident
angles θ in the vicinity of the fourth and second stop bands
were investigated. As shown in Fig. 2(c) [Fig. 2(g)], at normal
incidence with θ � 0°, only one resonance due to the leaky
mode in the upper (lower) edge of the fourth (second) stop
band is observed. The symmetry-protected BIC at the lower
(upper) edge of the fourth (second) stop band is not shown
in the transmittance curve because it is a perfectly embedded
eigenvalue with an infinite Q factor and varnishing line width.
By contrast, when θ � 3°, two resonances due to the Bloch
modes in the upper and lower bands appear simultaneously
in the transmission spectra, and their locations follow the phase
matching condition kz � ks sin θ, where ks represents the
wave number in the surrounding medium. Because the posi-
tions of the resonances move along the dispersion curves plot-
ted in Figs. 2(a) and 2(e), the distance between the two
resonances increases as the incident angle increases. The Q fac-
tors of the resonances can be estimated from the radiative Q
factors presented in Figs. 2(b) and 2(f ). To further understand
the characteristics of resonant transmission phenomena, the
temporal coupled-mode theory can be helpful [43,44].

The simulated results illustrated in Figs. 2(a)–2(c) and
2(d)–2(f ) evidently reveal that the BDGs support BICs and
Fano resonances at the fourth and second stop bands, respec-
tively. However, the relative positions of a leaky edge, ωs, and a
bound state edge, ωa, are reversed for the second and fourth
stop bands. Figures 2(d) and 2(h) show the evolution of the
band edge frequencies ωs and ωa for the fourth and second
stop bands, respectively, as a function of ρ. As shown in
Fig. 2(h), as ρ increases from zero, the second band gap opens,
and its size first increases, then decreases, and becomes zero
when ρ � 0.47102 (i.e., a closed band state). The second band
gap reopens, and its size increases, decreases, and approaches
zero when ρ is increased further and approaches one. Before
and after the band gap closure, the symmetry-protected

Fig. 1. (a) Schematics of the representative 1D photonic lattices for
studying the fourth stop band. (b) Conceptual illustration of the pho-
tonic band structures including the first four band gaps. Guided waves
are described by the complex frequency Ω � ω − iγ, where γ repre-
sents the decay rate of the mode.
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BICs are located at the upper and lower band edges, respec-
tively. Conversely, as ρ varies from zero to one, the fourth stop
band exhibits three closed band states when ρ � 0.22822,
0.46857, and 0.72479, as shown in Fig. 2(d). Before and after
the band gap closures, the relative positions of the leaky and
bound state edges are reversed.

In principle, the dispersion relations of the guided modes in
the BDG can be obtained from the 1D wave equation [45]:

�
∂2

∂x2
� ∂2

∂z2

�
Ey�x, z� � ϵ�x, z�k20Ey�x, z� � 0, (1)

where k0 represents the wave number in free space.
Equation (1) can be solved by expanding the periodic dielectric
function ϵ�x, z� in a Fourier series and the electric field Ey as a
Bloch form [46]. In previous studies, Eq. (1) was solved near
the second-order Γ point by employing the semi-analytical
dispersion model in which the dielectric function is approxi-
mated as an even cosine function ϵ�z� � P

2
0 ϵn cos�nK z�,

where the Fourier coefficients are given by ϵ0 � ϵl � ρΔϵ
and ϵn≥1 � �2Δϵ∕nπ� sin�nπρ� [38,47]. The simple
dispersion model indicates that the second stop band is con-
trolled primarily by the first-order Bragg process, BR1,2, due
to the second Fourier harmonic ϵ2 cos�2K z�, and to a lesser
extent by the second-order Bragg process, BR2,1, due to the
first Fourier harmonic ϵ1 cos�K z�. As ρ varies from zero to
one, a critical value of ρ at which the second band closes
because BR1,2 and BR2,1 have the same strength and
opposite phase should arise; this occurs near ρ � 0.5 because
the strength of BR1,2, which is proportional to ϵ2 �
�Δϵ∕π� sin�2πρ�, diminishes and becomes zero as ρ approaches
0.5. A band flip occurs because the primary scattering process,
BR1,2, tends to locate the BIC at the lower (upper) band edge
when ρ < 0.5 (ρ > 0.5). The analytical dispersion describes
the simulation results for the second stop band, illustrated

in Figs. 2(e)–2(h), with impressive accuracy. At the second stop
band, the out-of-plane radiation loss is caused by BR2,1.

