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The novel camera architecture facilitates the development of machine vision. Instead of capturing frame sequences
in the temporal domain as traditional video cameras, FourierCam directly measures the pixel-wise temporal spec-
trum of the video in a single shot through optical coding. Compared to the classic video cameras and time-
frequency transformation pipeline, this programmable frequency-domain sampling strategy has an attractive
combination of characteristics for low detection bandwidth, low computational burden, and low data volume.
Based on the various temporal filter kernel designed by FourierCam, we demonstrated a series of exciting machine
vision functions, such as video compression, background subtraction, object extraction, and trajectory

tracking. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412491

1. INTRODUCTION

Humans observe the world in the space—time coordinate sys-
tem, and traditional video cameras are also based on the same
principle. The video data format in the unit of a time serial
image frame is well understood for eyes and is the basis for
many years of research in machine vision. With the develop-
ment of optics, focal plane optoelectronics, and a post-
detection algorithm, some novel video camera architectures
have gradually emerged [1]. The single-shot ultrafast optical
imaging system observes the transient events in physics and
chemistry at an incredible rate of one billion frames per second
(fps) [2]. An event camera with high dynamic range, high tem-
poral resolution, and low power consumption asynchronously
measures the brightness change, position, and symbol of each
pixel to generate event streams and is widely used in autono-
mous driving, robotics, security, and industrial automation [3].
A privacy-preserving camera based on coded aperture has also
been applied in action recognition [4]. Although the functions
of these cameras are impressive, the essential sampling strategy
is still to measure the reflected or transmitted light intensity of a
scene in the temporal domain. In the lens system, pixels can be
regarded as independent time channels, and the acquired signal
is the temporal variation of light intensity at the corresponding
position in the scene. It is well-known that the frequency do-
main feature of a visual temporal signal is more significant. For
example, in general, a natural scene video has high temporal
redundancies, so most information of a temporal signal concen-
trates on low-frequency components, which is a premise in
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video compression [5]. The static background of the scene ap-
pears as a DC component in the frequency domain, which pro-
vides insights for background subtraction [6-8]. In deep
learning, performing high-level vision tasks based on spatial fre-
quency domain data brings a better result [9]. By taking into
account space—time duality, this strategy has the potential to be
used for temporal frequency domain data. All of the above fre-
quency characteristics imply that capturing video in the tem-
poral frequency domain instead of the temporal domain will
initiate a sampling revolution.

In this paper, we propose a temporal frequency sampling
video camera: FourierCam, which is a novel architecture that
innovates the basic sampling strategy. The concept of
FourierCam is to perform pixel-wise optical coding on the
scene video and directly obtain the temporal spectrum in
a single shot. In contrast with the traditional cameras, the
framework of single-shot temporal spectrum acquisition has
a lower detection bandwidth. Furthermore, the data volume
can be reduced by analyzing the temporal spectrum features
for efficient sampling. Since the temporal Fourier transform
is done in the optical system, its computational burden is lower
compared to that of the time-frequency transformation pipeline
(sampling—storing—transforming). In addition to the basic ad-
vantages, according to the clear physical meaning of the spec-
trum, a variety of temporal filter kernels can be designed to
accomplish typical machine vision tasks. To demonstrate the
capability of FourierCam, we present a series of applications,
which cover video compression, background subtraction, ob-
ject extraction, and trajectory tracking. These applications
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can be easily switched only by adjusting the temporal filter
kernels without changing the system structure. As a flexible
framework, FourierCam can be easily integrated with
existing imaging systems and is suitable for microimaging to
macroimaging.

2. PRINCIPLE OF FOURIERCAM

FourierCam is suitably designed for acquiring a pixel-wise tem-
poral spectrum of dynamic scenarios through optical coding.
To optically acquire multiple Fourier coefficients, the input sig-
nal needs to be multiplied by sinusoids with different frequen-
cies and phases and temporally integrated. However, ordinary
natural signals are often nonreproducible for repeated opera-
tions. Therefore, a single-shot scheme is designed for parallel
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coding. The principle illustration and experimental optical
setup of FourierCam are shown in Fig. 1(a). The dynamic scene
is projected to a spatial light modulator (a digital micromirror
device, DMD) by a camera lens and pixel-wise encoded. Then,
the encoded light from the spatial light modulator is focused
onto an image sensor (a charge-coupled device, CCD) and tem-
porally integrated during exposure time. Figure 1(b) illustrates
the coding strategy of FourierCam. The modulation units on
the DMD are spatially divided into 7 x n coding groups
(marked as CGs) for acquiring the temporal spectra of 7 x n
pixels in the scene. A pixel at position j can be regarded as
a temporal waveform (pixel temporal vector). The CG corre-
sponding to the pixel temporal vector consists of p x ¢ coding
elements (marked as CEs) to obtain the Fourier coefficients of
p x q frequencies. Each CE includes four DMD modulation
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Fig. 1. Overview of FourierCam. (a) Schematic and prototype of FourierCam. (b) Coding strategy of FourierCam. The real scene is coded by a
spatial light modulator (DMD) and integrated during a single exposure of the image sensor. The DMD is spatially divided into coding groups (5 x 5
coding groups are shown here, marked as CG), and each CG contains multiple coding elements (4 x 4 coding elements are shown here, marked as
CE) to extract the Fourier coefficients of the pixel temporal vector. The Fourier coefficients of different pixel temporal vectors form the temporal
spectrum of the scene. (c) Three demonstrative applications of FourierCam: video compression, selective sampling, and trajectory tracking.
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units that can be controlled independently. The four units in
one CE modulated the light intensity in a predetermined sinus-
oid fashion with the same frequency and four different phases
(0, 0.5w, m, 1.5m). Since a single exposure of the image sensor
temporally integrates the encoded scene, one can extract the
Fourier coefficient for a specific frequency by means of four-
step phase-shifting in one CE. Therefore, different Fourier co-
efficients of the pixel temporal vector are acquired by CEs in
one CG to form the temporal spectrum of the pixel temporal
vector. With the same operation applied to all CGs, the tem-
poral spectrum of the whole scene can be recovered. In the op-
tical prototype, since the pitch size of the DMD is larger than
the pitch size of the image sensor, we adjust the paraxial mag-
nification of the zoom lens to match one DMD mirror with
3 x 3 image sensor pixels (i.c., larger effective image sensor pixel
size) to ensure accurate DMD and image sensor alignment (see
Appendix A for details). Moreover, although the DMD only
modulates the light in a binary form, the pulse width modulation
(PWM) technique can be utilized for the DMD [10] to produce
sinusoidal coding. As the image sensor works as an integration
detection, one just needs to keep the summation of the light
intensity equivalent to an analog sinusoidal modulation.

