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Imaging through scattering media is one of the hotspots in the optical field, and impressive results have been
demonstrated via deep learning (DL). However, most of the DL approaches are solely data-driven methods and
lack the related physics prior, which results in a limited generalization capability. In this paper, through the
effective combination of the speckle-correlation theory and the DL method, we demonstrate a physics-informed
learning method in scalable imaging through an unknown thin scattering media, which can achieve high
reconstruction fidelity for the sparse objects by training with only one diffuser. The method can solve the inverse
problem with more general applicability, which promotes that the objects with different complexity and sparsity
can be reconstructed accurately through unknown scattering media, even if the diffusers have different statistical
properties. This approach can also extend the field of view (FOV) of traditional speckle-correlation methods. This
method gives impetus to the development of scattering imaging in practical scenes and provides an enlightening
reference for using DL methods to solve optical problems. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416551

1. INTRODUCTION

Object information is seriously degraded after being modulated
by complex media [1,2]. The scattering of light in the diffusion
is an established problem considered to be a common phe-
nomenon in our daily life (i.e., seeing through dense fog to
obtain the license plate and driver’s facial information is crucial
for a traffic monitor). Imaging with randomly scattered light is
a challenging problem with an urgent requirement in different
fields (e.g., astronomical observations through the turbulent
atmosphere and biological analysis through active tissue)
[3–7]. Conventional imaging methods based on geometric op-
tics cannot work with the disordered light beam under scatter-
ing. Benefitting from the great progress of optoelectronic
devices and computational techniques, many new imaging
methods have been proposed for imaging through scattering
media. The typical imaging techniques include the wave-
front-shaping methods [8–11], reconstruction using the trans-
mission matrix [12,13], single-pixel imaging methods [14–16],
or techniques based on the point spread function (PSF)
[17–19]. The methods listed here have made great progress
in object reconstruction with invasive prior, and the scattering
scenes are relatively stable. Speckle correlation based on the op-
tical memory effect (OME) is an extraordinary method for
noninvasive imaging through opaque layers [20] with only
one frame of speckle pattern [21,22]. Object recovery based

on speckle correlation methods uses phase retrieval algorithms
such as hybrid input-output (HIO) [23], those based on the
alternating direction method of multipliers (ADMM) [24],
and phase retrieval based on generalized approximate message
passing (prGAMP) [25]. The field of view (FOV) of speckle-
correlation methods is limited by OME, and the recovery per-
formance is also influenced by the recovery capability of phase
retrieval algorithms.

Recently, with the advent of digital technology, big data, and
advanced optoelectronic technology, deep learning (DL) has
shown great potential in optics and photonics [26,27]. With
powerful data mining and mapping capabilities, the data-
informed DL methods can extract the key features and build
a reliable model in many fields [28]. To date, the DL approach
has been successfully applied in digital holography imaging
[29–32], Fourier ptychographic imaging [33–36], computa-
tional ghost imaging [37,38], superresolution microscopic
imaging [39–42], optical tomography imaging [43–45],
photon-limited imaging [46,47], three-dimensional (3D) mea-
surements with fringe pattern analysis [48–51], and imaging
through scattering media [52–60]. Compared to traditional
computational imaging (CI) technology, the learning-heuristic
methods can not only solve complex imaging problems, but
also can significantly improve the core performance indicators
(i.e., spatial resolution, temporal resolution, and sensitivity).
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The great progress by DL is indicated by the rapidly increasing
number of DL-related publications in photonics journal in the
last several years [61]. However, the methods using DL are
meeting several challenging problems, such as the choice of
the DL framework tending to be empirical and the limited gen-
eralization capability.

