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We propose a modified supervised learning algorithm for optical spiking neural networks, which introduces
synaptic time-delay plasticity on the basis of traditional weight training. Delay learning is combined with
the remote supervised method that is incorporated with photonic spike-timing-dependent plasticity. A spike
sequence learning task implemented via the proposed algorithm is found to have better performance than
via the traditional weight-based method. Moreover, the proposed algorithm is also applied to two benchmark
data sets for classification. In a simple network structure with only a few optical neurons, the classification ac-
curacy based on the delay-weight learning algorithm is significantly improved compared with weight-based learn-
ing. The introduction of delay adjusting improves the learning efficiency and performance of the algorithm, which
is helpful for photonic neuromorphic computing and is also important specifically for understanding information
processing in the biological brain. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.413742

1. INTRODUCTION

As the improvement of traditional neural networks has gradu-
ally approached an upper limit, research focuses on neural net-
works with more biological reality. The spiking neural networks
(SNNs), normally known as the third generation of artificial
neural networks (ANNs), are more biologically plausible than
previous ANNs [1] and have attracted more and more attention
in recent decades [2–6]. Spikes transmitted in the biological
neural networks enable the network to capture the rich
dynamics of neurons and to integrate different information
dimensions [3]. However, the information representation
and processing manner has become a controversial issue and
remains very challenging.

Rate coding is widely used in traditional SNNs; however,
there is biological evidence that the precise timing of spikes also
conveys information in nervous systems [7–9]. The precise tim-
ing of spikes enables higher information encoding capacity and
lower power consumption [10–12], which are extremely im-
portant in information processing of the human brain.
However, the exact learning mechanism still remains an open
problem [13]. It has been shown that in the cerebellum and the
cerebellar cortex, there exist signals that act like an instructor
that helps the processing of information [14,15]. Several super-
vised learning algorithms have been proposed upon which spe-
cific problems that are tightly related to neural processing such
as spike sequence learning and pattern recognition have been

solved successfully [16–20]. Remote supervised method
(ReSuMe) is one of the supervised learning algorithms origi-
nally derived from the well-known Widrow-Hoff rule [17].
Based on photonic spike-timing-dependent plasticity
(STDP) and anti-STDP rules, the synaptic weights can be ad-
justed to train the output neuron to fire spikes at the de-
sired time.

Time-delayed transmission is an intrinsic feature in neural
networks. Biological evidence shows that the transmission
velocities in the nervous system can be modulated [21,22],
for example, by changing the length and thickness of dendrites
and axons [23]. The adjustability of both delay and weight of a
synapse is referred to as synaptic plasticity. Delay plasticity has
also been found to be helpful for the neuron in changing its
firing behavior and synchronization, and it helps to understand
the process of learning [24,25]. Delay selection and delay shift
are two basic approaches incorporated in delay learning works
[26,27]. To be specific, delay selection is to strengthen the
weight of an optimal synapse among multiple subconnections,
and delay shift is a more biologically plausible method training
neurons to fire with coincident input spikes and with constant
weight. Recently, researchers found that combined adjustment
of delay and weight enhances the performance of an SNN
[28–32]. In 2015, a delay learning remote supervised method
(DL-ReSuMe) for spiking neurons was proposed to merge the
delay shift approach and weight adjustment based on ReSuMe,
by which the learning accuracy and learning speed are enhanced
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[30]. In 2018, Taherkhani et al. proposed to appropriately train
both weights and delays of excitatory and inhibitory neurons in
a multilayer SNN to fire multiple desired spikes. Experimental
evaluation on benchmark data sets shows that higher classifi-
cation accuracy than single layer and a similar multilayer SNN
can be achieved by the proposed method [31]. In 2020, Zhang
et al. investigated the synaptic delay plasticity and proposed a
novel learning method, where two representative supervised
learning methods, ReSuMe and the perceptron based
spiking neuron learning rule (PBSNLR), were studied and
found to outperform the traditional synaptic weight learning
methods [32].

