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The Einstein–Podolsky–Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the
lack of a local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept
of “quantum nonlocality,” which manifests itself in three types: quantum entanglement, quantum steering, and
Bell’s nonlocality. Although Bell’s nonlocality is more often used to show “quantum nonlocality,” the original
EPR paradox is essentially a steering paradox. In this work, we formulate the original EPR steering paradox into a
contradiction equality, thus making it amenable to experimental verification. We perform an experimental test of
the steering paradox in a two-qubit scenario. Furthermore, by starting from the steering paradox, we generate a
generalized linear steering inequality and transform this inequality into a mathematically equivalent form, which
is friendlier for experimental implementation, i.e., one may measure the observables only in the x, y, or z axis of
the Bloch sphere, rather than other arbitrary directions. We also perform experiments to demonstrate this scheme.
Within the experimental errors, the experimental results coincide with theoretical predictions. Our results deepen
the understanding of quantum foundations and provide an efficient way to detect the steerability of quantum
states. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.411033

1. INTRODUCTION

The quantum paradox has provided an intuitive way to reveal
the essential difference between quantum mechanics and
classical theory. In 1935, by considering a continuous-variable
entangled state Ψ�x1, x2� �

R�∞
−∞ eip�x1−x2�x0�∕ℏdp, Einstein,

Podolsky, and Rosen (EPR) proposed a thought experiment to
highlight a famous paradox [1]: either the quantum wave-
function does not provide a complete description of physical
reality, or measuring one particle from a quantum entangled
pair instantaneously affects the second particle regardless of
how far apart the two entangled particles are. The EPR paradox
has revealed a sharp conflict between local realism and quantum
mechanics, thus triggering the investigation of nonlocal proper-
ties of quantum entangled states. Soon after the publication of
the EPR paper, Schrödinger made an immediate response by
introducing the term “steering” to depict “the spooky action at
a distance” that was mentioned in the EPR argument [2].
According to Schrödinger, “steering” reflects a nonlocal

phenomenon that, in a bipartite scenario, describes the ability
of one party, say Alice, to prepare the other party’s, say Bob’s,
particle in different quantum states by simply measuring her
own particle using different settings. However, the notion of
steering did not gain much attention or development until
2007, when Wiseman et al. gave a rigorous definition using
concepts from quantum information [3].

Undoubtedly, the EPR paradox is a milestone in quantum
foundations, as it has opened the door of “quantum nonlocal-
ity.” In 1964, Bell made a distinct response to the EPR paradox
by showing that quantum entangled states may violate Bell’s
inequality, which hold for any local-hidden-variable model
[4]. This indicates that local-hidden-variable models cannot re-
produce all quantum predictions, and the violation of Bell’s in-
equality by entangled states directly implies a kind of nonlocal
property—Bell’s nonlocality. Since then, Bell’s nonlocality has
achieved rapid and fruitful development in two directions [5].
(i) On one hand, more and more Bell’s inequalities have been
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introduced to detect Bell’s nonlocality in different physical
systems, e.g., the Clause–Horne–Shimony–Holt (CHSH) in-
equality for two qubits [6], the Mermin–Ardehali–Belinskii–
Klyshko (MABK) inequality for multipartite qubits [7], and
the Collins–Gisin–Linden–Masser–Popescu inequality for two
qudits [8]. (ii) On the other hand, some novel quantum para-
doxes, or the all-versus-nothing (AVN) proofs, have been sug-
gested to reveal Bell’s nonlocality without inequalities. Typical
examples are the Greenberger–Horne–Zeilinger (GHZ) para-
dox [9] and the Hardy paradox [10]. Experimental verifications
of Bell’s nonlocality have also been carried out; for instance,
Aspect et al. successfully made the first observation of Bell’s
nonlocality with the CHSH inequality [11], Pan et al. tested
the three-qubit GHZ paradox in a photon-based experiment
[12], and very recently, Luo et al. tested the generalized
Hardy paradox for multi-qubit systems [13].

Despite being developed from the EPR paradox, Bell’s non-
locality does not directly correspond to the EPR paradox. As
pointed out in Ref. [3], inspired by the EPR argument, one
can derive three types of “quantum nonlocality”: quantum en-
tanglement, quantum steering, and Bell’s nonlocality. The
original EPR paradox is actually a special case of quantum steer-
ing [14]. Although quantum steering has been experimentally
demonstrated in various quantum systems [15–24], all of these
experiments just indirectly illustrate the EPR paradox, in which
most of them are based on statistical inequalities. Here the di-
rect illustration of a quantum paradox means that we can find a
contradiction equality for this paradox and demonstrate it (Ref.
[16] is an AVN proof but not a contradiction equality). For
example, (i) the GHZ paradox [9] can be formulated as a con-
tradiction equality “�1 � −1”, where “�1” represents the pre-
diction of the local-hidden-variable model, while “−1” is the
quantum prediction. Thus, if one observes the value of “−1” by
some quantum technologies in experiments, then the GHZ
paradox is demonstrated. (ii) The formulation of the Hardy
paradox [10] is given as follows: under some certain Hardy-type
constraints for probabilities P1 � P2 � � � � � PN � 0, any
local-hidden-variable model predicts a zero probability
(i.e., Psuc � 0), while quantum prediction is Psuc > 0, where
Psuc is the success probability of a specific event. Upon success-
fully measuring the desired non-zero success probability under
the required Hardy constraints, one verifies the Hardy paradox.
A natural question arises as to whether the EPR paradox, which
excludes any local-hidden-state (LHS) model, can be illustrated
in a direct way just like the GHZ or Hardy paradox.

