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Cylindrical vector beams (CVBs), which possess polarization distribution of rotational symmetry on the trans-
verse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain
redundant interferometers or need to switch among diverse elements, thus being inconvenient in applications
containing multiple CVBs. Here we provide a passive polarization-selective device to substitute interferometers
and simplify generation setup. It is accomplished by reversing topological charges of orbital angular momentum
based on a polarization-selective Gouy phase. In the process, tunable input light is the only condition to generate
a CVB with arbitrary topological charges. To cover both azimuthal and radial parameters of CVBs, we express the
mapping between scalar Laguerre–Gaussian light on a basic Poincaré sphere and CVB on a high-order Poincaré
sphere. The proposed device simplifies the generation of CVBs enormously and thus has potential in integrated
devices for both quantum and classic optical experiments. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.419368

1. INTRODUCTION

It is known that angular momentum of light has a spin part
associated with polarization [1] and an orbital part associated
with spatial distribution [2]. A cylindrical vector beam (CVB)
[3–5], acting as a solution of the vectorial Helmholtz equation
[6,7], combines the two parts of angular momentum. Radial
polarization and azimuthal polarization are the most conspicu-
ous CVBs. Under tight focusing [8–10], radial polarization
possesses a sharper focal spot than a homogeneously polarized
beam [11,12], while azimuthal polarization can be focused into
a hollow spot [13]. These peculiar properties are useful for
many applications, such as particle manipulation [14–18],
microscopy [19–21], material processing [22–24], near-field
optics [25], and nonlinear optics [26]. Recently, the degrees of
freedom of CVB are extended by ray-like trajectories [27], so
that CVBs also present growing potential in the area of optical
encoding [28] and optical communications [29–32].

There are many methods to generate CVBs. Special intra-
cavity resonators could directly generate CVBs from a laser

when the cavity geometry is precisely controlled into a
frequency-degenerate state [33–37]. Meanwhile, single-element
CVB generators have been introduced to tailor Pancharatnam–
Berry phases [38–41], supporting modulation of a couple of
orthogonal polarization bases with conjugate phase distribu-
tions, to generate CVBs from a given basic laser mode. All
of these methods need to switch in different elements to gen-
erate CVBs with different topological charges, which is incon-
venient in experiments that involve multiple CVBs. For
example, if there is a circumstance that requests a tunable
superposition state of CVBs with arbitrary customized ampli-
tudes on each basis, solid metasurfaces will not be satisfactory.
With the same circumstance, implementations containing
interferometers, where two orthogonal polarizations are modu-
lated by spatially programmable devices individually and are
then combined together [42], still work. Though ingenious de-
vices with high robustness [43–45] are developed, their com-
plexity of modulating two individual parts still sets them as
bulky and redundant. Therefore, it is significant to create a
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compact passive device to generate CVBs with arbitrary topo-
logical charges.

In this paper, we provide and demonstrate a passive device to
generate CVBs with arbitrary azimuthal and radial topological
charges. It is composed with a couple of polarization-selective
cylindrical lenses to realize the mode-dependent π Gouy phase
[46,47] in a single polarization. The device could remain un-
changed no matter the topological charges of CVBs. It even
adapts to generate superimposed CVBs by employing custom-
ized wavefront modulation in incident homogeneous polariza-
tions. In physics, the device creates a robust connection
between homogeneous polarizations and CVBs, where homo-
geneous polarizations can be marked on a basic Poincaré sphere
(PS), and CVBs can be marked on a high-order Poincaré sphere
(HOPS) [48]. Mapping relationships between states on the ba-
sic PS and the first-order HOPS are experimentally proved by
Stokes parameters of five representative states. Petal-like inten-
sities are also collected to verify the extensive potential for gen-
erating states on other HOPSs.

2. MAPPING THEORY

Here Laguerre–Gaussian (LG) modes, a complete set for
presenting transverse modes, are expressed with complex
amplitude:

ul,p�r,ϕ, z� � C jlj,p�r, z� exp�−ilϕ�, (1)

where r, ϕ, and z are spatial polar coordinates, l and p are
indices of azimuthal and radial coordinates, respectively. l is
an integer and p is a natural number. C jlj,p marks a coefficient
related to jlj and p, while exp�−ilϕ� denotes the spiral phase of
wavefront, which represents the orbital angular momentum
(OAM) of light with topological charge l. Employing Dirac
notations, OAM state is expressed with jli, and polarization
is characterized with circular bases fjRi, jLig. They construct
direct product state

jψ�2υ; 2γ�i � �cos υjRie−iγ � sin υjLieiγ� ⊗ jli
� cos υjl,Rie−iγ � sin υjl, Lieiγ , (2)

which can be set on the surface of a basic PS as shown in
Fig. 1(a), where 2υ is a polar angle ranging in the region