Based on the nonlinear characteristics of deep neural net-
works (DNNs), DL methods have good performance in highly
ill-posed problems, especially in imaging through random media
[52–54,57]. IDiffNet is the first proposed method to reconstruct
an object through scattering media via a densely connected
DNN. The performance with a different type of training dataset
and the loss function are systematically discussed [52]. A hybrid
neural network is constructed to see through a thick scattering
medium and achieves object restoration exceeding the FOV of
OME [53]. The speckle patterns of single-mode fiber and multi-
mode fibers are reconstructed and recognized successfully [54].
PDSNet is built to reconstruct complex objects through scatter-
ing medium and expands the FOV up to 40 times of the
memory effect (ME) [55]. The methods above are mainly fo-
cused on a specified diffuser that has a limitation in complex
and variable scattering conditions. Therefore, some DL methods
have the potential to reconstruct objects through unstable media
that mainly use different DNN structures, such as one-to-all
with dense blocks, interpretable DL method, generative adver-
sarial network (GAN), or a two-stage framework [57–60].
Li et al. [57] first proposed a DL technique to generalize from
four different diffusers to more diffusers with raw speckles, which
requires the unknown diffusers to have similar statistical proper-
ties and the structure of objects to be simple [57]. Almost all the
DL methods for imaging through scattering media use speckle
patterns directly, and more information might be further exca-
vated with a traditional physical theory. The efficient physics
prior can provide an optimized direction for DNN to find
the optimal reconstruction solution in different scattering scenes.
After being modulated by different diffusers, the scattering light
with photons walk randomly brings about the great statistical
difference of speckle patterns even with the same one object.
Although it has been proven that the DL method, which focuses
on DNN structure design, has the generalization capability to
reconstruct hidden objects through unknown diffusers, it is still
difficult to obtain an accurate object structure under the condi-
tion of fewer training diffusers and has a limitation in recon-
structing the complex object [57]. At the same time, the
generalized diffusers should have similar statistical characteristics.
Therefore, in the absence of effective physical constraints and
guidance, DL methods can hardly extract universal information
from speckle patterns under highly degenerating conditions.
Solely data-driven DL methods will lead to the limited generali-
zation capability that the model is over-relying on training data.
Thus, to solve the problems of imaging through multicomplex
media, combining the scattering theory with DNN is a more
efficient method than designing specific DNN structures.

In this paper, with the physics prior of scattering and the
support of DL, a physics-informed learning method is proposed
for imaging through unknown diffusers. By pre-processing, the
data model based on the physics prior can solve the generali-
zation problems in different scattering scenes, which can reduce

the data dependence of the DL model and robustly improve the
feature extraction efficiency. The efficient physics prior can pro-
vide an optimized direction for DNN to find the optimal
reconstruction solution in different scattering scenes. The
DL method based on physics prior can help to learn and extract
the statistical invariants from different scattering scenes. Instead
of training with captured patterns directly, using the DL frame-
work with speckle correlation prior to imaging through differ-
ent diffusers is technologically reasonable. Employing the
physics-informed learning method, scalable imaging through
unknown diffusers can be achieved with high reconstruction
quality. The scattering degradation of the sparse objects can
even be modeled with one ground glass, and imaging through
unknown ground glasses even with different statistical charac-
teristics can be achieved. More complex objects (e.g., human
faces) can be reconstructed accurately by slightly increasing the
number of training diffusers. Meanwhile, it is hard to restore
the objects efficiently exceeding the FOV of OME by the tradi-
tional speckle-correlation method. Based on the powerful
capability in data mining and processing of DNN, the phys-
ics-informed learning method can also break through the
FOV limitation for scalable imaging. Finally, we demonstrate
the physics-informed learning scheme with an experimental da-
taset and present the quantitative evaluation results with
multiple indicators. The results with the statistical average in-
dicator show the accuracy and robustness of our scheme, and
reflect the great potential of combining physical knowledge
and DL.