The purpose of this paper is two-fold. (i) Based on our pre-
vious results of the steering paradox “2 � 1” [25], we present a
generalized steering paradox “k � 1.” We also perform an ex-
periment to illustrate the original EPR paradox through dem-
onstrating the steering paradox “2 � 1” in a two-qubit
scenario. (ii) A steering paradox can correspond to an inequality
(e.g., the two-qubit Hardy paradox may correspond to the
well-known CHSH inequality) [26,27], and from the steering
paradox “k � 1,” we generate a generalized linear steering in-
equality (GLSI), which naturally includes the usual LSI as a
special case [3,15]. Also, the GLSI can be transformed into
a mathematically equivalent form, but is friendlier for experi-
mental implementation, i.e., one may measure the observables

only in the x, y, or z axis of the Bloch sphere, rather than other
arbitrary directions. We also experimentally test quantum vio-
lations of the GLSI, which shows that it is more powerful than
the usual one in detecting the steerability of quantum states.

2. EPR PARADOX AS A STEERING PARADOX
“k = 1”

Following Ref. [25], let us consider an arbitrary two-qubit pure
entangled state ρAB � jΨ�α,ϕ�ihΨ�α,φ�j shared by Alice and
Bob. Using the Schmidt decomposition, i.e., in the ẑ-direction
representation, the wave-function jΨ�α,φ�i may be written as

jΨ�α,φ�i � cos αj00i � eiφ sin αj11i, (1)

with α ∈ �0, π∕2� andφ ∈ �0, 2π�. For the same state Eq. (1),
in the general n̂-direction decomposition, one may recast
it to

jΨ�α,φ�i � j � n̂ijχ�n̂i � j − n̂ijχ−n̂i, (2)

where j 	 n̂i are the eigenstates of the operator
P̂n̂
a � �1� �−1�a~σ · n̂�∕2 denoting Alice’s projective measure-

ment on her qubit along the n̂ direction with measurement out-
comes a (a � 0, 1), 1 is the identity matrix, ~σ � �σx , σy, σz� is
the vector of Pauli matrices, and jχ	n̂i � h	n̂jΨ�α,φ�i are the
collapsed pure states (unnormalized) for Bob’s qubit.

By performing a projective measurement on her qubit along
the n̂ direction, Alice, by wave-function collapse, steers Bob’s
qubit to the pure states ρn̂a � ρ̃n̂a∕tr�ρ̃n̂a� with the probability
tr�ρ̃n̂a�; here ρ̃n̂a � trA��P̂n̂

a ⊗ 1�ρAB � are the so-called Bob’s un-
normalized conditional states, and ρn̂a are the normalized ones
[3]. In a two-setting steering protocol fẑ, x̂g, if Bob’s four un-
normalized conditional states can be simulated by an ensemble
f℘ξρξg of the LHS model, then these may be described as [25]

ρ̃ẑ0 � cos2αj0ih0j � ℘1ρ1, (3a)

ρ̃ẑ1 � sin2αj1ih1j � ℘2ρ2, (3b)

ρ̃x̂0 � �1∕2�jχ�ihχ�j � ℘3ρ3, (3c)

ρ̃x̂1 � �1∕2�jχ−ihχ−j � ℘4ρ4, (3d)

where jχ	i � cos αj0i 	 eiφ sin αj1i are normalized pure
states, ρi are hidden states, and ℘i represent the corresponding
probabilities in the ensemble. They satisfy the constraintP

ξ ℘ξρξ � ρB � trA�ρAB�, where ρB is the reduced density
matrix of Bob. On the other hand, since ρ̃n̂0 � ρ̃n̂1 � ρB and
tr�ρB� � 1, if we sum up terms in Eq. (3) and take the trace,
we arrive at the contradiction “2 − 1,” which represents the
EPR paradox in the two-setting steering protocol.

Here we show that a more general steering paradox “k � 1”
can be similarly obtained if one considers a k-setting steering
scenario fn̂1, n̂2, � � � , n̂kg, in which Alice performs k projective
measurements on her qubit along n̂j directions (with
j � 1, 2, � � � , k). For each projective measurement P̂

n̂j
a , Bob ob-

tains the corresponding unnormalized pure states ρ̃
n̂j
a . Suppose

these states can be simulated by the LHS model; then one may
obtain the following set of 2k equations:

ρ̃
n̂j
0 �

X
ξ

℘�0jn̂j, ξ�℘ξρξ, (4a)
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ρ̃
n̂j
1 �

X
ξ

℘�1jn̂j, ξ�℘ξρξ, j � 1, 2,…, k: (4b)

Since ρ̃
n̂j
a are proportional to pure states, the sum of the right-

hand side of Eq. (4) actually contains only one ρξ, as we have

seen for Eq. (3). Furthermore, due to the relations ρ̃
n̂j
0 � ρ̃

n̂j
1 �

ρB and
P

2k
ξ�1 ℘ξρξ � ρB , and by taking the trace of Eq. (4),

one immediately has the steering paradox “k � 1.”
Experimentally, we test the EPR paradox for a two-qubit

system in the simplest case of k � 2. To this aim, we need
to perform measurements leading to four quantum probabil-
ities. The first one is PQM

1 � tr�ρ̃ẑ0j0ih0j� � cos2α, which is ob-
tained from Bob by performing the projective measurement
j0ih0j on his unnormalized conditional state as in Eq. (3a).
Similarly, from Eqs. (3b)–(3d), one has PQM

2 � tr�ρ̃ẑ1j1ih1j� �
sin2α, PQM

3 � tr�ρ̃x̂0jχ�ihχ�j� � 1∕2, and PQM
4 �

tr�ρ̃x̂1jχ−ihχ−j� � 1∕2. Consequently, the total quantum predic-
tion is PQM

total �
P

4
i�1 P

QM
i � 2, which contradicts the LHS

model prediction “1.” If within the experimental measurement
errors one obtains a value PQM

total ≈ 2, then the steering paradox
“2 � 1” is demonstrated.

