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Photonic crystals (PhCs) have been demonstrated as a versatile platform for the study of topological phenomena.
The recent discovery of higher-order topological insulators introduces new aspects of topological PhCs that are
yet to be explored. Here, we propose an all-dielectric PhC with an unconventional higher-order band topology.
Besides the conventional spectral features of gapped edge states and in-gap corner states, topological band theory
predicts that the corner boundary of the higher-order topological insulator hosts a 2/3 fractional charge. We
demonstrate that in the PhC such a fractional charge can be verified from the local density-of-states of photons,
through the concept of local spectral charge as an analog of the local electric charge due to the band filling
anomaly in electronic systems. Furthermore, we show that by introducing a disclination in the proposed
PhC, localized states and a 2/3 fractional spectral charge emerge around the disclination core. The emergence
of the fractional spectral charges and topological boundary modes here, however, is distinct from the known cases;
particularly by the 2/3 fractional spectral charges and the unique topological indices. The predicted effects can be
readily observed in the state-of-the-art experiments and may lead to potential applications in integrated and
quantum photonics. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.418689

1. INTRODUCTION

Topological insulators, which host gapped bulk states and ro-
bust gapless edge states [1–4], brought new concepts and ideas
in photonics in the past decade. Topologically protected pho-
tonic edge states can serve as robust waveguides, which have
been demonstrated to be useful in integrated photonics [5–9],
information transport [10–17], quantum photonics [18,19],
lasing [20–28], and exciton-polariton devices [29–31]. The
ability to visualize the wavefunctions of the bulk and edge pho-
tonic states as well as the controllability of photonic systems
makes them a highly desirable platform for the study of topo-
logical phenomena.

Recently, it was predicted [30–39] and observed [40–68]
that topological boundary states can emerge not only on the
boundaries with n − 1 dimensions, but also on the boundaries
with n − 2 and lower dimensions of n-dimensional (nD) topo-
logical insulators. Such exotic topological insulators are termed
as higher-order topological insulators (HOTIs) [30–39]. For
instance, a two-dimensional (2D) HOTI hosts 1D edge states
at the edge boundaries as well as 0D corner states at the corner
boundaries [30–39]. The underlying mechanism is that, due to

the intricate role of the crystalline symmetry, the 1D edge states
become gapped and hence can be regarded as emergent 1D
insulators. At the corner boundaries between the edge bounda-
ries, the 0D corner states emerge in the common band gap of
the edge and bulk states due to edge or bulk band topology
[30–68]. Such topologically protected multidimensional boun-
dary states beyond the bulk-edge correspondence introduce
new degrees of freedom in the design of photonic states for
wave-guiding, trapping, and manipulation, which may lead to
potential applications in integrated photonics, quantum pho-
tonics, and high-performance lasing [57–71]. However, such
a discipline is still at its infant stage and yet to be fully devel-
oped. In particular, hexagonal photonic crystals (PhCs) with
the six-fold rotation (C6) crystalline symmetry are well-known
for hosting topological edge states [11,12,15,18,72–75] and
can also support higher-order band topology [43,65]. Such
PhCs, when made of all dielectric materials, host promising
applications in advanced photonic and quantum technology
[18,74,75].

In this work, we propose an all-dielectric hexagonal PhC
that exhibits a topological band gap as the photonic
analog of an unprecedented topological crystalline insulator.
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The unique band topology, as protected by the C6 crystalline
symmetry, is manifested first by the coexisting gapped edge
states and in-gap corner states, indicating a photonic HOTI.
From topological band theory, the photonic HOTI hosts a frac-
tional corner charge of Qc � 2∕3. We demonstrate, using the
first-principle simulations, that such a fractional charge can be
verified through the concept of local spectral charge as an ana-
log of the local electric charge due to a band filling anomaly in
electronic systems. Physically, the spectral charge measures how
many photonic modes exist in a local area in a given frequency
range. Exploiting such a concept, we further show that discli-
nations, topological defects that disrupt the crystalline rotation
symmetry, can induce a fractional spectral charge Qdis � 2∕3
and trap localized photonic states around the disclination core.
We emphasize that the all-dielectric PhC proposed here hosts
what we believe, to the best of our knowledge, is an unprec-
edented higher-order band topology that is particularly re-
flected by the unique topological indices and the fractional
spectral charge of 2∕3. In comparison, previous studies focused
on cases with 1/2 fractional spectral charges [76]. First-princi-
ple calculations give consistent results with the bulk-disclina-
tion correspondence picture predicted by the topological
band theory. The unique topological phenomena found in this
work can be readily observed in the state-of-the-art photonic
experiments and may offer potential applications in topological
quantum photonics and topological lasing.