�0, π�, 2γ is an equator angle ranging in �0, 2π�, and three
spatial axes represent Stokes parameters S1, S2, and S3.
CVB is defined with

jψl�2υ; 2γ�i � cos υjl,Rie−iγ � sin υj − l, Lieiγ , (3)

which can be unified in an analytic model referred to as HOPS
[48], where the simplest is first-order HOPS (l � 1), as shown
in Fig. 1(b). The definition of spherical surface in Eq. (3) and
the circumstance of basic PS in Eq. (2) manifest a mapping
relationship where the bases change from fjRi, jLig to
fjl,Ri, j − l, Lig.

Both radial polarization and azimuthal polarization are
located on the equator of first-order HOPS. Denoting jRi �
�jH i − ijV i�∕ ffiffiffi

2
p

and jLi � �jH i � ijV i�∕ ffiffiffi
2

p
, Eq. (3)

indicates the radial vector beam is marked with jψ1�π∕2,0�i,
and the azimuthal vector beam is notated with jψ1�π∕2, π�i
[49]. For convenience, they are abbreviated with spherical co-
ordinates �π∕2,0� and �π∕2, π�. The corresponding states with
the same coordinates �π∕2,0� and �π∕2, π� for basic PS are jH i
and jV i polarizations, respectively. Figure 1 elucidates the con-
nection between the basic PS and the first-order HOPS via sev-
eral representative points on the sphere. Points a1–a6 selected
on the surface of the basic PS as shown in Fig. 1(a) include
polarization states evolving from horizontal polarization
�π∕2,0� to diagonal polarization �π∕2, π∕2� along with the
equator and then turning to a general elliptic polarization
�π∕4, π∕2� along with the longitude line. Points a1–a6 corre-
spond to points b1–b6 at the same positions of the first-order
HOPS, which represent CVBs as shown in Fig. 1(b).

3. IMPLEMENTATION

Significantly, the mapping is characterized by a polarization-
selective conversion where jl, Li is converted to j − l, Li
and jl,Ri remains unchanged. For this reason, the device
needs two functions: response of polarization and inversion of
index l.

Inspired by the design of the Q-plate [38], we employ liquid
crystal (LC) films coated on a pair of cylindrical lenses to realize
the conversion of polarization-selective response. As shown in
Fig. 2(a), a polarization-selective cylindrical lens is constructed
with isotropic glass lens and inhomogeneous LC film. In
fabrication, plano-convex (cylindrical) isotropic glass (SiO2)

(a) (b)

Fig. 1. (a) Basic Poincaré sphere. Selected points a1–a6 on the surface include polarization states from linear polarization to elliptical polarization.
(b) First-order HOPS. Selected points b1–b6 represent six CVBs on the surface. 2υ is polar angle, and 2γ is equator angle of arbitrary state vectors
directing to points on the surfaces. Points a1–a6 map b1–b6 one by one, which is just realized by the proposed device.
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provides a common dynamic phase with thickness l0 − y2∕
2f �n − n0� regardless of polarization, where y is chosen as
the converging direction of the cylindrical lens, n is the refrac-
tive index of the glass material, n0 is the refractive index of air,
l 0 is a constant thickness, and f is the designed focal length.
The operator of the common glass lens is expressed with
exp��iϕ1��jLihLj � jRihRj�, where ϕ1 � −ky2∕2f according
to Fresnel paraxial approximation. LC film is produced by four
steps: (a) spin coat a photo-alignment layer onto cleaned sub-
strate (plano-convex); (b) expose the substrate to a hologram of
cylindrical wavefront implemented by a He-Cd laser beam of
325 nm wavelength; (c) spin coat LC solution onto a photo-
alignment layer, which induces the alignment of LC molecules
periodically under the anchoring effect; and (d) with irradiation
of a mercury-xenon lamp, polymerize the LC coating under
ultraviolet light. An accurate thickness with a customized focal
length under 632.8 nm He–Ne laser source is obtained by
multi-layer spin coating of LC solution. Thickness of LC film
is mainly controlled via angular velocity of spin coating and
concentration of LC solution, and then provides an extra geo-
metric phase [50–54] by metallic distribution of fast axis angle
θ � ky2∕4f related to the direction of the x axis, written with
operator exp�−iϕ2�jLihRj � exp��iϕ2�jRihLj, in which
ϕ2 � −ky2∕2f . The compound operator, expressed with

exp�i�ϕ1 − ϕ2��jLihRj � exp�i�ϕ1 � ϕ2��jRihLj
� jLihRj � exp�−iky2∕f �jRihLj, (4)

means a polarization-selective cylindrical lens [55] with y direc-
tional focal length f ∕2 operating on jLi is fabricated.