3. GENERALIZED LINEAR STEERING
INEQUALITY

Just as Bell’s inequalities may be derived from the GHZ and
Hardy paradoxes [26,27], this is also the case for the EPR para-
dox. In turn, from the steering paradox “k � 1,” one may derive
a k-setting GLSI as follows: in the steering scenario
fn̂1, n̂2, � � � , n̂kg, Alice performs k projective measurements
along n̂j directions. Upon preparing the two-qubit system in
the pure state jΨ�θ,ϕ�i (note that this is not jΨ�α,φ�i and here
jΨ�θ,φ�i is used to derive the inequality), for eachmeasurement

P̂
n̂j
a , Bob has corresponding normalized pure states as

ρ
n̂j
a �θ,ϕ� � ρ̃

n̂j
a ∕tr�ρ̃n̂ja �, where ρ̃

n̂j
a � trA��P̂n̂j

a ⊗ 1�jΨ�θ,ϕ�i
hΨ�θ,ϕ�j�, with a � 0, 1. Then the k-setting GLSI is given
by (see Appendix A)

Sk�θ,ϕ� �
Xk
j�1

�X1
a�0

P�Anj � a�hρn̂ja �θ,ϕ�i
�
≤CLHS, (5)

which is a �θ,ϕ�-dependent inequality, where CLHS is the
classical bound determined by the maximal eigenvalue of
Sk�θ,ϕ� for the given values of θ and ϕ, P�Aj � a� is the prob-
ability of the jth measurement of Alice with outcome a, and
ρ
n̂j
a �θ,ϕ� � jχj	�θ,ϕ�ihχ j	�θ,ϕ�j corresponds to Bob’s projec-

tive measurements. This inequality can be used to detect the
steerability of two-qubit pure or mixed states.

The GLSI has two remarkable advantages over the usual LSI
[15]. (i) Based on its own form as in the inequality (5), the
GLSI includes naturally the usual LSI as a special case, and thus
can detect more quantum states. In particular, the GLSI can
detect the steerability for all pure entangled states Eq. (1) in
the whole region α ∈ �0, π∕2�, at variance with the usual
LSI, which fails to detect EPR steering for some regions of
α close to zero [28]. (ii) The use of GLSI reduces the numbers
of experimental measurements and improves the experimental

accuracy. This may be seen as follows: with the usual k-setting
LSI, Bob needs to perform k measurements in different k di-
rections, for different input states ρAB . This is experimentally
challenging since it may be hard to suitably tune the setup for
all k directions. However, with the GLSI, one may solve this
issue using the Bloch realization jχj	ihχj	j � �1� ~σ · m̂j

	�∕2,
which transforms the GLSI to an equivalent form where Bob
needs to perform measurements only along the x̂, ŷ, and ẑ di-
rections of the Bloch sphere, which are independent on the in-
put states (see Appendix A).

To be more specific, we give an example of the three-setting
GLSI from the inequality (5), where Alice’s three measuring
directions are fx̂, ŷ, ẑg. Then we immediately have

S3 � P�Ax � 0�hjχ�ihχ�ji� P�Ax � 1�hjχ−ihχ−ji
� P�Ay � 0�hjχ 0�ihχ 0�ji� P�Ay � 1�hjχ 0

−ihχ 0
−ji

� P�Az � 0�hj0ih0ji � P�Az � 1�hj1ih1ji ≤ CLHS, (6)

with jχ	i � cos θj0i 	 eiϕ sin θj1i, jχ 0	i � cos θj0i

ieiϕ sin θj1i, CLHS � Max

�3�C�
2 , 3�C−

2

�
, and C	 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	 4 cos 2θ� cos 4θ
p

. The equivalent three-setting steer-
ing inequality is given by (see Appendix B)

S 0
3�θ,ϕ� � sin 2θ cos ϕhAxσxi − sin 2θ cos ϕhAyσyi

� sin 2θ sin ϕhAxσyi � sin 2θ sin ϕhAyσxi
�hAzσzi � 2 cos 2θhσzi ≤ C 0

LHS, (7)

with C 0
LHS � MaxfC�, C−g. Obviously, by taking

θ � π∕4 and ϕ � 0, the inequality (7) reduces to the usual
three-setting LSI in the form [15]

S 0
3�π∕4,0� � hAxσxi − hAyσyi � hAzσzi ≤

ffiffiffi
3

p
: (8)

In the experiment to test the inequalities, Alice prepares two
qubits and sends one of them to Bob, who trusts his own mea-
surements but not Alice’s. Bob asks Alice to measure at random
σx , σy, or σz on her qubit or simply not to perform any mea-
surement; then Bob measures σx , σy, or σz on his qubit accord-
ing to Alice’s measurement. Finally, Bob evaluates the average
values hσx ⊗ σxi, hσy ⊗ σyi, hσx ⊗ σyi, hσy ⊗ σxi,
hσz ⊗ σzi, and h1 ⊗ σzi and is therefore capable of checking
whether the steering inequality (7) is violated or not. In par-
ticular, for the case of pure states Eq. (1), if Alice is
honest in the preparation and measurements of the states,
the inequalities are violated for all values of α and φ (except
at α � 0, π∕2), thereby confirming Alice’s ability to steer
Bob.

4. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 1. The degenerated
polarization-entangled photon pairs are created by spontaneous
parametric down-conversion [29] type-II barium borate (BBO)
crystal pumped by a 404 nm laser. The initial two-photon state
is singlet state jψi � �jHV i − jVH i�∕ ffiffiffi

2
p

. By setting half-
wave plate (HWP1) at 0° (corresponding to a phase gate),
one may switch the phase of the entangled state from “minus”
to “plus.” HWP2, HWP3, and beam displacers (BDs) are used
to construct an asymmetric loss interferometer to adjust the
amplitude and flip the qubit, where HWP3 is fixed at 45°
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and HWP2 at arcsin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2α
− 1

q
� · 90π ∈ �0, 45°�. Therefore, we

may prepare the desired two-qubit state as jΨ�α�i �
cos αjHH i � sin αjV V i (see Appendix C). Now we define
jH i � j0i and jV i � j1i, and the entangled state becomes
jΨ�α�i � cos αj00i � sin αj11i. Compared with Eq. (1), in
our experiment, the phase φ of the entangled state is set to zero.
As illustrated in Fig. 1, after preparation of the entangled state,
we send the first qubit to Alice, and the second to Bob. Then
Alice and Bob measure their own photons through the polari-
zation analyzer, which consists of a quarter-wave plate (QWP),
HWP, and polarization beam splitter (PBS), and test EPR
steering.

First, we test the EPR paradox via steering paradox “2 � 1”
by choosing α from π

36 to
π
4 with an interval of π

36 to obtain nine
different two-qubit entangled states. In the two-setting steering
scenario, Alice performs measurements on her photon along
the x̂ direction and ẑ direction of the Bloch sphere. The eigen-
vectors of σx are j	i � �j0i 	 j1i�∕ ffiffiffi

2
p

, which are the states
on which Alice’s photon may collapse with a certain probability.
The corresponding normalized conditional states for Bob are
given by jχ	i � cos αj0i 	 sin αj1i. Similarly, Bob’s normal-
ized conditional states are j0i and j1i when Alice performs cor-
responding measurements. As shown in Fig. 2(a), the
experimental values S � PQ

total for the nine different entangled
pure states largely exceed the classical prediction. The average
value is S ≈ 1.9899, which far exceeds the classical bound pre-
dicted by LHS models. Thus, the steering paradox has been
successfully demonstrated.

Second, we experimentally address the violations of the
GLSI using the above pure states jΨ�α�i. We experimentally
evaluate the value of S 0

3 by using the three-setting steering in-
equality (7). For simplicity, in our experiment, the phase ϕ is
set to zero, and therefore, following the inequality (7), we need
to measure only the following four expectation values:
hσx ⊗ σxi, hσy ⊗ σyi, hσz ⊗ σzi, and hσI ⊗ σzi. To experi-
mentally observe the violation of the GLSI for any
α ∈ �0, π∕4�, we have to maximize the difference between
S 0
3 and classical bound C 0

LHS at any fixed value α. This is done
by numerically solving the optimal solutions of θ. Remarkably,
for α ∈ �0, �arcsin ffiffi

3
p

−1
2

�
∕2 ≈ π

17

	
, one observes a significant

violation of the inequality, which does not occur for the usual

Fig. 1. Experimental setup. Polarization-entangled photons pairs
are generated via nonlinear crystal. An asymmetric loss interferometer
along with half-wave plates (HWPs) is used to prepare two-qubit pure
entangled states. The projective measurements are performed using
wave plates and polarization beam splitter (PBS).

Fig. 2. Experimental results for pure states. (a) Experimental results
concerning the steering paradox “2 � 1.” The black and blue solid
lines represent the quantum prediction S ≡ PQM

total � 2 and the classical
bound C � 1 based on the LHV models, respectively. The black
cubes and the red lines show the experimental results with error
bar. (b) Experimental results for the three-setting GLSI (7). The black
and blue solid lines represent the quantum and classic bounds, respec-
tively, which are obtained by maximizing the difference between S 0

3

and C 0
LHS for any fixed α. The black (blue) dot line represents the

quantum violation hS 0 0
3 i � 1� 2 sin 2α (classical value C � ffiffiffi

3
p

)
of the usual three-setting LSI (8). The red cubes are the experimental
points for the inequality (7). The light yellow range is
α ∈ �0, �arcsin ffiffi

3
p

−1
2

�
∕2�, where the LSI (8) cannot detect the steerabil-

ity but the GLSI can. (c) Experimental violation for α � π
36 ,

π
18.
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three-setting LSI (8). On the other hand, when α is close
to π∕4, the violations of the GLSI (7) and the LSI (8) are
of the same order. The experimental results are shown in
Figs. 2(b) and 2(c), which are almost indistinguishable from
theoretical predictions.

Finally, we have experimentally tested inequality (7) with
two types of mixed states (see Appendix C). The first one is
a generalized Werner state ρ1 [30], and the second is the asym-
metric mixed state ρ2 [31], which are given as

ρ1 � V jΨ�α�ihΨ�α�j � 1 − V
4

1 ⊗ 1, (9a)

ρ2 � V jΨ�α�ihΨ�α�j � �1 − V �jΦ�α�ihΦ�α�j, (9b)

with jΦ�α�i � sin αj01i � cos αj10i, α ∈ �0, π
4�, and

V ∈ �0, 1�. As is apparent in Figs. 3(a) and 3(b), the experi-
mental results confirm that the GLSI has an advantage over
the LSI in detecting steerability for more quantum states
(see Appendix B for more theoretical details).