This paper has seven sections. Section 2 focuses on the de-
sign of the PhC and its bulk topological indices. Section 3 stud-
ies the topological edge and corner states as well as the fractional
corner charge. Section 4 explores the manifestation of the bulk-
disclination correspondence in the PhC. Section 5 demon-
strates the disclination in the trivial PhC. Section 6 shows
the robustness of the disclination states. Section 7 gives the con-
clusions and outlooks.

2. PHOTONIC CRYSTAL AND BULK
TOPOLOGICAL INDICES

We propose a hexagonal PhC with six dielectric cylindrical rods
in each unit cell [see Fig. 1(a)] to realize the above topological
effects. We focus on the lowest few photonic bands of trans-
verse-magnetic harmonic modes. Despite that our PhC looks a
bit similar to the PhC proposed by Wu and Hu (denoted here-
after as Wu–Hu’s PhC) [11], their topological indices and
properties are distinct. First, there are only two bands below
the topological gap in our PhC; Wu–Hu’s PhC, however,
has three bands below the topological gap. Moreover, the band
symmetry representations and the topological indices are dis-
tinct for the two PhCs, as elaborated below.

The photonic band gaps discussed here are analogs of topo-
logical crystalline insulators protected by the C6 crystalline
symmetry. In this context, the topological indices of the band
gap can be deduced from the symmetry indicators of the bands
below the gap. Using the theory in Ref. [39], the topological
indices are given by

χ�6� � �χM , χK �: (1)

Here, the symmetry indicators are χM � #M �2�
1 − #Γ�2�

1 and
χK � #K �3�

1 − #Γ�3�
1 , respectively. The symbol #Π�n�

l denotes

the number of bands with the Cn rotation eigenvalue
ei2π�l−1�∕n (l � 1,…, n) below the band gap at a high-symmetry
point Π � Γ,M ,K . The symbol χM (χK ) thus stands for the
change of the symmetry representations between the M (K )
and the Γ points. For instance, χM represents the parity inver-
sion between the Γ and M points, as generalized parity-
inversion [1] (or generalized Fu–Kane [2]) indices. According
to the symmetry eigenvalues at the high symmetry points [as
illustrated in Figs. 1(b) and 1(c)], we find that our PhC has
χ�6� � �0, − 2�, whereas Wu–Hu’s PhC (also studied recently
in Ref. [76]) has χ�6� � �−2, 0�. Moreover, Wu–Hu’s PhC has a
nontrivial second Stiefel–Whitney number ν � 1 [i.e., 4m� 2
(where m is an integer) odd-parity Bloch states at all time-
reversal invariant momenta (the Γ point and the three M
points)], whereas our PhC here has a trivial second Stiefel–
Whitney number ν � 0 (i.e., 4m odd-parity Bloch states at
all time-reversal invariant momenta), according to Ref. [77].

Geometrically, the key difference between our PhC and
Wu–Hu’s PhC is that in our PhC, the dielectric rods are aligned
along the line from the corners to the center of the unit cell [see
the brown dashed line in the inset of Fig. 1(a)]. In comparison,
in Wu–Hu’s PhC the dielectric rods are aligned from the edge
centers to the center of the unit cell, as shown by the green
dotted line in the inset of Fig. 1(a).