2. METHODS

A. Physical Basic
The proposed model must be established to have general appli-
cability for scalable imaging through unknown diffusers, and it
is also one of the indispensable conditions to apply this method
to practical complex scenes. The wave propagating through an
inhomogeneous medium with multiple scattering will generate
a fluctuating intensity pattern, and the universal physical law
exists in different transmitted modes. The speckle correlation
and memory effect in optical wave transmission through dis-
ordered media are proposed to observe and analyze the
shift-invariant characteristic of speckle patterns [62,63]. The
speckle patterns of scattered light through diffusive media
are invariant to small tilts or shifts in the incident wavefront
of light, and the outgoing light field still retains the information
carried by the incoming beam within the range of ME [64].
Therefore, within the scope of ME, the scattering system
can be considered as an imaging system with shift-invariant
point spread function. The speckle pattern captured by the
camera is given by the convolution of the object intensity pat-
tern O�x� with the PSF (S), which can be calculated by

I � O ∗ S, (1)

where the symbol ∗ denotes the convolution operator. Using
the convolution theorem, the autocorrelation of camera pattern
intensity can be defined as

I ⋆ I � �O ∗ S� ⋆ �O ∗ S� � �O ⋆ O� ∗ �S ⋆ S�, (2)

where the ⋆ is the correlation operator and S ⋆ S is a sharply
peaked function representing the autocorrelation of broadband
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noise. The autocorrelation of the speckle pattern is approxi-
mately equal to the autocorrelation of the object hidden behind
the scattering media, and the speckle autocorrelation has an
additional constant background term C [21]. Thus, Eq. (2)
can be further simplified as

I ⋆ I � �O ⋆ O� � C: (3)

When the object size exceeds the range of OME, the object can
be divided into multiple objects Oi within the OME scope and
n represents the object distributed in n different OME
ranges (see Appendix A for details). Thus, the autocorrelation
distribution of the speckle pattern exceeding OME can be
defined as

I ⋆ I �
Xn
i�1

�Oi ⋆ Oi� � C 0: (4)

To clarify the universal connection among different scatter-
ing scenes, speckle patterns are captured through different dif-
fusers with the same object. In total, we take speckle patterns
using nine different ground glasses in the experiment, including
six 220 grit diffusers (D1, D2, D3, D4, D5, and D6), one 120-
grit diffuser (D7), one 600 grit diffuser (D8) produced by
Thorlabs, and one 220 grit diffuser (D9) produced by
Edmund. Among these diffusers, D4 to D9 are selected as test-
ing diffusers. As shown in the first row in Fig. 1(a), even when
the diffusers have different statistical characteristics and are
made by different manufacturers, the autocorrelation of the ob-
ject has a high degree of similarity with the autocorrelation of
the speckle pattern within or exceeding the range of OME, and
the difference is reflected in the different background terms.
On the other hand, the correlation of different speckles is
irregular by calculating the cross-correlation with D1. The
autocorrelation of the speckle pattern exceeding OME is also
similar among different diffusers to some extent. However,
the cross-correlation with different diffusers almost has no

similarities, even with similar statistical properties (e.g., D4,
D5, and D6).

With the speckle-correlation prior, the statistical invariants
of the object through different scattering media can be effec-
tively extracted, which informs the DNN to obtain useful in-
formation and reconstruct the object in different scattering
scenes. Imaging through different scattering media with
speckle-correlation prior can be used as a reference and a heu-
ristic approach to design the DL methods in different optical
problems.

B. Framework of Physics-Informed Learning
To solve the optical problems by DL methods, it is essential to
make full use of optical physics prior. As shown in Fig. 2, the
physics-informed learning framework consists of a speckle-
correlation pre-processing step and a neural network post-
processing step. The pre-processing step is mainly to obtain
speckle autocorrelation R�x, y�, is calculated by an inverse
2D Fourier transform of its energy spectrum, and the math-
ematical operations can be expressed as

R�x, y� � I�x, y� ⋆ I�x, y� � FFT−1fjFFTfI�x, y�gj2g: (5)

After the speckle-correlation pre-processing step, the cap-
tured speckle pattern is adjusted and refactored, and the next
step is post-processing by DNN to reconstruct the hidden ob-
ject. By adding the speckle-correlation theory, the imaging
model can make full use of the advantages of the neural net-
work. The DL model is a simple convolutional neural network
(CNN) of the U-Net type [65]. Comparing a specially designed
DNN structure, the physics-informed learning method can
achieve better imaging results with a simple U-Net without
any other tricks.