5. CONCLUSION

In summary, we have advanced the study of the EPR paradox in
two aspects. (i) We have presented a generalized steering para-
dox “k � 1” and performed an experiment to illustrate the
original EPR paradox by demonstrating the steering paradox
“2 � 1” in a two-qubit scenario. (ii) Based on the steering
paradox “k � 1,” we have successfully generated a k-setting

GLSI, which may detect steerability of quantum states to a
larger extent than previous ones. We have also rewritten this
inequality into a mathematically equivalent form, which is
more suitable for experimental implementation since it allows
us to measure only along the x, y, or z axis in the Bloch sphere,
rather than other arbitrary directions, thus greatly simplifying
the experimental setups and improving precision. This finding
is valuable for the open problem of how to optimize the mea-
surement settings for steering verification in experiments [32].
Our results deepen the understanding of quantum foundations
and provide an efficient way to detect the steerability of quan-
tum states.

Recently, quantum steering has been applied to the one-
sided device-independent quantum key distribution protocol
to secure shared keys by measuring the quantum steering in-
equality [33]. Our GLSI can also be applied to this scenario to
implement the one-sided device-independent quantum key dis-
tribution (one-sided DIQKD). In addition, our results may be
applied to applications such as quantum random number
generation [34,35] and quantum sub-channel discrimina-
tion [36,37].

APPENDIX A: GENERALIZED LINEAR STEERING
INEQUALITY OBTAINED FROM THE GENERAL
STEERING PARADOX “k = 1”

Actually, from the steering paradox “k � 1,” one can naturally
derive a k setting GLSI, which includes the usual LSI [15] as a
special case.

Fig. 3. Experimental results for mixed states. (a), (b) Steering detection for the generalized Werner state ρ1 and the asymmetric mixed state ρ2.
The light purple and pink surfaces represent the quantum value and the classical bound of the GLSI (7), respectively. The black (blue) dots denote
results for the quantum states that can (cannot) experimentally violate the GLSI (7). The zoom shows the area where steering cannot be detected by
usual LSI (8), whereas GLSI may be useful.
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The derivation procedure is as follows: in the steering
scenario fn̂1, n̂2, � � � , n̂kg, Alice performs k projective measure-

ments P̂
n̂j
a . For the pure state jΨ�θ,ϕ�i as shown in Eq. (1), it

can have an equivalent but more general decomposition along
the n̂ direction as in Eq. (2). Explicitly, Alice’s projective mea-
surements could be rewritten as

P̂
n̂j
0 � 1� n̂j · ~σ

2
� j � n̂ih�n̂j, (A1a)

P̂
n̂j
1 � 1 − n̂j · ~σ

2
� j − n̂ih−n̂j: (A1b)

Based on the two-qubit pure state jΨ�θ,ϕ�i, for the jth pro-

jective measurement P̂
n̂j
a of Alice, Bob will have the unnormal-

ized conditional states as

ρ̃
n̂j
0 � trA��P̂n̂j

0 ⊗ 1�jΨihΨj� � jχ�n̂jihχ�n̂j j, (A2a)

ρ̃
n̂j
1 � trA��P̂n̂j

1 ⊗ 1�jΨihΨj� � jχ−n̂jihχ−n̂j j, (A2b)

from which one has the normalized conditional states as

ρ
n̂j
0 � ρ̃

n̂j
0

tr�ρ̃n̂j0 �
� jχj�ihχj�j, (A3a)

ρ
n̂j
1 � ρ̃

n̂j
1

tr�ρ̃n̂j1 �
� jχj−ihχj−j, (A3b)

with

jχj�i �
jχ�n̂j iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr�jχ�n̂jihχ�n̂j j�
q , (A4)

jχj−i �
jχ−n̂jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr�jχ−n̂jihχ−n̂j j�
q (A5)

being pure states. Obviously, for the pure state jΨi, the follow-
ing probability relation always holds:

tr��P̂n̂j
0 ⊗ jχj�ihχj�j�jΨihΨj� � tr��P̂n̂j

1 ⊗ jχj−ihχj−j�jΨihΨj�
� tr�jχ�n̂jihχ�n̂j j� � tr�jχ−n̂j ihχ−n̂j j� ≡ 1: (A6)

The quantity on the left-hand-side of Eq. (A6) can be used
to construct the steering inequality, whereas for Alice’s side, we
need to replace the quantum measurement operator P̂

n̂j
a by its

corresponding classical probabilities P�Anj � a�. Then we
immediately have the k-setting GLSI as

Sk �
Xk
j�1

�X1
a�0

P�Anj � a�hρn̂ja i
�
≤ CLHS, (A7)

where P�Aj � a� is the classical probability of the jth measure-
ment of Alice with outcome a,

ρ
n̂j
0 � jχj�ihχj�j, ρ

n̂j
1 � jχ j−ihχj−j (A8)

denote the projective measurements on Bob’s side, and CLHS is
the classical bound determined by the maximal eigenvalue of
the steering parameter Sk. By definition, it is easy to verify

directly that for the pure state Eq. (1), the quantum prediction
of Sk is equal to k.

Remark 1. In Ref. [15], the usual k-setting LSI is given as

SLSI
k �

Xk
j�1

Ajhm̂j · ~σi ≤ CLSI
LHS, (A9)

where CLSI
LHS denotes the classical bound for the LSI. Note that

for the LSI (A9), quantum mechanical Alice will perform
k measurements (corresponding to Âj � n̂j · ~σ), and Bob will
also perform k measurements (corresponding to B̂j � m̂j · ~σ).
In the following, we show that the LSI is a special case of the
GLSI as given in the inequality (A7).