The evolution of the lowest six photonic bands with the
geometry parameter d (i.e., the distance between the rod center
and the unit cell center), is presented in Figs. 1(d) and 1(e).
From Fig. 1(e), one can see that only the band gap between
the second and the third bands is topological, whereas the other
band gaps are all trivial (i.e., these band gaps have trivial indices
χM � χK � 0). We find that the topological band gap is finite
only when d > 0.418a.

Although the results in this paper do not depend on the
lattice constant (since the Maxwell’s equations are scale-
invariant), most of the calculations here focus on the situation
with a � 25 mm and d � 0.47a (unless specified as other val-
ues), while the relative dielectric constant and the diameter of
the rods are εd � 24 and D � 4 mm, respectively. At micro-
wave frequencies, such dielectric rods can be realized using zir-
conia ceramics. For these parameters, we find a bulk band gap
ranging from 4.0 GHz to 5.15 GHz, yielding a large photonic
band gap. Moreover, we find that for the same geometry param-
eters specified above, when the relative permittivity εd varies,
the topological photonic band gap survives for permittivity
larger than 9 [see Figs. 1(f ) and 1(g)]. In the near-infrared re-
gime, silicon has a permittivity as large as 13, which is suffi-
ciently large to induce the topological photonic band gap
proposed in this work.

3. TOPOLOGICAL EDGE AND CORNER STATES
AND THE FRACTIONAL CORNER CHARGE

As a consequence of the nontrivial topological band gap, topo-
logical edge and corner states emerge in finite structures. To
demonstrate this, we first consider a structure that is finite
along the y direction, but periodic along the x direction [see
Figs. 2(a) and 2(b)]. Hard-wall boundary conditions are im-
posed at the two terminating edges in the y direction that
are simulated using the perfect electrical conductor (PEC)
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Fig. 1. (a) Schematic illustration of the 2D hexagonal PhC. Inset shows the zoom-in structure of the unit cell. Gray region is air, while the green
dots denote the dielectric rods with a diameterD � 4 mm and a relative permittivity εd � 24. The lattice vectors of the hexagonal lattice, ~a1 and ~a2,
are depicted. The lattice constant is a � 25 mm, while the distance between the center of a rod and the unit cell center, d , is tunable. (b) Photonic
band structure for d � 0.47a. The photonic band gap (green region) has a nontrivial topological index of χ�6� � �0, − 2�. The little group rep-
resentations (i.e., A, B, and E) are labeled on the band structure. The phase profiles for the electric field Ez of the corresponding Bloch states are
shown in (c). (d) Evolutions of the first six bands at the high symmetry points, Γ, M , and K , with the geometry parameter d. (e) Evolutions of the
bulk bands (frequency ranges) and the band gaps with the parameter d. (f ) Evolutions of the first six bands at the high symmetry points, Γ,M , and
K , with the relative permittivity εd. (g) Evolutions of the bulk bands (frequency ranges) and the band gaps with the relative permittivity εd.
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boundaries (i.e., metallic boundaries for far-infrared and micro-
wave photons), as shown in Fig. 2(b). A calculation indicates
that the edge states are gapped and only one branch of the edge
states emerges in the bulk band gap, as shown in Fig. 2(a). The
dispersion of the edge states tends to be flat instead of gapless
and dispersive. Such edge states are quite different from the
known photonic edge states in the literature [5–17,72–75].
Not that similar edge states were found recently in Ref.
[69]. The amplitude and phase profiles of the electric field
Ez as well as the distributions of the Poynting vectors, which
are shown in Fig. 2(b), agree with the time-reversal symmetry
for the two edge states with opposite wavevectors.

When the PhC is finite in all directions, as depicted in
Fig. 2(c), both the edge and corner states emerge. There are
six nearly degenerate corner states emerging in the common band
gap of the bulk and the edge states, as shown in Fig. 3(a). Each of
them is localized at one of the corner boundary, as indicated by
the distribution of the summed electric field intensity jEz j2 for all
the corner states, as shown in Fig. 2(d).