In our experiments, multiple objects datasets with different
levels of complexity are used to reconstruct through different
diffusers, such as the modified National Institute of Standards
and Technology (MINIST) dataset [66] and FEI face dataset
[67]. An equilibrium constraint loss function is important for
the training process, and we design a combination loss that in-
cludes negative Pearson correlation coefficient (NPCC) loss
and mean square error (MSE). The Pearson correlation coef-
ficient is an index used to evaluate the similarity between
two variables, and the calculated value is distributed from
−1 to 1. A negative value represents a negative correlation,

Fig. 1. Speckle statistical characteristics analysis of the same object
corresponding to different testing diffusers. (a) First row and second
row are the speckle autocorrelation of the object within or exceeding
the OME range, the third row is the cross-correlation with D1, respec-
tively. (b)–(d) Intensity values of the white dash lines in the first, sec-
ond, and third rows of (a), respectively. The color bar represents the
normalized intensity. Scale bars: 875.52 μm.

Fig. 2. Schematic of the physics-informed learning method for scal-
able scattering imaging.
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a positive value represents a positive correlation, and 0 repre-
sents an irrelevant correlation. Since the optimization direction
of the deep learning is optimized in the direction of loss value
reduction, to obtain a positive reconstruction result, the
NPCC is used for training [52]. The loss functions can be
formulated as

Loss � LossNPCC � LossMSE, (6)

LossNPCC

�
−1×

Pw
x�1

Ph
y�1�i�x,y��− î��I�x,y��− Î �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPw

x�1

Ph
y�1�i�x,y��− î�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPw
x�1

Ph
y�1�I�x,y��− Î �2

q , (7)

LossMSE � LossI �
Xw
x�1

Xh
y�1

jĩ�x, y� − I�x, y�j2, (8)

where Î and î are the mean value of the object ground truth I
and the DNN output i, respectively, and ĩ is a normalized im-
age of i. The combination loss function has a good capability to
reconstruct objects with different complexity and sparsity
through different scattering media. To train the DNN, an
Adam optimizer is selected as the strategy to update the weights
in the training process. The DNN is performed on PyTorch
1.4.0 with a Titan RTX graphics unit and i9-9940X CPU
under Ubuntu 16.04.

3. EXPERIMENTS AND RESULTS

A. Experimental Arrangement and Data Acquisition
The optical configuration is schematically illustrated in Fig. 3.
A mounted LED (M625L4, Thorlabs, Newton, NJ, USA) and
a filter (FL632.8-1, central wavelength: 632.8� 0.2 mm,
Thorlabs) are assembled as the light source, which can be em-
ployed as an approximate incoherent light source. A digital mi-
cromirror device (DMD) (pixel count: 1024 × 768, pixel size:

13.68 μm) is used to code and display the 8-bit objects. An
industrial camera (acA1920-155um, Basler AG, Ahrensburg,
Germany) is employed to obtain the patterns, which have lower
data depth and relatively poor photo quality, instead of a sci-
entific camera [8–13,17–19,52–54]. Thus, this method is
more suitable for practical application. The ground glass is
placed between the CMOS and DMD. The distance between
the object and the diffuser is 30 cm, and the distance between
the diffuser and the CMOS is 8 cm. The diameter of the iris
behind the diffuser in the configuration is 8 mm, and the diam-
eter of the iris combined with CL is 11 mm.