Let us rewrite the projective measurements Eq. (A8) in the
Bloch representation as

ρ
n̂j
0 � jχj�ihχj�j �

1

2
�1� m̂j

� · ~σ�,

ρ
n̂j
1 � jχj−ihχj−j �

1

2
�1� m̂j

− · ~σ�, (A10)

and denote

P�Aj � 0� � 1� Aj

2
, P�Aj � 1� � 1 − Aj

2
: (A11)

Then by substituting Eqs. (A10) and (A11) into the inequality
(A7), we have

Sk �
Xk
j�1

�
1� Aj

2
h1
2
�1� m̂j

� · ~σ�i

� 1 − Aj

2
h1
2
�1� m̂j

− · ~σ�i
�
≤ CLHS: (A12)

Note that for the GLSI (A12), quantum mechanical Alice will
perform k measurements (corresponding to Âj � n̂j · ~σ), and
Bob will perform 2k measurements (corresponding to
B̂�
j � m̂j

� · ~σ and B̂−
j � m̂j

− · ~σ, if m̂
j
� ≠ 	m̂j

− ). In the follow-
ing, we show that the LSI is a special case of the GLSI as given
in the inequality (A7).

Let

n̂j � �sin τ cos γ, sin τ sin γ, cos τ�, (A13)

and then

j � n̂ji �

 cos τ2

sin τ
2 e

iγ

�
, j − n̂ji �



sin τ

2

− cos τ2 e
iγ

�
,

(A14)

which are eigenstates of n̂j · ~σ. From Eq. (2), one can explicitly
have

jχ�n̂ji � h�n̂jjΨ�θ,ϕ�i
� cos

τ

2
cos θj0i � ei�ϕ−γ� sin

τ

2
sin θj1i, (A15)

jχ−n̂j i � h−n̂jjΨ�θ,ϕ�i � sin
τ

2
cos θj0i

− ei�ϕ−γ� cos
τ

2
sin θj1i, (A16)

which yields
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hχ−n̂j jχ�n̂j i � cos
τ

2
sin

τ

2
�cos2θ − sin2θ�: (A17)

Namely, if θ � π∕4, the states jχ�n̂ji and jχ−n̂ji are orthogonal,
and then from Eq. (A10), one immediately knows that the two
Bloch vectors are antiparallel, i.e.,

m̂j
� � −m̂j

− ≡ m̂j: (A18)

Substituting the relation Eq. (A18) into the inequality (A12),
we have

Sk �
1

2

Xk
j�1

�1� Ajhm̂j · ~σi� ≤ CLHS,

i.e.,

SLSI
k �

Xk
j�1

Ajhm̂j · ~σi ≤ 2CLHS − k, (A19)

proving the usual LSI is a special case of the GLSI. In short, for
an arbitrary two-qubit pure entangled state jΨ�θ,ϕ�i, one can
have a steering paradox “k � 1” [25], based on which one can
derive a GLSI as shown in the inequality (A7). If one further
fixes the parameter θ as θ � π∕4 [in this case,
jΨ�θ � π∕4,ϕ�i is the maximally entangled state], then the
GLSI reduces to the usual LSI.

Remark 2.We may rewrite the GLSI (A12) in a mathemati-
cally equivalent form that is friendlier for experimental imple-
ments. Let us denote

m̂j
� � �mj

�x ,m
j
�y,m

j
�z�, m̂j

− � �mj
−x ,m

j
−y,m

j
−z�, (A20)

and then from the inequality (A12), one has

Sk �
Xk
j�1

�
1�Aj

2
h1
2
�1� m̂j

� · ~σ�i� 1 −Aj

2
h1
2
�1� m̂j

− · ~σ�i
�

�
Xk
j�1

�
1

2
� 1�Aj

4
�m̂j

�xh~σxi� m̂j
�yh~σyi� m̂j

�zh~σzi�

� 1 −Aj

4
�m̂j

−xh~σxi� m̂j
−yh~σyi� m̂j

−zh~σzi�
�
≤ CLHS:

(A21)

The remarkable point for the inequality (A21) is that Bob al-
ways measures his particle in three directions of x, y, and z,
which not only greatly reduces the number of measurements,
but also there is no need to tune the measurement direction to
other directions.

APPENDIX B: EPR STEERING BY USING THE
THREE-SETTING GLSI

In this experimental work, we demonstrate EPR steering for the
two-qubit generalized Werner state by using the GLSI. We fo-
cus on the three-setting GLSI. In the steering scenario fx̂, ŷ, ẑg,
Alice performs projective measurements on her qubit along x̂,
ŷ, and ẑ directions; from the inequality (A7), one immediately
has

S3 � P�Ax � 0�hjχ�ihχ�ji � P�Ax � 1�hjχ−ihχ−ji
�P�Ay � 0�hjχ 0�ihχ 0�ji � P�Ay � 1�hjχ 0

−ihχ 0
−ji

�P�Az � 0�hj0ih0ji � P�Az � 1�hj1ih1ji ≤ CLHS,

(B1)

with

jχ	i � cos θj0i 	 eiϕ sin θj1i,
jχ 0	i � cos θj0i 
 ieiϕ sin θj1i: (B2)

One can have

jχ�ihχ�j �
1

2
�1� m̂� · ~σ�, jχ−ihχ−j �

1

2
�1� m̂− · ~σ�,

jχ 0�ihχ 0�j �
1

2
�1� m̂ 0� · ~σ�, jχ 0

−ihχ 0
−j �

1

2
�1� m̂ 0

− · ~σ�,

j0ih0j � 1

2
�1� σz�, j1ih1j � 1

2
�1 − σz�, (B3)

with

m̂� � �sin 2θ cos ϕ, sin 2θ sin ϕ, cos 2θ�,
m̂− � �− sin 2θ cos ϕ, − sin 2θ sin ϕ, cos 2θ�,
m̂ 0� � �sin 2θ sin ϕ, − sin 2θ cos ϕ, cos 2θ�,
m̂ 0

− � �− sin 2θ sin ϕ, sin 2θ cos ϕ, cos 2θ�: (B4)

We now come to compute the classical bound CLHS. Because
P�Ai � 0� � P�Ai � 1� � 1 (i � x, y, z), i.e., P�Ai � 0� is
exclusive with P�Ai � 1�, if P�Ai � 0� � 1; then one must
have P�Ai � 1� � 0. For the inequality (B1), there are in total
eight combinations.