In addition to the edge and corner states, topological band
theory predicts that in finite systems, a fractional electric charge
appears at the corner boundary due to the filling anomaly of the
occupied bulk bands in electronic systems [39]. The fractional
part of the corner charge, eQc , is connected to the bulk topo-
logical indices through [39]

Qc �
�
1

4
χM � 1

6
χK

�
mod 1: (2)

The equation above states that the fractional corner charge is
determined by the bulk band topology. In electronic systems,
the fractional corner charge is directly related to the local elec-
tric charge. However, photons are neutral particles that lack
such a property. Nevertheless, it has been shown that through
the concept of “spectral charge,” the fractional corner charge
can still be measured in bosonic systems [78].

To verify the fractional corner charge in photonic systems,
we calculate the spectral charge for each unit cell in the struc-
ture illustrated in Fig. 3(c). Specifically, the spectral charge for
the p-th unit cell in the structure is defined as

Qp �
Z

f gap

0

df
Z

p-th
U:C:

d~r ρ�f , ~r�, (3)

where f gap is a frequency in the common band gap of the bulk
and edge states, and ρ�f , ~r� is the local density of states
(LDOS) of photons (f is the frequency and ~r is the position
vector). The integration over the coordinates is performed for
the region of the p-th unit cell. The equation above is an analog
of the electric charge for the p-th unit cell by band filling up to
the Fermi energy in the bulk band gap in electronic systems.
For topologically trivial insulators, for each unit cell Qp is equal
to the number of bands below the band gap [39], which is con-
sistent with the picture that each unit cell contributes Qp
modes to form the bulk bands below the trivial band gap.
However, for topological crystalline insulators, fractional spec-
tral charges can appear due to band filling anomaly [39].
We remark that the applications of the PEC boundary are

Fig. 2. (a) Photonic dispersions at the bulk, edge, and corners. Both the bulk and edge dispersions are calculated using the structure illustrated in
the upper panel of (b). The corner frequency is calculated from the finite structure illustrated in (c). Upper panel of (b): Structure for the study of the
edge states, which is finite along the y direction but periodic in the x direction. PEC boundaries are imposed at the left and right ends of the structure.
Lower panels of (b): Amplitude and phase profiles of the electric field Ez for the two edge states labeled by the stars in (a). (c) Illustration of the finite
structure used to study the corner states. (d) Distribution of the summed electric field intensity for all the corner states. There are six degenerate
corner states, as shown in Fig. 3(a). In all calculations, a thin layer of air with a width of 0.08a is set between the PEC boundary and the PhC.
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important here for the evaluation of the fractional mode charge.
Particularly, the PEC boundary confines the photons in a finite
supercell and makes the system closed and Hermitian; there-
fore, the boundary preserves the quantization of the fractional
charges.

We calculate the photonic LDOS and obtain the spectral
charges for all the unit cells. The photonic spectral charge
for each unit cell can be obtained by integrating the photonic
LDOS ρ�f , ~r� up to a frequency in the band gap, f gap, as in-
dicated by Eq. (3). The LDOS is calculated through the pho-
tonic eigenstates. If we denote the wavefunction of the i-th
photonic eigenstate as ψ i and the frequency of the eigenstate
as f i, then the LDOS can be written as

ρ�f , ~r� �
X
i

Γ
π�Γ2 � �f − f i�2�

jψ i�~r�j2: (4)

Here, Γ is a parameter used to model the Lorentz broaden-
ing of the eigenstates. In our calculation, Γ is set to be suffi-
ciently small to converge the calculation. The normalized
photonic wavefunction is given by

jψ i�~r�j2 � ε�~r�jEz,i�~r�j2, (5)

where ε�~r� is the relative permittivity and Ez,i�~r� is the rescaled
electric field of the i-th photonic eigenstate that satisfiesR
d~rε�~r�jEz,i�~r�j2 � 1. The spectral charge is then given by

Eq. (3), where the integration over the coordinates is performed
for the region of the p-th unit cell.