To obtain the speckle patterns in different scattering scenes,
nine different ground glasses are used as the diffusers in the
experiments, including six 220 grit diffusers (D1–D6), one
120 grit diffuser (D7), one 600 grit diffuser (D8) produced
by Thorlabs, and one 220 grit diffuser (D9) produced by
Edmund, like the configuration in Section 2.B. We choose
one ground glass (D1) or the first three pieces of ground glasses
(D1, D2, and D3) as the training diffusers, and the remaining
ground glasses as the test diffusers. The objects are mainly se-
lected from the MINIST database and FEI face databases. The
character objects are selected randomly from the MINIST data-
set to form the different complexity of single-character and
double-character objects. For collecting the experimental data,
600 single characters, 600 double characters, and 400 human
faces are used as objects hidden behind each diffuser. The first
500 characters are used as the seen objects and the remaining
characters are used as the unseen objects. Similarly, the first 360
human faces are used as seen objects and the remaining faces are
used as unseen objects. The autocorrelation pre-processing for
speckle patterns is the first step for our method. As for the
processing of the speckle patterns, we take the 512 × 512 cam-
era pixels from the center pattern to calculate the autocorrela-
tion and crop the center to 256 × 256 pixels autocorrelation
pattern as the input autocorrelation image. All the objects,
speckle patterns, and autocorrelation images are in grayscale
in this experiment.

According to different training data and testing data, differ-
ent groups are used to characterize the generalization capability
of the physics-informed DL method, respectively. All of the
testing data are captured from unknown diffusers for emphasiz-
ing the generalization. The data can be roughly divided into
four groups.

Group 1: The objects are the single characters within the
OME. The training data can be divided into two types: training
with one diffuser (D1) or three diffusers (D1–D3) with seen
objects (the first 500 characters). The testing data can also
be divided into two types: the seen objects and the unseen ob-
jects (the last 100 characters) with testing diffusers (D4–D9).

Group 2: The objects are the double characters within the
OME. The data arrangement is similar to Group 1, except for
the complexity of objects.

Group 3: The objects are the human faces within the OME.
The training data can also be divided into two types: training
with one diffuser (D1) or three diffusers (D1–D3) with seen
objects (the first 360 faces). The testing data can also be divided
into two types: the seen objects and the unseen objects (the last
40 faces) with testing diffusers (D4–D9).

Fig. 3. Experimental setup for the scalable imaging. Different dif-
fusers are employed to obtain speckle patterns with different scattering
scenes. The OME range of this system is also measured by calculating
the cross-correlation coefficient [21]. See Appendix B for details.
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Group 4: The objects are the single characters extending the
FOV to 1.2 times. The data arrangement is also similar to
Group 1, except for the size and distribution of objects.

B. Scalable Imaging with Different Diffusers
After collecting and classifying the data into different types, the
proposed method is used for training and testing. The objects
within OME (i.e., the first three groups), are tested first, and
the experimental variables are the numbers of training diffusers
and the category of the objects with different complexity and
sparsity. To prove the good generalization capability and ro-
bustness of the physics-informed learning method, the subjec-
tive evaluation with reconstruction and the statistical average of
objective evaluation results are provided in this section. Before
the quantitative evaluating, the output images of the model
have first been normalized. The imaging results shown in this
paper are randomly selected from testing data, and the mean
absolute error (MAE), peak signal-to-noise ratio (PSNR),
and structural similarity index (SSIM) are employed to quan-
titatively evaluate the generalization results and are presented in
Table 1 with different groups. The results with Group 1 are
presented with multiple examples in Fig. 4. Even with one
training diffuser (D1), reliable generalization imaging results
with unknown diffusers can be obtained, and the average
PSNR is up to 23.41 dB. As shown in the reconstruction results
of 0 in Fig. 4, it can be clarified that the seen objects testing
results or unseen objects testing results with three training dif-
fusers have higher fidelity than one training diffuser. Therefore,
by increasing the quantity of training diffusers (D1-D3), the
method can obtain higher accuracy and better generalization
capability in unknown scattering scenes, and the average
PSNR can reach over 40 dB with the training data of three
diffusers.