To understand the physical properties of the fourth stop
band, we investigated the band gap formation at the third-order
Γ point relative to the lattice harmonic content through
FEM simulations. Deriving the analytical expression for the
dispersion relations near the fourth stop band is challenging
with multiple higher-order Fourier harmonics, including
ϵ1 cos�K z�, ϵ2 cos�2K z�, ϵ3 cos�3K z�, and ϵ4 cos�4K z�.
Central to our approach is splitting the contributions
corresponding to the individual Fourier harmonics.
Figures 3(a)–3(e) illustrate the FEM-simulated fourth stop
bands andQ factors for the 1D lattices with dielectric functions
of ϵ0 � ϵ1 cos�K z�, ϵ0 � ϵ2 cos�2K z�, ϵ0 � ϵ3 cos�3K z�,
ϵ0 � ϵ4 cos�4K z�, and ϵ0 � ϵ5 cos�5K z�, respectively. As the
fourth stop band opens at the third-order Γ point (kz � 2K in
the extended Brillouin zone) under the Bragg condition
kz � q�π∕p�, in which p is the period of the dielectric constant
modulation and q represents the Bragg order, it is reasonable to
interpret that the stop bands denoted by ΔΩ1, ΔΩ2, and ΔΩ4

are formed by the fourth-order Bragg process, BR4,1, due to the
first Fourier harmonic, the second-order Bragg process, BR2,2,
due to the second Fourier harmonic, and the first-order Bragg
process, BR1,4, due to the fourth Fourier harmonic, respec-
tively. The third Fourier harmonic with a period of Λ∕3
and the higher-order Fourier harmonics ϵn≥5 cos�nK z� cannot
contribute to the fourth stop band by themselves. As can be
seen by Figs. 3(a), 3(b), and 3(d), the fourth band gap is con-
trolled primarily by BR1,4 because BR2,2 and BR4,1 are sub-
stantially weaker than the first-order Bragg process. We note
that the band structure of the non-approximated BDG
with full Fourier harmonics is very close to that of the approxi-
mated BDG with ϵ0 � ϵ4 cos�4K z�. Because the fourth
Fourier harmonic coefficient ϵ4 � �Δϵ∕2π� sin�4πρ� changes
its sign three times from � to −, or − to �, when

Fig. 2. Comparison between the key properties of the fourth (a)–(d) and second (e)–(h) stop bands. (a), (e) Simulated dispersion relations; (b),
(f ) radiativeQ factors; (c), (g) transmission spectra; and (d), (h) the evolution of the band edge frequencies as a function of ρ. The spatial electric field
(Ey) distributions in the insets in (a) and (e) indicate that one of the band edge modes becomes the symmetry-protected BIC. As ρ varies from zero to
one, the fourth stop band exhibits the closed band states three times, while the second stop band shows one band gap closure. The structural
parameters ϵ0 � 9.00, Δϵ � 2.00, ϵs � 1.00, t � 0.20Λ, and ρ � 0.35 were used in the FEM simulations.
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ρm�1,2,3 � 0.25 × m, it is reasonable to conclude that the
fourth band gap closes near ρm�1,2,3 when the three major scat-
tering processes, BR1,4, BR2,2, and BR4,1, are balanced destruc-
tively. The simulated spatial electric field distributions at the
upper and lower bands of ΔΩ4, illustrated in Fig. 4, are suffi-
cient to demonstrate that band flips occur because the primary
first-order scattering process, BR1,4, tends to locate the sym-
metric (asymmetric) Bloch modes at the lower (upper) band
edges when 0 < ρ < 0.25 and 0.50 < ρ < 0.75. The contri-
bution of the auxiliary processes BR2,2 and BR4,1 is limited to
moving the exact locations of the transition points.