In the experimental setup, the scene is imaged on a virtual
plane through a camera lens (CHIOPT HC3505A). A relay
lens (Thorlabs MAP10100100-A) transfers the image to the
DMD (VIiALUX V-9001, 2560 x 1600 resolution, 7.6 pm
pitch size) for light amplitude distribution modulation. The
reflected light from the DMD is then focused onto an image
sensor (FLIR GS3-U3-120S6M-C, 4242 x 2830 resolution,
3.1 pm pitch size) by a zoom lens (Utron VTL0714V).
Due to one DMD mirror being matched with 3 x 3 image sen-
sor pixels, the effective resolution is one-third of the resolution
of the image sensor in both the horizontal and the vertical
directions (i.e., 1414 x 943).

The principle of the proposed FourierCam system is spa-
tially splitting the scene into independent temporal channels
and acquiring the temporal spectrum by the corresponding
CG for each channel. Every CG contains some CEs to obtain
Fourier coefficients for frequencies of interest. During one ex-
posure time 7, the detected value Dy, in CE £, CG j is
equivalent to an inner product of pixel temporal vector 7;(¢)
and pixel temporal sampling vector Sj,,():

D, = (Ij(t)’ Sj/eq;(t))

= / I(0)[A+ B cosQuf,t + @)ldr, (1)

expo

where Sy, (#) is the sinusoidal pixel temporal sampling vector
with frequency f, and phase ¢ in CE £, CG . 4 and B denote
the average intensity and the contrast of Sy, (#), respectively.
The Fourier coefficient Fj; of f, can be extracted by four-step
phase-shifting as

2BC x Fjy = (Djso = Dijiz) + #(Djys ~ Djje) 2

where C depends on the response of the image sensor. The DC
term A can be canceled out simultaneously by the four-step
phase-shifting.

Based on the aforementioned principle of FourierCam, the
temporal spectrum of the scene can be easily obtained. As a
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novel camera architecture with a special data format,
FourierCam is of the following three advantages (see
Appendix B for details).

Low detection bandwidth: Since the image sensor only
needs to detect the integration of the coded scene for obtaining
the temporal spectrum during the entire exposure time, the re-
quired detector bandwidth is much lower than the bandwidth
of scene variation.

Low data volume: Natural scene is of high temporal redun-
dancies; i.e., most information of it concentrates on low-fre-
quency components. Besides, some special scenes, like
periodic motions, have a narrow bandwidth in the temporal
spectrum. FourierCam enables flexibly designing the sampling
frequencies of interest to cut down the temporal redundancies
and reduce data volume.

Low computational burden: The multiplication and sum-
mation operations of Fourier transform are realized by optical
coding and long exposure in FourierCam; thus, the temporal
spectrum can be acquired with low computational burden.

Here, we introduce three applications to demonstrate these
advantages of FourierCam [illustrated in Fig. 1(c)]. The first
application is video compression. We verify the temporal spec-
trum acquisition of FourierCam and demonstrate the video
compression by using the low-frequency-concentration prop-
erty of the natural scene. The second application is selective
sampling. We show the FourierCam is able to subtract the
static background, as well as extract the objects with a specific
texture, motion period, or speed by applying designed temporal
filter kernels to process the signals during sensing. The last ap-
plication is trajectory tracking. The temporal phase reveals the
time order of events so the FourierCam can be used to analyze
the presence and trajectory of the moving objects. These appli-
cations show that the temporal spectrum acquired by
FourierCam, as a new format of visual information, is able
to provide physical features to assist and complete vision tasks.

3. TEMPORAL SPECTRUM ACQUISITION:
BASIC FUNCTION AND VIDEO COMPRESSION

The basic spectrum acquisition function of FourierCam is
demonstrated. For ordinary aperiodic moving objects or natural
varying scenes, the energy in the temporal spectrum is mainly
concentrated at low frequencies. This observation is exploited
to record compressive video in the temporal domain by only
acquiring the Fourier coefficients of low frequencies using
FourierCam.