For the sake of emulating realistic biological behaviors, SNN
hardware realizations are designed to seek ultralow power
consumption [5]. Devices for the implementation of basic
elements of SNN, namely, artificial spiking neurons and
synapses, have been achieved via complementary metal-oxide-
semiconductors (CMOS), transistors, and the emerging non-
volatilememory technologies [33–38], etc. Photonic neuromor-
phic systems have attracted attention for being a potential
candidate in applications of ultrafast processing. Despite its sim-
ilarity with biological neurons [39], the semiconductor laser also
exceeds its electronic counterpart in its ultrafast response and low
power consumption. Numerous studies on photonic synapses
and photonic neurons [40–53] have laid a solid foundation
for significant progress in photonic neuromorphic computing
based on both software and hardware implementations
[54–59]. In 2019, an all-optical SNNwith self-learning capacity
was physically implemented on a nanophotonic chip, which is
capable of supervised and unsupervised learning [55]. In 2020,
we proposed to solve XOR in an all-optical neuromorphic sys-
tem with inhibitory dynamics of a single photonic spiking neu-
ron based on vertical-cavity surface-emitting lasers (VCSELs)
with an embedding saturable absorber (VCSEL-SA) [58], and
an all-optical spiking neural network based on VCSELs was also
proposed for supervised learning and pattern classification [59].
However, as far as we know, delay learning has not yet been ap-
plied in photonic SNNs.

In this work, we propose to incorporate delay learning with
the traditional algorithmbased on an optical SNN. First, we pro-
pose a modified algorithm that combines delay learning with
ReSuMe in a photonic SNN, which adjusts synaptic weight
and delay simultaneously. By implementing a spike sequence
learning task, better performance and learning efficiency of
the proposed algorithm than that of its weight-based counterpart
are verified. Then, the proposed algorithm is also implemented
for classification, where two benchmarks, the Iris data set and the
breast cancer data set, are adopted. By applying the delay-weight
(DW)-based algorithm, the testing accuracy for both bench-
marks is significantly improved (reaching 92%).

2. SYSTEM MODEL

A. Photonic Neurons and Synapses Based on
VCSEL-SA and VCSOA
The schematic diagram of DW-based supervised learning archi-
tecture is illustrated in Fig. 1, where the pre-synaptic neurons
(PREs) of the input layer are fully connected to the single
post-synaptic neuron (POST) in the output layer via photonic

synapses with adjustable weight ω and delay d. The actual out-
put of the POST and the target output are sent to the DW learn-
ing algorithm module, based on which ω and d can be adjusted
independently to train the POST to fire spikes at a desired time.
To implement a spatiotemporal encoding, the PREi is stimulated
by a pre-coded square-wave pulse whose central timing contains
time information. In a possible experiment, the modulated
spikes from PREs are sent into the DWmodule, which contains
a programmable attenuator array for the modulation of weight
and a programmable true delay line (TTDL) array for the adjust-
ing of delay. The time resolution could reach 20 ps for the
TTDL devices [60], which might be sufficient for the realization
of DW-ReSuMe. A possible control unit can be introduced to
detect the precise spiking times of the PRE and POST photonic
neurons and calculate the variation of weight and delay for each
synapse during a training cycle. The training process stops when
accuracy meets the requirement. Note that given the technolo-
gies available, we think it may be more realistic to adopt an ex situ
learning approach for the training process as offline training is
much easier. Once trained, the SNN can be directly used for
inference implemented on optical hardware [61].