Now, we show that an accidental BIC is formed via the de-
structive interplay between the diffractions by the first and sec-
ond Fourier harmonic components. The simulated radiative Q
factors illustrated in Fig. 3 indicate that, in the vicinity of the
fourth stop band, out-of-plane radiation loss is caused primarily
by the second-order BR2,2 due to the second Fourier harmonic,
and to a lesser extent by the fourth-order BR4,1 due to

the first Fourier harmonic. Higher-order Fourier harmonics
ϵn≥3 cos�nK z� do not contribute to the radiative Q factors
by themselves. Even though the first-order BR1,4 process
caused by the fourth Fourier harmonic contributes consider-
ably to opening the fourth band gap, the out-of-plane radiation
due to the first-order Bragg process is suppressed by the total
internal reflection at the fourth stop band. The fourth stop
band by BR1,4 shown in Fig. 3(a) is plotted in the Brillouin
zone with respect to the period of Λ. However, in the
Brillouin zone with respect to the period of Λ∕4, the stop band
by ϵ4 cos�4K z� should be located below the light line, just as in
the first stop band in the yellow region in Fig. 1(b). As shown in
Fig. 2(h), the second band gap can be closed because of the
destructive interaction between the first and second Fourier
harmonics owing to the variation of ρ [35,47]. Similarly, it
is reasonable to expect that as ρ varies from 0 to 1, a critical
value of ρ exists for which the radiation loss at the fourth stop
band vanishes as a result of the destructive interaction between
the first and second Fourier harmonics. To verify our conjec-
ture, we investigated the radiative Q factors of leaky edge
modes with the frequency ωs in the BDG as a function of
ρ with the results plotted in Fig. 5(a). Indeed, Fig. 5(a) dem-
onstrates that there is a critical value (ρ � 0.46909) at which
the leaky edge mode exhibits a Q value exceeding 1014 even
though it is not protected by the in-plane symmetry. Then,
to explore the formation mechanism of the accidental BIC,
the radiativeQ factors of leaky edge modes in the approximated
lattices with dielectric functions ϵ0 � ϵ1 cos�K z� and
ϵ0 � ϵ2 cos�2K z� were investigated. As illustrated in Fig. 5(b),
the Q factor corresponding to the BR4,1 (BR2,2) process
due to the first (second) Fourier harmonic becomes minimal
(diverges to a infinite value) when ρ � 0.5 because this is where
the first (second) Fourier coefficient is maximal (zero). There
are two fill factors, ρ � 0.46905 ≃ 0.46909 and 0.53095,
where the leaky edge Q factor (∼5 × 104) due to the first

Fig. 3. Simulated dispersion relations near the third-order Γ point in 1D leaky-mode lattices relative to the Fourier harmonic content. The
dielectric functions vary as (a) ϵ0 � ϵ1 cos�K z�, (b) ϵ0 � ϵ2 cos�2K z�, (c) ϵ0 � ϵ3 cos�3K z�, (d) ϵ0 � ϵ4 cos�4K z�, and
(e) ϵ0 � ϵ5 cos�5K z�. At the fourth stop band, out-of-plane radiation is induced by the interplay between the first and second Fourier harmonics,
whereas the size of the gap is determined by the interplay between the first, second, and fourth Fourier harmonics. Other than the dielectric
functions, the lattice parameters are the same as for Fig. 2.