By using the above method, we assemble the Fourier coef-
ficient Fj of Fy in CG j. We can combine all Fourier
coefficients in CG j to form its temporal spectrum as

Fj = {F;h’F;h—l’""Fj/?—l’Fj/J}’}JZPXq’ (3)
where 4 (p x g) is the number of CEs in a CG, and 1‘7]’.‘/7 denotes

the complex conjugate of F,. The pixel temporal vector 7;(#)
can be reconstructed by applying inverse Fourier transform:

2BC x R, = FYF}, 4)

where F~! denotes the inverse Fourier transform operator. The
result of the inverse transform R; is proportional to the pixel



temporal vector /;(¢) in CG j. By applying the same operation
to all CGs, we can reconstruct the video of the scene.

The experiment setup and the corresponding coding signals
of DMD are illustrated in Fig. 2(a). Nine frequencies ranging
from 0 Hz (DC component) to 80 Hz are applied to encode the
scene within 0.1 s exposure (corresponding to 10 fps). With the
temporal spectrum acquired by FourierCam, via inverse
Fourier transform, a video can be reconstructed at an equivalent
160 Hz frame rate with 16 times speedup compared to the
original frame rate. To acquire nine frequency components,
3 x 3 CEs are set in each CG, resulting in a resolution of
235 x 157 in the reconstructed video. The frequency interval
of the encoded signal satisfies the frequency domain sampling
theorem and is determined by the exposure time (see
Appendix C for details).

The first demonstrative scene in this application includes a
toy car running in the field of view. A capture of the static toy
car is shown in Fig. 2(b) (top left) as ground truth. The coded
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data acquired by FourierCam is shown in Fig. 2(b) (top right)
in which the scene is blurred and features of the toy car cannot
be visually distinguished. After decoding, the complex temporal
spectrum of the scene can be extracted. The corresponding am-
plitude and phase are shown in Fig. 2(b) (middle row) with
their zoom-in view (bottom row). In addition to the toy car
with a translating motion, a rotating object is also used for dem-
onstration. This scene is a panda pattern on a rotating disk with
an angular velocity of ~20 rad/s. In Fig. 2(c), the static capture
of the object (top left), coded data (top right), amplitude, and
phase (middle row) are shown respectively.

To visually evaluate the correctness of the acquired temporal
spectra, the videos of the two scenes are reconstructed using the
inverse Fourier transform. Figure 2(d) displays three frames
from the video of the toy car (left column) and the rotating
panda (right column). These results clearly show the statuses
of the dynamic scenes at different times and indicate that
FourierCam is able to correctly acquire the temporal spectrum.
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Fig.2. Capturing aperiodic motion video using FourierCam. (a) Illustration of experiment setup and coding pattern on DMD. Each CG contains
nine CEs (3 x 3, ranging from 0 Hz to 80 Hz) to encode the scene. (b) A toy car is used as a target. Top left: static object as ground truth. Top right:
coded data captured by FourierCam. Middle left: amplitude of temporal spectrum. Middle right: phase of temporal spectrum. Bottom row: zoom in
of middle row. A white-dotted mesh splits into different CGs. (c) A rotating disk with a panda pattern is used as a target. Top left: static object as
ground truth. Top right: coded data captured by FourierCam. Middle left: amplitude of temporal spectrum. Middle right: phase of temporal
spectrum. Bottom row: zoom in of middle row. A white-dotted mesh splits into different CGs. (d) Three frames from the reconstructed videos
of the two scenes in (b) and (c). A yellow-dotted line is shown as reference.
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As the single-shot detection data includes the information of
muldple frames (16 frames for demonstration), FourierCam
realizes the effect of (16x) video compression. (See
Appendix D for the numerical analysis about the performance
of video compression. The reconstructed toy car video is shown
as an example in Visualization 1).

4. SELECTIVE SAMPLING: FLEXIBLE
TEMPORAL FILTER KERNELS

FourierCam provides the flexibility for designing the combina-
tion of frequencies to be acquired, which is termed temporal
filter kernels in this paper. By considering the prior of the scenes
and objects, one can achieve selectively sampling the object of
interest. In this part, three scenes are demonstrated: periodic
motion video acquisition, static background subtraction, and
object extraction based on speed and texture.

Periodic motions widely exist in medical, industry, and sci-
entific research, such as heartbeat, rotating tool bit, and vibra-
tion. Since a periodic signal contains energy only in the direct
current, fundamental frequency, and harmonics, it has a very
sparse representation in the Fourier domain (see Appendix E for
details). By taking the temporal spectrum characteristics into
account as prior information, we use FourierCam to selectively
acquire several principal frequencies in the temporal spectrum.
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As shown in Fig. 3(b) (top left), a rotating disk with periodic
patterns is designed as the target. The disk rotates at a speed as
high as 5460 r/min. The disk contains four rings with 3, 5, 7,
and 11 spatial periods from inner to outer; thus, the temporal
frequencies of these four rings are 273, 455, 637, and 1001 Hz,
respectively. We apply these frequencies to DMD to encode the
scene [Fig. 3(a)] during a 0.5 s exposure (2 Hz frame rate) and
further reconstruct a video of the rotating disk. Here, the equiv-
alent maximum frame rate is 2002 Hz, so the frame rate
improvement is 1001 times (corresponding compression ratio
is 0.1%). The acquiring of four frequencies needs 2 x 2 CEs in
each CG; thus, the resolution of the reconstructed video
is 353 x 235. Four frames from the video are shown in
Fig. 3(b) (bottom). The reconstructed video is provided as
Visualization 2.