The photonic neurons and synapses are the basic elements in a
photonic SNN. VCSEL-SA can mimic spiking dynamics of a
biological neuron [51] and VCSEL that works below threshold
value can serve as a vertical-cavity semiconductor optical amplifier
(VCSOA) that is able to perform the STDP function [47], which
provides possibilities of large-scale integration and low power con-
sumption in a photonic SNN. In this work, the spiking dynamics
are implemented via the excitable VCSEL-SA neurons. The rate
equations of a VCSEL-SA are written as follows [57]:

_Si,o � Γaga�na − n0a�Si,o � Γsg s�ns − n0s�Si,o
− Si,o∕τph � βBrn2a , (1)

na
· � −Γaga�na − n0a��S −Φpre,i −Φpost,o�

− na∕τa � I a∕�eV a�,
Φpre,i � keiτphλiPei�τi,Δτ�∕�hcV a�,

Φpost,o �
Xn
i�1

ωiλiτphPi�t − d i�∕�hcV a�, (2)

ns
· � −Γsg s�ns − n0s�Si,o − ns∕τs � I s∕eV s, (3)

Fig. 1. Schematic diagram of DW-based learning in a single-layer
photonic SNN.
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where i = 1, 2, ..., n is the number of the PREs, and o denotes the
POST. The subscripts a and s represent the gain and absorber
regions, respectively. Si,o�t� stands for the photon density in
the cavity of the PREs and POST. Γa is the gain region confine-
ment factor. ga is the gain region differential gain/loss. na (ns) is
the carrier density in the gain (absorber) region.

The term Φpre,i in Eq. (2) describes the pre-coded square-
wave pulses injected as external stimulus into PREs, and Φpost,o
represents the weighted sum of all of the pre-synaptic spikes fed
into the POST. d i is the adjustable transmission delay from
PREi to the PSOT. kei, τi, and Δτ denote the strength, the
central timing, and the temporal duration of the pulse, respec-
tively. Δτi � τi − τi−1 is the time interval between two adjacent
input pulses. ωi is the coupling weight between the PREi and
the POST that can be tuned according to the supervised train-
ing method. The output power of PREs and POST can be cal-
culated by Pi,o�t� ≈ ηcΓaSi,o�t�V ahc∕�τphλi,o�. In practice, the
ωi is calculated as an initial weight ω0 multiplying a constant
coefficient ωf � ηcΓahc∕�τphλi,o� to match the optical system.
The remaining parameters are the same for all neurons as in
Ref. [56]. The rate equations are numerically solved by using
the fourth-order Runge-Kutta method.

B. DW-Based Learning Algorithm
In most of the algorithms with tasks tightly related to neural
processing, such as spike sequence learning and pattern recog-
nition, only weight adjustment is considered. However, the
time delay from the PREs to the POST is hardly considered,
which may play a vital role in brain computing [31]. Under this
consideration, the time-delay plasticity is combined with the
ReSuMe algorithm. The weight and delay changes of the
i-th synapse after each training epoch are

Δωi � �nd − no� �
X
td

X
t i ≤ td

ΔωSTDP�td − ti�

�
X
to

X
t i ≤ to

ΔωaSTDP�to − ti�, (4)

Δd i � �Did − Dio�;Did � td − ti,Dio � to − ti, (5)

where nd and no are spike numbers of the desired and the actual
output spike sequences. ti, td , and to denote the input, target,
and output spiking time, respectively. A schematic illustration
of ReSuMe is shown in Fig. 2, where the Δω depends on three
parts: namely, the non-Hebbian term, the difference between
target spiking time td and input time ti, and the difference

between actual output spiking time to and t i. The first term
of Eq. (4) is a non-Hebbian term that aims to adjust the average
strength of the input synapses to accelerate training. The
ΔωSTDP�td − ti� and ΔωaSTDP�to − ti� in Eq. (4) are photonic
STDP and anti-STDP learning rules denoting the synaptic po-
tentiation (depression), which can be calculated by [43,57]

ΔωSTDP�td − ti� �
�
Δωo�Δt�, if td − t i > 0

0, if td − ti ≤ 0
, (6)

ΔωaSTDP�to − ti� �
�
−Δωo�Δt�, if to − ti > 0

0, if to − t i ≤ 0
: (7)

t i ≤ td and ti ≤ to in Hebbian terms represent that this rule
only modifies inputs that contribute to the neuron state before
the desired or actual output firing time but neglect those inputs
that fire afterward, which leads to better performance of the
proposed DW-based algorithm.