Based on the calculation method above, we find that in the
bulk region (gray), the spectral charge is nearly 2 for each unit
cell in Fig. 3(b). In comparison, in the edge region (blue), the
spectral charge is close to 1 for each unit cell, while in the corner
region (red), the spectral charge is close to 2∕3.

The above spectral charges can be understood through the
Wannier centers. In our photonic system, there are only bulk
states below the frequency f gap � 4 GHz. These bulk modes
are pictorially represented by the Wannier centers away from
the edge and corner boundaries. In each bulk unit cell, there are
six Wannier centers locating at the corners of the unit cell. Each
Wannier center is shared by three neighboring unit cells, thus
contributing 1/3 spectral charge to one of these unit cells.
Therefore, each bulk unit cell has a spectral charge of 2
(i.e., there are two photonic modes in each bulk unit cell).
These two modes interact with the modes in other unit cells
and form the two bulk Bloch bands below the band gap.

Fig. 3. (a) Photonic spectrum for the finite PhC structure illustrated in Fig. 2(c). Only the eigenstates in and around the bulk band gap are shown.
(b) Spectral charges for various unit cells. The gray region denotes the bulk. The blue region denotes the edges, while the red region denotes the
corners. (c) Local density-of-states (DOS) for photons in three different types of unit cells labeled by the triangle (corner unit cell), rectangle (edge
unit cell), and the star (bulk unit cell). Integrating the photonic LDOS up to the frequency f gap � 4 GHz gives rise to fractional spectral charges at
the corner boundaries. (d) Illustration of the distribution of the fractional corner charges in a finite sample. In all calculations, a thin layer of air with
the width 0.08a is set between the PEC boundary and the PhC.
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In comparison, there are three Wannier centers in an edge
unit cell. The other three Wannier centers in the edge unit cell
are obstructed by the edge boundary and become edge states.
For a corner unit cell, there are only two Wannier centers as-
sociated with the bulk, while the other four Wannier centers are
obstructed by the boundary and become edge and corner states.
As a consequence, an edge unit cell has a spectral charge 1,
while a corner unit cell has a spectral charge 2/3.

Our first-principle calculations give a spectral charge 1.07
for an edge unit cell that is close to the theoretical value 1.
On the other hand, each corner unit cell has a spectral charge
0.75 that is not far away from the theoretical value 2/3. In
general, because PhCs are in the continuum limit, the PEC
boundaries may slightly affect the specific mode charges.
The corner unit cells have three facets with the PEC boundaries
and thus are more affected by such effects, compared to the
edge unit cells that have two facets with the PEC boundaries.
Note that the charge has to be fractionalized to integer times of
1/3 or 1/2, not to other fractional values, according to Eqs. (2)
and (6). Therefore, the small deviations of the numerical
value of the corner (and disclination) charge from the theoreti-
cal value do not cause a problem in identifying the correct
fractional corner or disclination charges. The slight deviation
of the spectral charges calculated using the first-principle meth-
ods from the theoretical spectral charges essentially originates
from the fact that photons in PhCs do not strictly follow
the tight-binding theory. Nevertheless, the fractional corner
charge is still revealed approximately from the first-principle
calculations.

4. BULK-DISCLINATION CORRESPONDENCE

We now study the bulk-disclination correspondence in our
higher-order topological PhC. The bulk-disclination corre-
spondence predicts that in topological crystalline insulators,
the fractional charge bound to a disclination with a Frank angle
Ω is determined by the symmetry indicators of the Bloch bands
below the band gap [76,78,79], so