Subtracting the background and extracting moving objects
are significant techniques for video surveillance and other video
processing applications. In the frequency domain, the back-
ground is concentrated on the DC component. By filtering
the DC component, one can subtract the background and ex-
tract moving objects. Some moving object extraction ap-
proaches performed in the frequency domain [6-8] have
been proposed, which need to acquire the video first and then
perform Fourier transform, and thus suffer from relatively high
computational cost and low efficiency. Thanks to the capability
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Fig. 3. Capturing periodic motion video using FourierCam. (a) To capture a periodic motion with four frequencies, each CG contains four CEs
(2 x 2) to encode the scene. (b) A rotating disk is used as target. Top left: static object as ground truth. Top right: the zoom-in view of the captured
data with and without coding, corresponding to normal slow cameras and FourierCam, respectively. Ordinary slow cameras blur out the details of
moving objects while coded structure in FourierCam capture provides sufficient information to reconstruct the video. Bottom: four frames from the
reconstructed video. Red-dotted lines are shown in each frame to indicate the direction of the disk.
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of FourierCam to directly acquire specific temporal spectral
components in the optical domain, it can overcome the draw-
backs of the aforementioned methods. In addition to sub-
tracting the background, preanalysis on the temporal spectrum
profile of the objects of interest gives the prior for one to design
coding patterns for FourierCam to realize specific object
extraction.

To demonstrate the background subtraction capability of
FourierCam, we capture a scene that has a rotating disk as a
target object and a static poker card as background [Fig. 4(a),
left]. The exposure time is 0.5 s, and the temporal frequencies
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of these four rings are 273, 455, 637, and 1001 Hz, respec-
tively. Only the frequency that corresponds to one ring is ap-
plied for coding [Fig. 4(a)] in this case. In this way, each ring
can be separately extracted without the background static poker
card [Fig. 4(b)]. The results also indicate that one can distin-
guish objects with the same rotating speed but different tex-
tures. In comparison, objects with the same texture but
different speeds can also be extracted separately. In Fig. 4(c)
(left), two identical disks, both with six stripes, are present
in the scene. They rotate at 1980 r/min (200 Hz in the tem-
poral spectrum) and 800 r/min (80 Hz in the temporal
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Fig. 4. Object extraction by FourierCam. (a) Illustration of object extraction. The coding frequencies are based on the spectrum of the objects of
interest. In this demonstration, the four rings on the disk are regarded as four objects of interest. Each ring only contains one frequency so that one
CE is used in one CG. (b) Left: reference static scene with a disk and a poker card. The disk is rotating when capturing, and the four rings share the
same rotating speed. Four right columns: FourierCam captured data for four rings extraction and corresponding results. For each extracted ring,
other rings and static poker card are neglected. (c) Results for two identical rings rotating at different speed (1980 and 800 r/min, respectively).

FourierCam enables extraction of a specific one out of these two rings.
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spectrum) relatively, and they appear the same in the capture of
the ordinary slow camera. With FourierCam one can see the
difference in the coding data and can extract a specific one
out of them [Fig. 4(c)]. For simplicity, the above results are
all one frame in the reconstructed video.

The results show that FourierCam enables background sub-
traction and object extraction based on the temporal spectrum
difference. Although only one frequency was used in the experi-
ment, in principle it allowed using multiple frequencies to
reconstruct more complex scenes, as long as the spectral differ-
ence is sufficiently obvious. It is worth noting that in some spe-
cial cases objects with different textures and speeds may have
the same spectral features, making FourierCam fail to distin-
guish them (see Appendix F for details).

5. TEMPORAL PHASE: TRAJECTORY
TRACKING

Object detection and trajectory tracking for a fast-moving ob-
ject have found important applications in various fields. In gen-
eral, object detection is to determine the presence of an object,
and object tracking is to acquire the spatial-temporal coordi-
nates of a moving object. For the temporal waveform of a pixel
where the object would pass by, the moving object takes the
form of a pulse at a specific time. As the object is moving,
the temporal waveforms at different spatial positions are of dif-
ferent temporal pulse positions, resulting in a phase shift in
their temporal spectra. Since Fourier transform is a global-
to-point transformation, one can extract the information of
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the presence and position of the pulse in the temporal domain
from the amplitude and phase of a single Fourier coefficient.
From this perspective, one can use FourierCam to determine
the presence or/and simultaneously acquire the spatial trajec-
tory and temporal position of a moving object.

To detect and track the moving object, only one frequency
is needed to encode the scene. In this case, we let p = ¢ =1
and f = f = 1/tepo- Thus, f, is the lowest resolvable fre-
quency, and its Fourier coefficient Fj, provides sufficient
knowledge of presence or/and motion of object. The amplitude
Ajo of Fjg is Ajg = abs(Fy), where abs(x) denotes the absolute
operation. As a static scene does not contain the /', component
in the temporal spectrum, moving object detection can be
achieved by applying a threshold on Ay that an 4 larger than
the threshold indicates the presence of moving objects.