The inversion of index l derives from the coefficient’s
conversion of Hermite–Gaussian (HG) modes. For complex
amplitude of HG mode, uHG

nm , n and m are two indices corre-
sponding to x and y coordinates in the transverse plane. It can
be seen that an LG mode, uLGnm , can be decomposed into a set of
HG modes with the same order N (N � n� m � 2p� jlj),

written as uLGnm�x, y, z� �
PN

k�0 i
kb�n,m, k�uHG

N−k,k�x, y, z�. Real
coefficient b�n,m, k� is given by [46]

b�n,m, k� �
��N − k�!k!

2N n!m!

�
1∕2 1

k!
dk

dtk
��1 − t�n�1� t�m�t�0,

(5)

where t is a continuous parameter around the zero point.
Exchanging n and m in Eq. (5), it is deduced that
b�m, n, k� � �−1�kb�n,m, k�. By definition l � n − m in
LG mode, extra factor �−1�k fits the conversion coefficients
from l to −l.

In the following, a polarization-selective device is con-
structed operating on HG modes (uHG

nm ), where astigmatic
Gouy phase Gy is used to supply such an extra factor associated
with mode index m, exactly �−1�m, or written as exp�−imGy�
with Gy � π. Gy corresponds to cylindrical convergences set in
the y direction. As shown in Fig. 2(b), two polarization-selec-
tive cylindrical lenses are set at the symmetrical positions rel-
ative to original point O. The condition for first piece of lens is
ϕ1 − ϕ2 � 0, causing left-handed circular polarization (LCP)
to become right-handed circular polarization (RCP) accompa-
nied with converging effect, while RCP becomes LCP without
other effect. Correspondingly, the second piece of lens, which is
set in symmetrical position (flipped), turns RCP back to LCP
with converging effect, such that only LCP of incident light
accumulates Gy [56] between the two polarization-selective
cylindrical lenses. The amount of Gy is decided by the distance
between two lenses, d , and designed focal length of them,
f ∕2, under proper coupling conditions. Exactly, Gy �
2 arcsin �d∕f �, where 0 < d ≤ f . The phase of wavefront per-
forms a 2π period, so the mode-dependent phase takes effects
along the instruction of G � mod�m · Gy; 2π�. Figure 2(c)
shows amounts of G for m � 0 to 5 in sequence. When
d∕f � 1, special points marked with red angles perform like
a phase switch between 0 and π along with the m axis, showing

Fig. 2. (a) Fabrication of polarization-selective cylindrical lens. (b) PGPS, which contains two symmetric polarization-selective cylindrical lenses
and operates on LCP only. (c) Gouy phases accumulated by PGPS for modes with different indices m � 0 to 5; the special points involved in the
device are marked with red angles.
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factor �−1�m is attained and index l becomes −l successfully.
d∕f � 1 means Gy � π, so the device is called the π phase
polarizing Gouy phase shifter (π-PGPS).

Figure 3 shows the experimental scheme. He-Ne laser
derives a 632.8 nm Gaussian beam whose polarization is pro-
jected to horizontal by a half-wave plate (HWP) and a polar-
izing beam splitter (PBS). Two lenses constitute an expander to
provide an almost plane wave for the spatial light modulator
(SLM, Holoeye, Pluto-VIS-016). Fork-like holograms [57]
are loaded on the screen of the SLM to produce LG modes.
The beam splitter (BS) ensures light beam propagates in the
correct path. Two lenses and the iris select the first order of
diffracted light after the SLM by reducing them into an appro-
priate scale. The characteristics of the SLM determine that the
original polarization of the selected beam is horizontal. If a pre-
production of polarization is necessary, a quarter-wave plate
(QWP) and an HWP will be included in the optical circuit.
Then the π-PGPS takes effects to generate CVBs. The follow-
ing QWP, HWP, PBS, and a charge-coupled device (CCD)
constitute a framework to examine Stokes parameters. By
changing angles of the fast axes of QWP and HWP relative
to the x axis, polarizations can be reconstructed with intensities
recorded by CCD. Exactly, Stokes parameters are computed via
[58,59]

S0 � I�0°, 0°� � I�0°, 45°�, (6a)

S1 � I�0°, 0°� − I�0°, 45°�, (6b)

S2 � I�45°, 22.5°� − I�45°, 67.5°�, (6c)