Qdis �
Ω
2π

�
3

2
χM − χK

�
mod 1, (6)

where Ω is the Frank angle. The disclination structure in
Fig. 4(a) has a Frank angleΩ � −2π∕6. This disclination struc-
ture has a fractional charge of Qdis � �2∕3�mod 1 bound to
the disclination core. The bulk-disclination correspondence
is manifested in the fractional disclination charge and the local-
ized states bound to the disclination core. The fractional dis-
clination charge can also be understood by counting the
number of the Wannier centers. Each unit cell in the disclina-
tion region [green in Fig. 4(a)] has four bulk Wannier centers,
which gives a 4/3 spectral charge per unit cell. The other two
Wannier centers are obstructed by the disclination boundary
and thus form localized disclination states. The five unit cells
close to the disclination core give in total a fractional spectral
charge of 20/3, which is 2/3 modulo 1. We remark that these
results are quite different from the 1/4 disclination charge in
Ref. [80] and the 1/2 disclination charge in Ref. [76].

To visualize the bulk-disclination correspondence in our
PhC, we calculate the eigenstates and the LDOS of photons
for the disclination structure in Fig. 4(a). The photonic

Fig. 4. (a) Spectral charges for various unit cells in a finite disclination structure from the first-principle calculations. Integrating the calculated
photonic LDOS up to the frequency f gap � 4 GHz gives the spectral charges presented in the figure. (b) Spectrum of the photonic eigenstates for
the finite-sized disclination structure. (c) The five localized states bound to the disclination core. In all calculations, a thin layer of air with the width
0.08a is set between the outside PEC boundary and the PhC and another layer of air with the width 0.03a is set between the inner PEC boundary
and the PhC.
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spectrum [Fig. 4(b)] shows that there are five disclination states
in the bulk band gap, in addition to the edge states. By inte-
grating the photonic LDOS up to a frequency in the band gap,
f gap � 4 GHz, we calculate the spectral charges for all the unit
cells. Due to the five-fold rotation symmetry of the disclination
structure, we present the spectral charges only for part of the
disclination [see Fig. 4(a)]. Again, each bulk unit cell has a spec-
tral charge close to 2, while each edge unit cell has a spectral
charge approximately 1. The disclination unit cells have spec-
tral charges of 1.4, which is close to the theoretical value of 4/3.

5. DISCLINATION IN THE TRIVIAL PHOTONIC
CRYSTAL

We now study the disclination structure for the trivial PhC.
Specifically, we study the PhC with d∕a � 0.25 and consider
the photonic band gap between the first and the second bands.
For the band gap, the topological indices are trivial
(i.e., χM � χK � 0), and the Wannier center of the first band
lies at the center of the unit cell [see Fig. 5(a)].

We calculate the spectral charge for each unit cell by inte-
grating the photonic LDOS from zero up to a frequency
f 0
gap � 3.2 GHz in the concerned photonic band gap, as

shown in Fig. 5(b). The results in Fig. 5(a) indicate that all
the spectral charges are close to 1. There is no signature of
charge fractionalization in the disclination structure. Note that
the charge has to be fractionalized to integer times of 1/3 or
1/2, not to other fractional values, according to the bulk-
disclination correspondence [i.e., Eq. (6)]. Moreover, there is
no disclination state. All the eigenstates are bulk states.

6. ROBUSTNESS OF THE DISCLINATION
STATES

In this section, we study the robustness of the disclination states
against two kinds of disorder: (i) defects that preserve the five-
fold rotation symmetry of the disclination (i.e., at the center of
the disclination core); and (ii) defects that break such rotation
symmetry (i.e., away from the center of the disclination core).
The defect is realized by inserting a dielectric rod with a radius

of 2 mm but with varying relative permittivity. To facilitate the
discussions, we remove the PEC boundary in the disclination
core. Such a setup creates a hollow core in the disclination. As a
consequence, a defect photonic mode emerges at the disclina-
tion core in the trivial PhC. In the meanwhile, there are still five
disclination states localized around the disclination core.