For moving object tracking, since the long exposure has al-
ready given the trace of the object, the phase P; of F is utilized
to further extract the temporal information: P; = arg(Fj)),
where arg(*) denotes the argument operation. A temporal
waveform with a displacement of #; in the temporal domain
results in a linear phase shift of -27f,#; in the temporal
spectrum:

I(t - 1;) = FY{Fjo x exp(-i2z f o 1,)}. (5)

Therefore, the temporal displacement can be derived

through

Coding Elements number

0.0

Exposure t (s)

Two moving spots
captured by FourierCam

Tracking result

Fig. 5. Moving object detection and tracking by FourierCam. (a) Only one frequency is needed to encode the scene for moving object detection
and tracking. The period of sinusoidal coding signal is equal to the exposure time. Thus, only one CE is contained in each CG. (b) Coded data
captured by FourierCam and tracking results. Left column: characters ‘T, "H’, ‘U’, ‘EE’ sequentially displayed by a screen with a 0.25 s duration for
each. The color indicates the distribution of appearing time. Middle column: results for a displayed spot moving along a heart-shaped trajectory.
Right column: results for two spots moving in circular trajectories with different radii. The spots are printed on a rotating disk driven by a motor.
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b
1} = Legpo X o (6)

By applying the same operation to all CGs, we can extract
the temporal information for all CGs and acquire the spatial—
temporal coordinates of a moving object in the scene.

To test this capability of FourierCam, we capture several
targets ranging from flash characters, a single moving object,
and multiple objects. The image sensor exposure time is 1 s,
and the corresponding coding signal on DMD is 1 Hz
[Fig. 5(a)] to ensure one period is contained by a single expo-
sure to avoid 21 phase ambiguity due to the periodicity of
the Fourier basis coding. First, a screen displays “T°, "H’,
‘U’, ‘EE’ sequentially with a 0.25 s duration for each (see
Visualization 3). The raw capture and the extracted temporal
position are shown in Fig. 5(b) (the left column), which indi-
cates that FourierCam is able to detect the objects via ampli-
tude and distinguish different temporal positions of objects via
phases. Then a spot moving along a heart-shaped trajectory,
displayed on the screen, is used as a target to test the tracking
capability of FourierCam (see Visualization 4). This result
[Fig. 5(b), the middle column] shows FourierCam can resolve
the spatial and temporal position of the object. We also test
FourierCam on actual multiple objects, which are two spots
moving in circular trajectories with different radii [Fig. 5(b),
the right column]. The spots are printed on a rotating disk
driven by a motor at a speed of 60 r/min. The scene is also
recorded by a relatively high-speed camera for reference (see
Visualization 5). The temporal resolution is determined by
both the exposure time and coding frequency (see Appendix G
for details); that is, the higher the coding frequency is, the
higher temporal resolution will be, but the temporal range
also narrows at the same time. For the current setup, the tem-
poral resolution is 3.9 ms. By applying phase unwrapping al-
gorithms, the trade-off between temporal resolution and
temporal range can be overcome to further improve the
tracking performance.

6. DISCUSSION AND CONCLUSION

The main achievement of this work is the implementation of a
high-quality temporal spectrum vision sensor that represents a
concrete step toward the low detection bandwidth, low com-
putational burden, and low data volume novel video camera
architecture. In the experiment, we demonstrate the advantages
of FourierCam in machine vision applications such as video
compression, background subtraction, object extraction, and
trajectory tracking. Among these applications, prior knowledge
is not required for aperiodic video compression, background
subtraction, and trajectory tracking (see Table 1 in Appendix H
for details). These applications cover the most common scenar-
ios and can be integrated with existing machine vision systems,
especially autonomous driving and security [11]. The emer-
gence of prior knowledge makes FourierCam lose some flexi-
bility but gain better performance. Applications that require
prior knowledge (periodic video compression and specific ob-
ject extraction) have special scenarios (e.g., modal analysis of
vibrations). Several engineering disciplines rely on modal analy-
sis of vibrations to learn about the physical properties of struc-
tures. Relevant areas include structural health monitoring [12]

and nondestructive testing [13,14]. These special scenarios are
usually stable (i.e., require less flexibility) and allow better per-
formance at a higher cost.

It is worth mentioning that the FourierCam is built to en-
hance the flexibility of information utilization with the given
limited data throughput. First, by taking the low-frequency
properties of a natural scene, one can only sample the most
significant low-frequency components to perform data com-
pression during data acquisition with the frequency sampling
flexibility of FourierCam. This compression based on fre-
quency is similar to the JPEG [15] compression based on spa-
tial frequency, that is, to store more significant information
within limited data capability. In general, this is a kind of lossy
compression, and it can also be lossless for some sparse scenes
(such as periodic motion). Second, the FourierCam directly ob-
tains the temporal spectrum as a special data type with abun-
dant physical information of the dynamic scenes. Although the
process that uses multiple DMD pixels and camera pixels to
decode one frequency component brings data cost, the
phase-shift operation of the multiple pixels can also reduce
the background noise so that the quality of the data can be
increased.