(i) P�Az � 0� � P�Ax � 0� � P�Ay � 0� � 1; then the
left-hand side of the inequality (B1) is

hjχ�ihχ�j � jχ 0�ihχ 0�j � j0ih0ji, (B5)

and for such a matrix, its two eigenvalues are

3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4 cos 2θ� cos 4θ

p

2
, (B6)

3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4 cos 2θ� cos 4θ

p

2
: (B7)

Similarly, for P�Az � 0� � P�Ax � 0� � P�Ay � 1� � 1,
P�Az � 0� � P�Ax � 1� � P�Ay � 0� � 1, and P�Az �
0� � P�Ax � 1� � P�Ay � 1� � 1.

(ii) P�Az � 1� � P�Ax � 0� � P�Ay � 0� � 1; then the
left-hand side of the inequality (B1) is

hjχ�ihχ�j � jχ 0�ihχ 0�j � j1ih1ji, (B8)

and for such a matrix, its two eigenvalues are

3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4 cos 2θ� cos 4θ

p

2
, (B9)

3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4 cos 2θ� cos 4θ

p

2
: (B10)

Similarly, for P�Az � 1� � P�Ax � 0� � P�Ay � 1� � 1,
P�Az �1��P�Ax �1��P�Ay�0��1, and P�Az � 1� �
P�Ax � 1� � P�Ay � 1� � 1.
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Thus, in summary, the classical bound is given by [here
θ ∈ �0, π∕2�]

CLHS � Max

�
3� C�

2
,
3� C−

2


, (B11)

with

C	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	 4 cos 2θ� cos 4θ

p
: (B12)

Obviously the classical bound CLHS ≤ 3; however, for any two-
qubit pure entangled state jΨ�θ,ϕ�i, one has SQM

3 � 3; thus
any two-qubit pure entangled state violates the steering in-
equality (B1).

Let

P�Ai � 0� � 1� Ai

2
, P�Ai � 1� � 1 − Ai

2
, (B13)

where i � x, y, z. Substituting Eqs. (B3), (B4), and (B13) into
the inequality (B1) and after simplifying, one obtains the equiv-
alent three-setting steering inequality as

S 0
3 � sin 2θ cos ϕhAxσxi − sin 2θ cos ϕhAyσyi

� sin 2θ sin ϕhAxσyi � sin 2θ sin ϕhAyσxi
�hAzσzi � 2 cos 2θhσzi ≤ C 0

LHS, (B14)

with C 0
LHS � MaxfC�, C−g. Obviously, by taking θ �

π∕4 and ϕ � 0, the inequality (B14) reduces to the usual
three-setting LSI (an equivalent form) in Ref. [15].

Example 1. Let us consider the two-qubit pure state
jΨ�α�i � cos αj00i � sin αj11i; its maximal violation value
for the usual three-setting steering inequality (8) is

1� 2 sin 2α. Hence, only when α > arcsin
ffiffi
3

p
−1
2

2 ≈ 0.1873 can
the usual LSI be violated. However, the pure state violates the
GLSI (B1) for the whole region α ∈ �0, π∕2�; thus the GLSI is
stronger than the usual LSI in detecting the EPR steerability of
pure entangled states.

Example 2. Let us consider the two-qubit generalized
Werner state

ρ1 � ρAB�α,V � � V jΨ�α�ihΨ�α�j � 1 − V
4

1 ⊗ 1, (B15)

with α ∈ �0, π
4� andV ∈ �0,1�.

For the state Eq. (B15), we come to compare the perfor-
mance between the usual three-setting LSI (blue line) and
the three-setting GLSI (red line) in Fig. 4. For the usual
LSI, the threshold value of the visibility is given by VMin �ffiffi

3
p

1�2 sin 2α ≈ 0.1873, below which the usual LSI cannot be
violated. Namely, it can be concluded that there are no states
violating the usual three-setting LSI with the range of

α ∈ �0, arcsin
ffiffi
3

p
−1
2

2 �. However, the three-setting GLSI can detect
more steerable states in the region of α and V , which can
be calculated numerically. In Figs. 4 and 5, for example, when

α � arcsin
ffiffi
3

p
−1
2

2 �≈ π
17�, there are no states violating the usual three-

setting LSI; however, the GLSI still can detect quantum states
in the region V ∈ �VMin ≈ 0.914,1�. In the range of

α ∈ �arcsin
ffiffi
3

p
−1
2

2 , αB �, αB ≈ 0.3508 ≈ π
9, there exist states violating

the usual LSI, but the corresponding lower bound V Min is
larger than that of the three-setting GLSI. In the range of

α ∈ �αB , π
4�, both inequalities are almost equivalent in the task

of the steering test. Especially, when α � π
4, both of them

achieve VMin �
ffiffi
3

p
3 .

Example 3. Let us consider the following asymmetric two-
qubit mixed state [31]:

ρ2 � V jΨ�α�ihΨ�α�j � �1 − V �jΦ�α�ihΦ�α�j, (B16)

where jΨ�α�i � cos αjHH i � sin αjV V i and jΦ�α�i �
sin αjHV i � cos αjVH i. Obviously, ρ2 is entangled for the
region of α ∈ �0, π∕2� andV ∈ �0,1∕2�∪�1∕2,1�.