To further verify the effectiveness of this method, more
complex double-character objects and human faces are selected
successively in this experiment. In addition to the single-
character objects commonly used in traditional scattering
scenes, double-character objects and FEI face database are se-
lected in this paper for scheme verification, and the structures
are more complex and suitable for actual application scenes. As
shown in Fig. 5, double-character objects formed by combining
single characters randomly can also be restored accurately
through unknown diffusers. In the same way, by increasing

the quantity of training diffusers, the generalization capability
can also be significantly improved. Compared to the character
objects, the FEI faces database is more complex and difficult for
the learning method. As shown in the second row in Fig. 6, the
results of D4 are chosen as examples to show that the DL
framework cannot reconstruct the human faces efficiently with

Table 1. Quantitative Evaluation Results of the Objects within OME

Type Training Set Testing Set MAE SSIM PSNR (dB)

Group 1 D1 Seen objects 0.0190 0.8477 23.41
D1 Unseen objects 0.0288 0.8248 19.86

D1, D2, D3 Seen objects 0.0033 0.9744 40.56
D1, D2, D3 Unseen objects 0.0271 0.8088 20.58

Group 2 D1 Seen objects 0.0257 0.8608 20.75
D1 Unseen objects 0.0548 0.6929 16.56

D1, D2, D3 Seen objects 0.0072 0.9190 38.60
D1, D2, D3 Unseen objects 0.0455 0.7678 16.76

Group 3 D1 Seen objects 0.1166 0.4672 15.59
D1 Unseen objects 0.1234 0.5351 14.98

D1, D2, D3 Seen objects 0.0323 0.8523 23.82
D1, D2, D3 Unseen objects 0.0534 0.7410 20.67

Fig. 4. Testing results for generalization reconstruction of Group 1.
Scale bars: 264.24 μm.

Fig. 5. Testing results for generalization reconstruction of Group 2.
Scale bars: 264.24 μm.
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only one training diffuser. Once the quantity of training dif-
fusers is improved to three diffusers, the generalization results
are more accurate and reliable. In addition, one person has two
photos with different micro-expressions in the FEI face data-
base. From the seen objects testing results, with three training
diffusers, the facial features and details of human faces can be
clearly reconstructed. The scalable imaging of human faces has
a high reduction degree, and the reconstructed faces with
slight micro-expressions can also be identified and accurately
distinguished.

When the object’s scale exceeds OME, the object informa-
tion is also contained by the speckle pattern and can be de-
scribed with the speckle-correlation theory as Eq. (4). If the
scale of the object exceeds the FOV of OME, it is hard for
the traditional speckle-correlation methods to recover the ob-
ject via a single speckle pattern. Using the powerful data-
mining capabilities of CNN, the proposed method can extend
the scope of OME, and have generalization capability for the
large-scale objects shown in Fig. 7. As the quantity of training
diffusers increases, the generalization effect can also be im-
proved accordingly. From the quantitative evaluation results

in Table 2, the difficulty of scalable imaging exceeding
OME is higher than Group 1, and the conclusion of the gen-
eralization capability is similar to the results within OME.

The FOV of scalable imaging beyond OME is affected by
different configurations, such as the amount of the training dif-
fusers, the complexity and sparsity of objects, and the camera
hardware parameters. The generalization results with different
scales are presented in Fig. 8, and the generalization conclusion
with FOV is that the imaging effects and indicators are decreas-
ing when the FOV is extending. As shown in Fig. 8(c), when
the scale of the FOV extends to 1.8 times, the reconstructed
characters are blurry and hard to distinguish. As shown in
Fig. 8(b), with the quantity of training diffusers increasing,
a similar conclusion can be drawn that the objective indicators
of the generalization results are obviously improving.

4. ANALYSIS

A. Comparison to Traditional DL Strategy
To demonstrate the necessity of the physics-informed pre-
processing step in imaging through unknown diffusers, the
comparison images recovered by the end-to-end DL method
without physics prior are presented in Fig. 9. As the aforemen-
tioned conclusions from Fig. 1, the speckle characteristics with
different diffusers have a big difference. The unreliable imaging
results are obtained from speckle patterns directly without

Fig. 6. Testing results for generalization reconstruction of Group 3.
Scale bars: 264.24 μm.

Fig. 7. Testing results for generalization reconstruction of Group 4.
Scale bars: 820.8 μm.