The temporal and spatial resolutions are the key parameters
of the FourierCam. The temporal resolution (the highest fre-
quency component that can be acquired) is determined by the
bandwidth of the modulator. In the present optical system, the
PWM mode reduces the DMD refresh rate. Zhang ez al. [16]
used error diffusion dithering techniques to binarize the Fourier
basis patterns in space, which can be referenced in the temporal
domain to maintain the refresh rate of DMD. In terms of spa-
tial resolution, each Fourier coefficient is in need of 4 pixels for
four-step phase-shifting. Although the four-step phase-shifting
offers better measurement performance, one can also utilize
three-step phase-shifting [16] or two-step phase-shifting [17]
for a higher spatial resolution. Furthermore, taking a closer look
at the process, one can notice that the principle of FourierCam
is similar to the color camera based on the Bayer color filter
array (CFA) [18]. CFA and FourierCam use different pixels
to collect different wavelengths and temporal Fourier coeffi-
cients in parallel, respectively. Therefore, the demosaicing algo-
rithm in CFA can be introduced into FourierCam to improve
the spatial resolution [19,20]. Although a monochrome image
detector is used in the experiments, the possibility of combin-
ing FourierCam with a color image detector is obvious, as long
as the coding structure of FourierCam needs to be adjusted ac-
cording to the distribution of CFA. It is worth mentioning that
in machine vision based on deep learning, training and infer-
ence on the temporal spectrum is feasible through complex-
valued neural networks, without the need for image restoration
as an intermediate step [21,22]. We believe that the data format
of the temporal spectrum provided by FourierCam has the po-
tential to be used in multimodal learning for high-level vision
tasks like optical flow or event flow [23]. In addition, proposing
a more compact and lightweight design will help develop a
commercial FourierCam. One can borrow the compact optical
design from miniaturized DMD-based projectors, or one can
integrate the modulator on the sensor chip, which is still chal-
lenging with current technology. And in some applications with
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loose frame rate requirements, a commercial liquid crystal
modulator can be used instead of DMD to reduce costs.
Beyond machine vision, we believe that the flexible temporal
filter kernel design properties of FourierCam can play a role in
other fields, for example, using FourierCam to perform fre-
quency division multiplexing demodulation in space optical
communication or to extract specific signals in voice signal
detection.

APPENDIX A: CORRESPONDENCE BETWEEN
DMD AND IMAGE SENSOR IN FOURIERCAM

In the FourierCam the most important thing is to adjust each
mirror of the DMD so as to correspond exactly to the pixel of
the image sensor, such as CCD or CMOS. Under the premise
of complete correspondence, FourierCam can achieve high-pre-
cision decoding. However, since the sizes of the CCD and
DMD are very small, it is difficult to accurately align.
Fortunately, CCD and DMD can be regarded as two gratings,
so they can be aligned by observing the moiré fringes formed
between them [24]. There are two kinds of errors: mismatch
and misalignment. Mismatch means line spatial frequency dis-
agreement, and misalighment means rotational disagreement.
When each mirror of the DMD and each pixel of the CCD
are not corresponding exactly, a diverse moiré fringe pattern
according to the mismatch and misalignment conditions will
appear. Figure 6 shows the experimental results when we
adjust the pixel-to-pixel correspondence in the FourierCam.
Figure 6(a) shows the moiré fringe patterns when the mismatch
and misalignment occur between the CCD pixels and the
DMD. Adjusting the rotation angle of the DMD can eliminate
misalignment as shown in Fig. 6(b). Next, adjusting the mag-
nification of lens, the moiré pattern does not appear in the
FourierCam as shown in Fig. 6(c). In the statement of
Fig. 6(c), the adjustment error is 0.02%, which means that
for every 5000 pixels, a pixel offset will occur. Therefore, high-
precision correspondence between DMD and CCD is realized
in FourierCam.

APPENDIX B: DETAILED DISCUSSION ABOUT
FEATURES OF FOURIERCAM

Detection bandwidth: To measure a temporal significance
with max frequency f .., the required minimum detection
bandwidth of traditional cameras equals f, .. For
FourierCam acquiring / Fourier components, the required
minimum detection bandwidth is Lm according to the fre-

2h
quency domain sampling theorem (see Appendix C). For

' @ (b)

example, in the natural scene demonstration (toy car and panda
in the manuscript), f.. is 80 Hz and eight Fourier compo-
nents except from the direct current are obtained; thus, the re-
quired detection bandwidth of FourierCam is 5 Hz, while for
traditional cameras it is 80 Hz.

Assuming a video is captured by traditional cameras with A/
frames and NV pixels in each frame, its data volume is M x N
bytes (assuming 1 byte for one pixel). FourierCam obtains 4
Fourier components of the same video, and the data volume
is 2/ x N bytes since a complex Fourier coefficient needs twice
the capacity than a real number. Generally, M is larger than 24.
For example, in the “running dog” video in Appendix D,
M =100, / = 16, and N = 1080%; thus, the data volumes
for a traditional camera and FourierCam are 116.64 and
18.66 megabytes, respectively. By considering the prior infor-
mation of the object and applying selective sampling, the data
volume can be further reduced.

Floating point operations (FLOPs) comparison between
FFT and FourierCam: FLOPs include the standard floating-
point operations of additions and multiplications to evaluate
the computational burden. To calculate the temporal spectrum
of a video with M frames and /V pixels in each frame, the fast
Fourier transform (FFT) needs 5MNlog, M FLOPs. In
FourierCam, since the multiplication and summation opera-
tions of Fourier transform are realized by optical coding, only
3MN FLOPs are required for the four-phase-shifting opera-
tion. Therefore, the required FLODPs for the temporal spectrum
acquisition can be reduced by (5M log, M - 3M) x N. For ex-
ample, in the demonstration of the periodic motion in appli-
cation II in the paper, 3.9 GFLOPs can be neglected by
FourierCam.