S3 � I�45°, 0°� − I�−45°, 0°�, (6d)

where I represents collected intensities, the first angle in the
parentheses is of the QWP, and the second angle is of the
HWP. Results for S0–S3 are revealed in Fig. 4. The quality
can be evaluated by comparing the outcomes computed from
collected intensities with corresponding values (lower-left cor-
ner) computed from simulated intensities. Radial polarization
�π∕2,0� and azimuthal polarization �π∕2, π� are shown in the
first two lines of Fig. 4. Original experimental pictures are col-
lected in a relative low-intensity level in escape of overexposure
of CCD, so the collections are sensitive to imperfect area of
every optical element, such as SLM and PGPS. For common

instances, states marked with �π∕2, π∕2�, �π∕4, π∕4�, and
�π∕4,3π∕4� on the first-order HOPS are presented in the last
three lines. All of the experimental results agree well with the
simulated values, so that the device is effective in generating
CVBs on the surface of the first-order HOPS. Obviously, all
elements in the installation take effects in the reverse propaga-
tion, thus proving the device constructs a credible and revers-
ible connection between the basic PS and the first-order HOPS
successfully.

As for jlj > 1, higher-order HOPSs are constructed.
Representatively, a state on the equator of the HOPS can be
examined by casting it into horizontal polarization via transmit-
ted port of the PBS. The transmitted intensity performs special
distribution that satisfies the petal-like shape, denoted by
I � jhH jψl�γ, υ�ipj2, where subscript p is the same with
the index of the LG mode. Combined with Eqs. (1) and (3),
it is calculated that I � jC j2

2 �1� sin�2υ� cos�2lϕ� 2γ��, indi-
cating there are 2jlj pieces of intensity petals. In other words,
the number of petals can be exploited to characterize the azi-
muthal index l of the CVB, or called the order of the HOPS.
Equation (1) shows that radial index p is separated from the
operation of l, meaning p is an individual parameter in the
construction of the HOPS. Radial index p remains unchanged,
and azimuthal phase exp�−ilϕ� is reversed to exp�ilϕ� under
the effect of the proposed device, so that all LG modes are con-
nected with non-degenerated CVB completely. In notations,
LG modes and CVB modes are both defined with two topo-
logical charges l and p where the two indices map with the
same order of each other, respectively. Expression of CVB con-
taining p is written as

Fig. 3. Schematic of the experimental setup for generating arbitrary
CVBs.

Fig. 4. Stokes parameters of CVBs. The left column displays the
tailoring polarization vectors of CVBs, followed by columns of
Stokes parameters S0 to S3. Subpictures in the lower-left corner are
theoretical values. CVBs are sampled from the first-order HOPS,
where �π∕2,0�, �π∕2, π�, �π∕2, π∕2�, �π∕4, π∕4�, and �π∕4, 3π∕4�
represent their positions on the spherical surface.
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jψl�2υ; 2γ�ip � cos υjl,Ripe−iγ � sin υj − l, Lipeiγ , (7)

where jψl�2υ; 2γ�ip ≡ jψl�2υ; 2γ�i ⊗ jpi. The general func-
tion of the device is illustrated by

Gjψ�2υ; 2γ�ip � jψl�2υ; 2γ�ip (8)

containing the generation of CVB with both l and p indices.G
marks the operator of our device. In the experiment, LG modes
with l � 1, 2, 3, 4 and p � 0, 1 are generated by the SLM. As
shown in Fig. 3, removing the two HWPs and two QWPs
around PGPS from the circuit, petal-like intensities are col-
lected directly after PGPS and a PBS. In Fig. 5, the first
row is set for results of p � 0, the second row is for p � 1.
These pictures represent that the fabricated device is effective
for CVB with both l and p indices. States on other ultrahigh-
order HOPS are tested by tuning LG10,2 (LGl,p), LG10,3,
LG10,5, and LG50,1 modes with results shown in the third
line of Fig. 5. In the collected intensities, the outline of petals
is always clear, showing the device works well with these higher-
order CVBs.

4. CONCLUSION

We propose and demonstrate a passive device based on π-PGPS
to generate arbitrary CVBs with both l and p indices even in
ultrahigh order. The device simplifies existing schemes for gen-
eration and builds a solid connection between a simple scalar
field on the basic PS and sophisticated CVBs on the HOPS.
Extensively, states on hybrid order Poincaré sphere (HyOPS)
[60,61] can be implemented with the help of a spiral phase
plate (SPP), which provides a shift of l index of LG modes
regardless of polarization. The device supplements a convenient
operation for quantum information and communications ex-
periments [62–64], taking effects on the polarization-selective
mode index inversion. Generally, it can be extended to
other polarization-selective converters besides Gy � π and sup-
ports more splendid mode-dependent conversion of polariza-
tions. The method is flexible to other techniques such as

metamaterials [65–67] and metalenses [68,69], which may
help to miniaturize the optical device on chips [70–72].
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