We then compare the robustness of the frequencies of the
disclination states and the defect state against the same disorder.
Specifically, we study the shift of the frequencies of the discli-
nation states and the defect mode as functions of the relative
permittivity of the inserted dielectric rod (acting as a defect),
which ranges from 1 to 20 in the simulation. To show the ro-
bustness of the disclination states, we comparatively study two
cases: the disclination structure formed by the photonic TCI
with d∕a � 0.46, and the disclination structure formed by
the photonic NI with d∕a � 0.24. The former has five discli-
nation states, while the latter has a defect mode localized at the
hollow disclination core. These two cases are adopted because
they have the photonic band gaps with nearly the same band-
gap-to-mid-gap ratio of 20%. The position of the defect rod is
indicated in the insets in Fig. 6 by the black, blue, and red dots,
respectively. We compare the robustness of the frequencies of
the disclination states and the defective state in responses to the
same disorder. The frequency of the same disclination state (α,
β or γ) or defect state changes as a function of relative permit-
tivity of dielectric rod and is summarized in the same figure.
The results are presented in Fig. 6 where three different con-
figurations of the disorder are studied for both the TCI and NI.
Specifically, Figs. 6(a)–6(c) show, respectively, the effects of the
defect pillar on the frequencies of the disclination states in the
TCI. Figure 6(d) shows the effects of the defect pillar on
the frequencies of the defect state in the NI. It is seen that the
frequency shifts of the disclination states in the TCI are much
smaller than the frequency shift of the defect state in the NI.
Thus, the frequencies of the disclination states in the TCI are
more robust than the frequency of the defect state in the NI.
These cases correspond to defect configurations that break the
five-fold rotation symmetry of the original disclination struc-
ture. Thus, the double-degeneracy in the β and γ states is lifted.

Fig. 5. (a) Wannier center distributions in the disclination structure for the trivial PhC with d∕a � 0.25. No fractional spectral charge is ac-
cumulated since the localized position of Wannier center is at the center of each unit cell. (b) Photonic spectrum of the disclination structure for the
trivial PhC. There is no disclination state. Only bulk states are found. In all calculations, a thin layer of air with the width 0.08a is set between the
outside PEC boundary and the PhC and another layer of air with the width 0.03a is set between the inner PEC boundary and the PhC.
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Nevertheless, the resilience of the frequencies of the disclina-
tion states in the TCI over the frequency of the defective state
in the NI remains visible.

7. CONCLUSIONS AND OUTLOOK

We propose a hexagonal PhC with unconventional higher-
order topology. In addition to the conventional spectral features
of HOTIs (i.e., gapped edge states and in-gap corner states), the
unique band topology here gives rise to a fractional charge of
2/3 at the corner boundaries, which is confirmed by the first-
principle calculations through the concept of spectral charges.
The spectral charges measure the number of photonic modes
within a local area (e.g., a unit cell) for all the bulk states below

the band gap. We also show that the bulk-disclination corre-
spondence leads to a fractional spectral charge of 1/3 at the
disclination core. Besides, we find that there are five localized
states bound to the disclination, which is robust against disor-
ders when compared to the conventional defect mode in PhCs.
In contrast, the above phenomena disappear in trivial photonic
band gaps.

The localized states bound to disclinations can be used as
photonic cavity modes that are robust against disorders.
Such robust subwavelength cavities are useful in integrated
photonic systems as well as for quantum photonics. In addi-
tion, these cavity modes can also be exploited for lasing, as dem-
onstrated in recent works. The fractional charges at the corners
and disclination cores can be used to control the LDOS of the

Fig. 6. Frequency shift of the disclination and defect states when the disclination structure contains an additional dielectric rod near the dis-
clination core. The location of the defect rod is indicated by the black, blue, and red dots in the insets. The radius of the defect pillar is 2 mm. We
study the frequency shifts of the disclination and defect states as functions of the relative permittivity of defect rod. Frequency of disclination states
(α, β, or γ) and defect state as functions of the relative permittivity of the dielectric rod for three different defects is summarized in (a)–(c) and (d),
respectively.
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bulk photonic states. Our work may inspire future studies on
similar phenomena and their applications in photonic and
optoelectronic systems.
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