For the state Eq. (B16), we come to compare the perfor-
mance between the usual three-setting LSI (blue line) and
the three-setting GLSI (red line) in Fig. 6. Because state ρ2
is unchanged under the operations V⇌�1 − V �, and with flip-
ping Alice’s states (i.e., jH i⇌jV i), the performance in the re-
gion V ∈ �1∕2,1� will be the same as that in the region
V ∈ �0,1∕2�. Without loss of generality, we choose the region

Fig. 4. Detecting EPR steerability of the generalized Werner state
by using the usual three-setting LSI (blue line) and three-setting GLSI
(red line). For a fixed parameter α, the threshold value of the visibility
is given by VMin, below which the steering inequalities cannot be vio-
lated. It can be observed that the GLSI is stronger than the usual LSI in
detecting EPR steerability.

Fig. 5. Generalized Werner states violate the usual three-setting LSI
in the blue region and three-setting generalized LSI in the red region. It
can be observed that the GLSI is stronger than the usual LSI in
detecting EPR steerability.
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of α ∈ �0, π∕2� andV ∈ �0,1∕2�; for the usual three-setting
LSI, the upper bound VMax � 1−

ffiffi
3

p �2 sin 2α
2�1�sin 2α� . It is obvious to

conclude that there are no states violating the usual three-set-

ting LSI with the range of α ∈ �0, arcsin
ffiffi
3

p
−1
2

2 ≈ 0.1873�. However,
the three-setting GLSI can detect some more steerable states for
a wider region of α and V , which can be calculated numerically.

In Figs. 6 and 7, for example, when α � arcsin
ffiffi
3

p
−1
2

2 �≈ π
17�, there

are no states violating the usual LSI; however, the GLSI still can
detect quantum states in the region V ∈ �0,VMax ≈ 0.0889�.
In the range of α ∈ �arcsin

ffiffi
3

p
−1
2

2 , αB �, αB ≈ 0.4597 ≈ 5π
34, there exist

some states violating the usual three-setting LSI, but the upper
bound VMax is lower than that of the three-setting GLSI. In the
range of α ∈ �αB , π

4�, both inequalities are almost equivalent in
the task of the steering test. When α � π

4
, both of them

achieve V Max � 3−
ffiffi
3

p
4 .

APPENDIX C: EXPERIMENTAL DETAILS

A 404 nm laser is sent into a nonlinear BBO crystal to
generate the maximally entangled state of the form jϕi �
1ffiffi
2

p �jH iAjV iB − jV iAjH iB� with average fidelity over 99%.
By setting HWP1 at 0°, the photon of Bob passes through
BD1, which splits the photon into two paths, upper (u) and
lower (l ), according to its polarization, either vertical (V) or
horizontal (H). If HWP2 is rotated by an angle β

2 and
HWP3 is fixed at 45°, the two-photon entangled state becomes

jΨi � sin βffiffiffi
2

p jH iAjH iBu −
cos βffiffiffi

2
p jH iAjV iBu �

1ffiffiffi
2

p jV iAjV iBl ,

(C1)

where u and l denote upper and lower paths of Bob’s photon,
respectively. Afterwards, Bob’s photon passes through BD2,
and the V-polarized element of the entangled state is lost in
the upper path. One can verify that the matrix of the process
of the asymmetric loss interferometer is


sin β 0
0 1

�
, (C2)

Therefore, the final state (unnormalized state) is given by

jΨi � sin βffiffiffi
2

p jH iAjH iB �
1ffiffiffi
2

p jV iAjV iB: (C3)

After normalization, the two-qubit entangled state becomes

jΨi � sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sin β�2 � 1

p jH iAjH iB �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�sin β�2 � 1
p jV iAjV iB:

(C4)

Compared with the form in the main text, by rotating HWP2

by β � arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�sin α�2 − 1
q �

· 90π ∈ �0, 45°�, we can generate

jΨi � cos αjH iAjH iB � sin αjV iAjV iB: (C5)

In our experiments, the verification of the mixed state is
achieved by probabilistically mixing the corresponding pure
states. Specifically, we measured the corresponding observables
in different pure states and post-processed the data (changing
the probability of these pure states and mixing them together)
to obtain experimental data of different mixed states. Now we
show how to construct two types of mixed states, the general-
ized Werner state, and an asymmetric mixed state [31]:

ρ1 � V jΨihΨj � �1 − V � 1 ⊗ 1
4

, (C6)

ρ2 � V jΨihΨj � �1 − V �jΦihΦj, (C7)

where jΦi � sin αjH iAjV iB � cos αjV iAjH iB , and
V ∈ �0,1� is the visibility (probability for jΨihΨj). The prepa-
ration of the maximally mixed state 1 ⊗ 1 is simulated by mix-
ing the four states jHH i, jHV i, jVH i, and jV V i with equal
probability. The generalized Werner state is simulated by mix-
ing 1 ⊗ 1 and jΨihΨj with probabilities V and 1 − V , respec-
tively. The asymmetric mixed state is simulated by mixing jΨi

Fig. 6. Detecting EPR steerability of the mixed state Eq. (B16) by
using the usual three-setting LSI (blue line) and three-setting GLSI
(red line). For a fixed parameter α, the threshold value of the visibility
is given by VMax, above which the steering inequalities cannot be vio-
lated. It can be observed that the GLSI is stronger than the usual LSI in
detecting EPR steerability.

Fig. 7. Mixed states Eq. (B16) violate the usual three-setting LSI in
the blue region and three-setting GLSI in the red region. It can be
observed that the GLSI is stronger than the usual LSI in detecting
EPR steerability.
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and jΦi with probabilities V and 1 − V , respectively. The spe-
cific rotation angles of HWP in the BD interferometer for pre-
paring these quantum states are shown in the table in Fig. 8.
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