Light throughput in FourierCam: In addition to the above
advantages, light throughput plays an important role in high-
speed photography and is worthy of discussion. Two types of
high-speed cameras (including normal high-speed shutter and
impulse coding cameras) are used for comparison. The impulse
coding cameras turn on the pixels in a spatial block at a certain
time to capture high-speed video [25,26]. Considering one
coding group, the average light intensity at a coding group
is L, the active area is A4, the video has N frames, and the entire
duration is 7. So the frame rate requirement for the capture
device is Z. For high-speed shutter cameras, the whole area
A will be an active area, and the light throughput of one frame
is L x A x % Therefore, the light throughput of IV frames video
is L x A x T. For impulse coding cameras, the whole area 4 will
be divided into IV exposure groups, with each group exposing
sequentially. The light throughput per frame (exposure groups)

(c)

Fig. 6. Phase analysis of the moiré fringe pattern obtained by the phase-shifting moiré method. (a) There are two errors: mismatch and misalign-
ment. (b) Only mismatch error. (c) FourierCam with high-precision correspondence.
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is L N 4 x L, and the light throughput of N frames video is

%7 x T'. For FourierCam, each coding group will be divided
into p x g % N phose smallest units (N phise is the number of
phases and in aperiodic scenes p x 4 = %), and each unit is
modulated by a sinusoidal signal durmg the whole exposure
time of the image detector, so the light throughput of each unit
]\f:]/\l,xi Similar to the abovementioned temporal domain
samphng strategy, which superimposes all frames to calculate

the light throughput, the FourierCam should also add all

frequency components to calculate the video light throughput.

is

Therefore, the light throughput of FourierCam is
AT pxg = ZL:I(,‘I"T In summary, the light throughput

phase
of the FourierCam is lower than that of high-speed shutter
cameras (even when N, = 1); this is introduced by sinus-
oidal modulation. However, the light throughput of the
FourierCam has nothing to do with the number of frames /V,
while the impulse coding cameras are related to it. When N
increases, the light throughput advantage of FourierCam com-
pared to impulse coding cameras becomes more obvious. In
principle, FourierCam uses at least two phases which have a
180-deg shift. Fortunately, by using the light from both ON
and OFF reflection angles of DMD and adding a second sensor,
it is possible to complete the temporal spectrum acquisition
with each sensor collecting only one phase. This means that
N phase = 1, which can realize the competitive light throughput
as high-speed shutter cameras.

APPENDIX C: FRAME RATE AND FREQUENCY
DOMAIN SAMPLING IN FOURIERCAM

Traditional cameras can be regarded as the temporal-domain
sampling process when capturing video, and the frame rate
is the temporal sampling rate. Considering each pixel temporal
waveform, given the frame rate, the highest frequency compo-
nent, f, .., that can be acquired is %, where £ is the frame rate.
Unlike the temporal-domain sampling process of traditional
cameras, FourierCam is based on frequency-domain sampling.
FourierCam directly acquires frequency components. When
the highest frequency component it collects is /.., the equiv-
alent frame rate of FourierCam is 2/ . In addition, the

frequency domain sampling interval (A /) of FourierCam needs
to satisfy the frequency domain sampling theorem to ensure
that the reconstructed video does not alias in the time domain.
The frequency domain sampling interval is determined by the
exposure time of the image detector (f.p,), Af < ——
ample, the exposure time of an image detector is I s, and the
frame rate is 1 Hz. If the frame rate is increased to 10 Hz, the
frequency components to be acquired are 1 Hz, 2 Hz, 3 Hz,
4 Hz, and 5 Hz. Its frequency interval is 1 Hz, which satisfies
the frequency domain sampling theorem.

. For ex-

APPENDIX D: QUANTITATIVE ANALYSIS ON THE
PERFORMANCE OF FOURIERCAM

To quantitatively evaluate the reconstruction, we perform a
simulation of FourierCam with a “running dog” video, which
has 100 frames with a spatial resolution of 1080 x 1080 pixels.
We obtain the temporal spectrum of the video with 16 frequen-
cies (the number of acquired Fourier coefficients 4 = 16).
Figure 7(a) compares the long exposure capture and the
FourierCam encoded capture. The long exposure with low
temporal resolution results in an obvious motion blur, and
the details of the object are lost, whereas the temporal spectrum
contains information of the motion to further reconstruct the
dynamic scene. In the reconstructed video, the SSIM (struc-
tural similarity index) keeps stable with an average of 0.9126
and a standard deviation of 0.0107 [shown in Fig. 7(b)]. In
Fig. 7(c), we also display a visual comparison of three exemplar
frames from the ground truth video and the FourierCam recon-
structed results, respectively. These results illustrate that
FourierCam is able to reconstruct a clear video with only
low-frequency coefficients.

The trade-off between temporal resolution and spatial res-
olution exists in FourierCam. By acquiring / Fourier coeffi-
cients, the frame rate can be improved by 2/ times at the
cost of L times reduction in spatial resolution. Each Fourier
coefficient is in need of four pixels for a four-step phase-shifting
operation; thus L = 4A. Therefore, the reconstructed spatial
resolution is inversely proportional to 4 [shown in Fig. 8(a)].
To illustrate this relationship, we capture the “running dog”
video with 4, 9, 16, 25 frequencies. Four corresponding frames

Long exposure 1 . Frame 25 Frame 50 Frame 75
F=
0.9 [ AN TN ~] B
v \ ;
5
0.8 | Frame 25 Frame 50 Frame 75 2
= O]
] o
FourierCam capture ® 07 | SSIM=0.8985 SSIM=0.9146 SSIM=0.9199
g8 ===
° g3
4
0.5 | B §§
0 20 40 60 80 100 =
Reconstructed frames
(@ (b) (¢

Fig. 7.