Table 2. Quantitative Evaluation Results of Objects Extending the FOV 1.2 Times

Type Training Set Testing Set MAE SSIM PSNR (dB)

Group 4 D1 Seen objects 0.0359 0.8439 17.53
D1 Unseen objects 0.0432 0.6968 17.12

D1, D2, D3 Seen objects 0.0085 0.9431 30.55
D1, D2, D3 Unseen objects 0.0309 0.8706 18.90

Fig. 8. Generalization results for a single-character object with dif-
ferent scales and the scale of FOV is defined as the FOV/OME times.
(a), (b) Results with different amounts of training diffusers, which are
trained with one diffuser and three diffusers, respectively.
(c) Reconstruction results with different scales and corresponding
ground truth (GT).
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physics prior, and the reconstruction indicators are 0.2111 in
SSIM and 15.54 dB in PSNR. Although there are a few
objects that can be distinguished, such as the digits “1” and
“3,” it is still hard for DNN to learn the speckle-correlation
pre-processing step inside hidden layers automatically without
an effective physics prior.

B. Performance with Different Number of Speckles
As shown in Fig. 9, the end-to-end DL method without physics
prior can hardly work with raw speckle patterns for imaging
through unknown diffusers. Thus, using the speckle-
correlation prior is an effective step for the generalization of
the imaging through unknown scattering media, and tradi-
tional speckle theory in speckle-correlation methods is also suit-
able to enhance the performance of physics-informed learning.
Using relatively more speckles is an efficient way to reduce the
statistical noise of the autocorrelation through scattering media
[21]. The comparison results are shown in Fig. 10,
using more speckles can also improve the performance of

the physics-informed learning method, and the objective
indicators are also presented in Table 3.

C. Performance in Exceeding FOV
Using the existing optical system, the imaging capability be-
yond the FOV of OME is also tested up to five times. As shown
in Fig. 11, when the size of the digits is 760 × 760 pixels on
DMD for a 5× OME range, the hidden objects can also be
accurately predicted, and the objective indicators are presented
in Table 4. We can obtain reliable results through an unknown
scattering medium with three training diffusers, and the recov-
ery difficulty increases with more complex objects. As for more
complex objects (e.g., the FEI face dataset), the physics-
informed learning method with a traditional U-Net cannot
obtain reliable results. However, we can improve the
generalization ability by using the PDSNet-L [55] for the

Fig. 9. Comparison results without or with this pre-processing step
for imaging through an unknown diffuser. Three ground glasses are
selected as the training diffusers and another diffuser for testing.

Fig. 10. Results with different number of speckles via the physics-
informed learning method. Three ground glasses are selected as the
training diffusers and another diffuser for testing.

Table 3. Objective Indicators with Different Number of
Speckles via the Physics-Informed Learning Method

Number of Speckles MAE SSIM PSNR (dB)

256 × 256 0.0054 0.9342 38.38
512 × 512 0.0037 0.9539 44.53

Table 4. Objective Indicators Corresponding to Fig. 11

Objects Network MAE SSIM PSNR (dB)

5× OME single characters U-Net 0.0232 0.8741 21.70
5× OME double characters U-Net 0.0361 0.8360 18.96
1.2× OME faces U-Net 0.0673 0.6972 18.40
1.2× OME faces PDSNet-L 0.0567 0.7050 21.16

Fig. 11. Generalization results of imaging exceeding OME range
with different complexity objects.
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neural network post-processing, which has a better
reconstruction capability. Furthermore, we can further improve
the generalization ability by using a better camera (a scientific
CMOS or an electron-multiplying CCD) or gathering more
training data.

5. DISCUSSION

According to the experimental results shown in Section 3, we
have three key points.