Fig. 4. FEM-simulated spatial electric field distributions at the
upper and lower bands of ΔΩ4 due to the fourth Fourier harmonic.
The relative positions of the symmetric and asymmetric edges are re-
versed with the sign change of the fourth-order Fourier coefficient
ϵ4 � �Δϵ∕2π� sin�4πρ�.
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Fourier harmonic is the same as that due to the second Fourier
harmonic. As the signs of the first and second Fourier coeffi-
cients are the same (opposite) when ρ < 0.5 (ρ > 0.5), we con-
clude herein that the accidental BIC with a radiative Q factor
up to 1014 appears at the third-order Γ point because the ra-
diative waves due to the first and second Fourier harmonics
interfere with each other destructively [35,47]. By contrast,
when ρ � 0.53095, the Q value (∼ × 104) for the BDG be-
comes smaller than that (∼5 × 104) due to the first or second
Fourier harmonic because the radiative waves interfere con-
structively. The interplay between the first and second
Fourier harmonics is described in detail in a previous study
[35]. The spatial electric field distributions in the insets in
Fig. 5(a) evidently show that the leaky edge mode with
ρ � 0.46909 is confined within the grating layer, whereas
the leaky edge mode with ρ � 0.53095 radiates out of the gra-
ting. The formation of the accidental BICs can also be seen by
investigating the radiative Q factors of the Bloch modes as a
function of kz . For example, when ρ � 0.46909, as illustrated
in Fig. 5(c), both the symmetric and asymmetric edge modes
become BICs with Q factors exceeding 1014 at kz � 0,
although the Q values decrease gradually as kz moves away
from the Γ point. However, the Bloch modes in both the upper
and lower bands have high Q values (>107) across the entirety
of the simulated range of jkz j ≤ 0.065K . The Q factors in the
lattice with ρ � 0.46909 [shown in Fig. 5(c)] are approxi-
mately 103 times larger than those with ρ � 0.35 [see
Fig. 2(b)]. Figure 5(d) also reveals that the accidental BIC
at kz � 0 is split into two BICs at kz ≠ 0. The locations of
the BICs increasingly deviate from the Γ point as
jρ − 0.46909j increases from zero. It is worthwhile comparing
the enhanced Q factors around the Γ point, represented in
Fig. 5(c), with the topologically enabled ultrahigh-Q resonan-
ces reported in a recent study [48]. When multiple BICs merge

at the Γ point, the radiative Q factors near the Γ point are
strongly enhanced, and high Q factors resistant to out-of-plane
scattering can be achieved. Although the topologically en-
hanced Q factors reported in the previous study were achieved
around the second-order Γ point by tuning the period of the
lattice, our results show that the high Q values can be obtained
around the third-order Γ point by varying the fill factor, ρ, of
the lattice.

Next, we analyzed the closed band states at the third-order Γ
point. As indicated in Figs. 2(d) and 5(c), the value of
ρ � 0.46857 at which the fourth band gap closes is very close
to ρ � 0.46909 for which the radiative Q factors are signifi-
cantly enhanced in the vicinity of the third-order Γ point. It has
been demonstrated that a closed band state with suppressed
out-of-plane scattering loss leads to Dirac cone dispersion,
which is currently of great scientific interest [49,50].
Mathematically, Dirac cones refer to the closed band states with
crossing dispersion curves as straight lines in the vicinity of the
Γ point. Physically, Dirac cones represent massless photonic
states and are associated with many interesting phenomena,
such as photonic topological insulators [51–53] and zero-
refractive index materials [54–56]. As shown in Fig. 6(a), at
the closed band state with ρ � 0.46857, the dispersion curves
cross as straight lines, while ∂ω∕∂kz ≠ 0 at the third-order Γ
point. Conversely, at the closed band state with ρ � 0.22882
or 0.72479, there are finite ranges of Bloch wave vectors Δkz ,
for which ∂ω∕∂kz � 0, that ruin the Dirac cone dispersion.

Band dynamics accompanied by the BIC at the third-order
Γ point in the DSG structure were also investigated, with the
fundamental properties summarized in Fig. 7. The fourth band
gap opens at the third-order Γ point, as shown in Fig. 7(a). The
spatial electric field distributions shown in the insets in Fig. 7(a)
indicate that one of the band edge modes with an asymmetric
field distribution becomes the nonleaky symmetry-protected
BIC, while the other one, with a symmetric field distribution,
radiates out of the lattice. As can be seen by Fig. 7(b), the
symmetry-protected BIC in the lower band exhibits a Q factor
that is larger than 1014 at the Γ point, but theQ values decrease
abruptly and tend toward the Q factor in the upper band
(∼105) as kz moves away from the Γ point. Figure 7(c) dem-
onstrates that, at normal incidence with θ � 0°, only one res-
onance, caused by the leaky mode in the upper band, is
observed. The symmetry-protected BIC in the lower band is

Fig. 6. Simulated dispersion relations at the closed band states in
the vicinity of the third-order Γ point in the BDG structure with
(a) ρ � 0.46857, (b) ρ � 0.22882, and ρ � 0.72479. Dirac cone
dispersion can be obtained without the leaky band flattening when
the out-of-plane radiation loss is suppressed.