Simulation of FourierCam video reconstruction. (a) Long exposure capture with all frames directly accumulating together, corresponding

to a slow camera and the FourierCam encoded capture. The insets show the zoom-in view of the areas pointed by the arrows. (b) In the reconstructed
video with 16 Fourier coefficients, the SSIM of each frame keeps stable with an average of 0.9126 and a standard deviation of 0.0107. (c) Three

exemplar frames from the ground truth and reconstructed video.
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Fig. 8. Quantitative analysis on the performance of FourierCam. (a) Relation between number of acquired Fourier coefficients 4 and spatial
resolution reduction L of FourierCam. (b) Comparison of reconstructed frames with different numbers of acquired Fourier coefficients, correspond-

ing to point 1 to point 4 in (a).

from the four reconstructed videos with ground truth are
shown in Fig. 8(b). With 4 increasing, the SSIM remains stable.
If / becomes too large, the SSIM slightly decreases but still re-
mains larger than 0.9. The reason is that the motion blur gets
cased with the effective frame rate improved, but the increase
of the number of frequencies causes the reduction of the
spatial resolution. These results indicate that one may properly
decide the number of frequencies in FourierCam based on the
concrete need and scenario to balance the spatial and temporal
resolutions.

APPENDIX E: FOURIER DOMAIN PROPERTIES
OF PERIODIC AND APERIODIC MOTION

Consider the signal at a position where a periodic motion
passes: it is in periodic form in time domain. Fourier transform
of a periodic signal with period P contains energy only at the
frequencies that are an integer multiple of repetition frequency
%, and therefore the periodic signal has a sparse representation
in the Fourier domain. When the period of the periodic signal
becomes infinitely long, the periodic signal comes to an aperi-
odic signal with a single pulse and its spectrum becomes con-
tinuous. Figure 9 provides a graphical illustration of the
spectrum of periodic and aperiodic signals.

APPENDIX F: TEMPORAL RESOLUTION OF
OBJECT TRACKING IN FOURIERCAM

As the object is moving, the temporal waveforms at different

spatial positions are of different temporal pulse positions,

resulting in a phase shift in their temporal spectra. The

phase-shift detection accuracy is the temporal resolution of ob-

ject tracking in FourierCam. The phase-shift accuracy is deter-

mined with the DMD grayscale level and the exposure time of
Fexpo

the image detector, so the temporal resolution is DMDpo

Since we use a DMD with PWM mode as the spatial light
modulator in FourierCam, the light is digitally modulated

by 8-bit grayscale. Therefore, during a single exposure #.ypq,
12

expo

the temporal resolution of object tracking is 522.

APPENDIX G: FOURIER DOMAIN PROPERTIES
OF MOVING OBJECT

Changes in both the texture and the speed of the moving object
can cause a difference in the Fourier domain. As illustrated in
Fig. 10(a), when a block with sinusoidal fringe texture is mov-
ing at a speed of , the detected waveform at the red point is
also in a sinusoidal form. In Fig. 10(b), a block with a higher

) A

NAAAN

(a) Periodic signal waveform

A

v

0 1/P 2/P
(b) Periodic signal spectrum

—fmax fmax

\4

(c) Aperiodic signal waveform

A
v

—fmax 0

(d) Aperiodic signal spectrum

fmax

Fig. 9. Fourier domain properties of periodic and aperiodic signals. The (a) periodic signal has a (b) sparse spectrum while the (c) aperiodic signal

has a (d) continuous spectrum.
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Fig. 10. Illustration of Fourier domain properties of moving objects with different texture and speed. (a) Block with sinusoidal fringe texture
moving at a speed of v. The temporal waveform of the red point is shown with its Fourier spectrum. (b) Block with higher spatial frequency texture,
also moving at the speed of v. (c) Block identical to (a) but moving at a higher speed 22

Table 1. Comparison Between Different Application for FourierCam

Application Prior Knowledge Scenario Coding Method

Video compression x Normal ~ Multifrequency coded signals depend on exposure time
Selective sampling (Periodic motion Motion period Periodic ~ Multifrequency coded signals depend on motion period
video acquisition)

Selective sampling (Background x Normal ~ Multifrequency DC components are not included
subtraction)

Selective sampling (Object Temporal spectrum profile ~ Normal — Multifrequency coded signals depend on prior knowledge
extraction) of the interest objects

Trajectory tracking

Normal  Single-frequency coded signals depend on exposure time

spatial frequency texture but also moving at the speed of v cor-
responds to a higher frequency in the Fourier domain com-
pared to Fig. 10(a). By selectively acquiring a specific range
of frequency (e.g., 2f,), we can extract a specific object [e.
g., the one in Fig. 10(b)]. Also, the change in moving also
causes a difference in the spectrum [Fig. 10(c)]; thus, we
can also extract it from the one in Fig. 10(a). However, because
of the joint effect of texture and speed, the spectrum in Figs. 10
(b) and 10(c) is quite similar. To distinguish these two objects,
we can add more constraints such as the length of the wave-
form, which is one of our future works.

APPENDIX H: COMPARISON BETWEEN
DIFFERENT APPLICATION FOR FOURIERCAM

The comparison between different applications for FourierCam
is shown in Table 1. In periodic compressive video
reconstruction, a priori knowledge can be used to achieve
higher compression ratios. It is also possible not to use prior
knowledge, in which case the compression ratio is the same
as the aperiodic.
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