(i) A physics-informed DL framework is proposed for scal-
able imaging through different scattering scenes in which the
diffusers are previously untrained. The objects hidden behind
the unknown diffusers are not limited to simple sparse charac-
ters, and more complex objects (e.g., human faces) can be re-
constructed with high accuracy. The physics-informed learning
method can also extend the FOV of conventional speckle-
correlation methods.
(ii) The DL framework has a reliable generalization capability

in imaging through unknown thin scattering media using only
one training diffuser for the sparse object. With the number of
training diffusers increasing, the generalization capability of the
methods is further improved. The proposed method can still
reconstruct the overall structure and local details for human
faces, even the slight micro-expressions can be clearly distin-
guished. However, the DL models are prone to preferentially
fit the category of the training dataset, which limits the gener-
alization capability of the physics-informed learning method
with unknown category objects.
(iii) Benefitting from the great capability in data-mining and
mapping of DNN, reliable generalization results can also be
obtained through unknown diffusers with the extended
FOV. Meanwhile, the FOV of the physics-informed learning
method is also relevant to several factors, such as the number of
training diffusers and the complexity of the hidden objects.

6. CONCLUSION

In this paper, a physics-informed learning method is introduced
to imaging through diffusers. Specifically, an explicit framework
is established to efficiently solve the generalization problems in
different scattering scenes by combining the physics theories
and DL methods. This is a new approach to solve scalable im-
aging with deep learning, which can reconstruct complex ob-
jects through different scattering media, and provide an
expanded FOV for the real imaging scenes. In the future, more
complex scenes and objects can be considered, which can be
applied to volumetric multiple scattering, such as biological im-
aging and astronomical imaging.

APPENDIX A: THE FORMULA DERIVATION TO
EXCEED THE OME RANGE

When the object size exceeds the range of OME, the object can
be divided into multiple objectsOi within OME scope, and the
PSFs produced from the different points become uncorrelated
mutually. The autocorrelation of PSF can be approximately ex-
pressed as

PSFi ⋆ PSFj ≈
�
δij, i � j
0, i ≠ j : (A1)

We assume that the distance between objects is beyond the sin-
gle OME range. Taking the autocorrelation of the camera im-
age and using the convolution theorem yields [68]

I ⋆ I �
�Xn

i�1

Oi ∗ PSFi
�

⋆
�Xn

i�1

Oi ∗ PSFi
�

� O1

⋆ O1 � C1 � O2 ⋆ O2 � C2 � O3

⋆ O3 � C3 � 2�O1 ⋆ O2� ∗ �PSF1 ⋆ PSF2� � 2�O2 ⋆ O3�
∗ �PSF2 ⋆ PSF3� � 2�O1 ⋆ O3� ∗ �PSF1 ⋆ PSF3� �…

�
Xn
i�1

�Oi ⋆ Oi � Ci� �
Xn
i�1

�Oi ⋆ Oi� � C 0. (A2)

Thus, the autocorrelation distribution of a speckle pattern ex-
ceeding OME can be defined as

I ⋆ I �
Xn
i�1

�Oi ⋆ Oi� � C 0: (A3)

APPENDIX B: OME RANGE CALIBRATION
DETAILS

To calibrate the range of the shift-invariant, the distance from
the object to the diffuser is changed to 15 cm and the image
distance is maintained as 8 cm. A ground glass (DG100X100-
220-N-BK7, Thorlabs) is used as the diffuser and placed be-
tween the object and the CMOS. A series of speckle patterns
are collected while the horizontal displacement of the point ob-
ject on the object surface is achieved. The cross-correlation co-
efficient between the speckle patterns and the PSF of the system
is calculated. A threshold value of 0.5 is chosen as the cross-
correlation coefficient to determine the range of OME
[68,69]. We define δp as the offset pixel number of the image
plane, which is 30 pixels, as shown in Fig. 3. The OME range
of the system can be calculated by 2 × p × δp∕β [68], and β is
the system magnification and p is the pixel size of the camera,
which equals 5.86 μm. It can be figured that the half-width at
half maximum (HWHM) is 30 pixels. Because the distance
from the object to the diffuser of the speckle collection system
is 30 cm, the HWHM of the speckle collection system is 60
pixels. Then, the full width at half maximum of the speckle
collection system is 120 pixels. Thus, the OME range of
our speckle collection system is 152 × 152 pixels on DMD.
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