Fig. 5. (a) Simulated leaky edge Q factors at the fourth stop band in
the non-approximated BDG with full Fourier harmonics as a function
of ρ. (b) Radiative Q factors of the leaky edge modes in the approxi-
mated lattices with dielectric functions ϵ0 � ϵ1 cos�K z� and
ϵ0 � ϵ2 cos�2K z�. Radiative Q factors in the lower and upper band
branches in the full lattice as a function of kz when (c) ρ � 0.46909
and (d) ρ � 0.47.
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not shown in the transmittance curve. By contrast, when
θ � 3°, two resonances that can be attributed to the Bloch
modes in the upper and lower bands appear concurrently in
the transmission spectra. As ρ varies from zero to one, the
fourth stop band exhibits three closed band states when
ρ � 0.23396, 0.47313, and 0.72591 as shown in Fig. 7(d).
Before and after the band gap closures, the relative positions
of the leaky edge BIC edges are reversed. Figure 7(e) evidently
shows that a specific value of ρ � 0.47307 exists for which the
leaky edge Q factor diverges to infinity. As revealed in Fig. 7(f ),
in the DSG with ρ � 0.47307, the Q factors in the lower and
upper bands are significantly enhanced in the entirety of the

simulated range of jkz j ≤ 0.065K . Furthermore, Fig. 7(g) also
demonstrates that, at the closed band state with ρ � 0.47313,
the dispersion curves cross as straight lines and ∂ω∕∂kz ≠ 0 at
the third-order Γ point, which is attributed to the strong sup-
pression of out-of-plane scattering losses by the destructive in-
terplay between the first and second Fourier harmonics.
Alternatively, at the closed band states with ρ � 0.23396
and 0.72591, Fig. 7(h) clearly shows that Dirac cone disper-
sions are ruined owing to the finite ranges of Bloch wave vectors
Δkz for which ∂ω∕∂kz � 0 [35,49]. To summarize, the key
properties of the DSG structure, illustrated in Fig. 7, are the
same as those of the BDG.

We also considered the band dynamics at the fourth stop
band in the OSG structure. For practical applications, fabrica-
tion of the OSG is more convenient than that of DSG with up-
down mirror symmetry. As can be seen by Figs. 8(a)–8(d), the
dispersion relations, radiative Q factors, transmission spectra,
and evolution of band edge frequencies for the OSG structure
exhibit the same tendencies as in the DSG and BDG structures.
However, a noticeable difference between the OSG and DSG
structures can be found by comparing the simulated Q factors
as a function of ρ from Figs. 8(e) and 7(e). While the Q values
for the DSG seem to diverge to an infinite value at

Fig. 7. Properties of the DSG structure at the fourth stop band.
(a) Simulated dispersion relations and (b) radiative Q factors near
the third-order Γ point. (c) Transmission spectra exhibiting Fano res-
onances when θ � 0° and θ � 3°. (d) Evolution of the band edge
frequencies as a function of ρ. (e) Leaky edge Q factors as a function
of ρ. (f ) Radiative Q factors in the lower and upper band branches as a
function of kz when ρ � 0.47307. Dispersion relations at the closed
band states when (g) ρ � 0.47313, (h) ρ � 0.22396, and
ρ � 0.72591. In the FEM simulations, the average thickness
t0 � 0.15Λ was kept constant, and we used Δt � ta − tb � 0.05Λ,
ϵa � 12.00, and ϵs � 1.00.

Fig. 8. Properties of the OSG structure at the fourth stop band.
(a) Simulated dispersion relations and (b) radiative Q factors near
the third-order Γ point. (c) Transmission spectra exhibiting Fano res-
onances when θ � 0° and θ � 3°. (d) Evolution of the band edge
frequencies as a function of ρ. (e) Leaky edge Q factors as a function
of ρ. (f ) Radiative Q factors in the lower and upper band branches as a
function of kz when ρ � 0.50273. Structural parameters are the same
as for Fig. 7.
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ρ � 0.47307, the Q factors for the OSG [Fig. 8(e)] are satu-
rated to a finite value (∼107) at ρ � 0.50273. By inspecting
Figs. 5, 7, and 8, it is reasonable to conclude that the accidental
BIC, which is caused by the destructive interplay between the
first and second Fourier harmonics, can be achieved in pho-
tonic lattices with up-down mirror symmetry. This conclusion
is consistent with previous studies in which various BICs be-
yond the protection of in-plane symmetry have been intro-
duced [57–59]. However, Fig. 8(f ) evidently shows that Q
factors in both the lower and upper bands are notably increased
in the vicinity of the Γ point when ρ � 0.50273. TheQ factors
in the lattice for which ρ � 0.50273 are approximately 103

times larger than those with ρ � 0.40 [see Fig. 8(b)].
In this study, we completed a detailed analysis of the fourth

stop bands of leaky-mode photonic lattices. Our results indicate
that the fourth stop band can potentially be used to manipulate
electromagnetic waves, similar to how second stop bands have
been exploited. One advantage of utilizing the fourth stop band
may be the convenience of the nanofabrication. Because
the photonic band gaps are open at the Bragg condition
kz � qK ∕2, the pitch size of a photonic device employing
the fourth stop band can be approximately two times larger
than that employing the second stop band. We believe that
current state-of-the-art nanofabrication technology is enough
to demonstrate the band dynamics and BICs at the third-order
Γ point. Furthermore, Dirac cone dispersions can be realized at
the closed band state owing to the enhanced Q factors at the
third-order Γ point.

4. CONCLUSION

In conclusion, we investigated the band dynamics accompany-
ing BICs at the third-order Γ point in three representative 1D
photonic lattices through rigorous FEM simulations. Our
analyses show that the fourth stop band is controlled primarily
by the first-order diffraction arising from the fourth Fourier
harmonic lattice component and, to a lesser extent, by the sec-
ond-order and fourth-order diffractions caused by the second
and first Fourier harmonic contents, respectively. Near the fill
factors of 0.25, 0.50, and 0.75, for which the fourth-order
Fourier coefficient becomes zero, the auxiliary processes be-
come competitive with the primary process. It is the interplay
between these three major processes that closes the fourth band
gap and induces the band flip whereby the leaky and BIC edges
transit across the fourth band gap. It was also revealed that the
out-of-plane radiation loss at the fourth stop band is caused
primarily by the second Fourier harmonic component and,
to a lesser degree, by the first Fourier harmonic. In the
BDG and DSG lattices with up-down mirror symmetry, acci-
dental BICs are formed because of the destructive interference
between the second-order diffraction by the second Fourier
harmonic and the fourth-order diffraction by the first
Fourier harmonic. When the out-of-plane radiation is signifi-
cantly suppressed near a fill factor of 0.5, Dirac cone disper-
sions can appear without the leaky band flattening. As the
grating modulation strength increases, the closing point with
the Dirac cone dispersion is increasingly pulled away from
0.5. In the OSG, which lacks the up-down mirror symmetry,
Q factors at the fourth stop band also increase noticeably owing

to the destructive interplay between the first and second Fourier
harmonics. However, an accidental quasi-BIC is observed in
the OSG because the Q values are saturated to a finite value.
Although this study was restricted to the band dynamics of the
lowest fundamental mode in 1D leaky-mode photonic lattices,
the extension of this work to higher-order guided modes and
2D lattices is feasible. Moreover, this study may be helpful in
manipulating electromagnetic waves by utilizing high-Q Bloch
modes in the vicinity of the third-order Γ point.
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