The term Did (Dio) is the distance between ti and td (to).
The delay adjustment is based on the distance between input
spikes and output spikes (target spikes), in a way similar to that
of synaptic weight. Note that both Δω and Δd approach 0 if
the POST fires at the desired times, which ensures the conver-
gence of the proposed algorithm. In addition, the synaptic
weights (delays) are adjusted with a learning rate ηf �ηd �
and within a learning window T ω �T d �. The weight and delay
of the i-th synapse are adjusted only if the input spike distance
Did is less than the learning window. Finally, the weight and
delay of the i-th synapse are updated by

ωi�x � 1� � ωi�x� � ηωΔωi , (8)

d i�x � 1� � d i�x� � ηdΔd i, (9)

where the term x denotes the training cycle. In general, ηd � 0.5
contributes to better performance, while other parameters should
be carefully selected according to different tasks.

A simple case for delay learning is illustrated in Fig. 3.
Consider two PREs; each fires a spike at t1 and t2, respectively.
After delayed transmission through the synapses, the actual in-
put spikes locate at t1 � d 1 and t2 � d 2 [see in Fig. 3(a1)]. The
principle of delay learning is to shift the actual input spikes
toward the desired time, also called coherence learning, in

Fig. 2. Schematic illustration of the ReSuMe incorporated with op-
tical STDP rule. i, d , and o denote the input, the target, and the out-
put, respectively.

Fig. 3. (a1) and (b1) Input pattern and output pattern before delay
adjustment. (a2) and (b2) After 7 training epochs.
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which several coherent input spikes trigger the POST to fire a
spike very shortly after the input time [Figs. 3(a2) and 3(b2)],
while a single input spike cannot enable the release of spikes at
the desired time [Fig. 3(b1)].

3. RESULTS AND DISCUSSION

The learning capability of a single neuron is highly related to
the property of a neural network. In Fig. 4, we compare the
performance of the weight-based ReSuMe and the DW-
ReSuMe in recognizing a single spike, where N i � No � 1,
d � 2 ns, and td � 8 ns. To quantify convergence rate, the
value of spike sequence distance (SSD) (defined in
Ref. [57]) is adopted. The learning window T ω is 3 ns, while
T d is not constrained. The input spiking time ti varies from
4 ns to 7 ns. The time range within which an input pattern can
be successfully learned, denoted as valid input window, suggests
the learning ability of a neuron. The SSD at different training
epochs is presented in Fig. 4 for the two algorithms. The valid
input window for ReSuMe and DW-ReSuMe is 0.3 ns (4.4–
4.7) and 2.4 ns (4.4–6.8) at the 50th training epoch, respec-
tively, as shown in Figs. 4(a) and 4(b). It is shown that with
DW-ReSuMe, the simple network is able to learn a single input
spike with wider time range and with higher precision. Not
surprisingly, with the increase of learning epochs, the valid in-
put window also becomes a little wider. Note that weight learn-
ing is crucial when the single input is too weak to trigger an
output spike in the POST. Here, we emphasize the importance
of initial weight ω0 and weight learning rate ηω on the perfor-
mance of DW-based learning. When ω0 is too small, a larger
learning rate of weight is required to generate an output spike
before the delay learning has shifted the input spiking time
right at that of the target. As can be seen in Fig. 4(c), the effi-
cient input window is widened by increasing the learning rate
from 0.1 × ω0 to 0.2 × ω0. In addition, for large ω0, smaller ηω
is required to avoid missing the optimal solution, as indicated
in Fig. 4(d). The initial weight ω0 ranges from a unit value of

0.1 to 2, and smaller ηω contributes to a larger efficient input
window. We suggest relatively larger weight learning rate ηω
and smaller initial weight ω0 for spike sequence learning.
For a classification problem, ω0 should be large enough to trig-
ger a spike of the PREs, while smaller ηω is necessary to obtain
higher accuracy.

However, note that if the desired output contains more than
one spike, the delay learning window T d has to be limited
within the range of the minimum inter-spike interval (ISI)
to maintain stable performance. Since some of the input spikes
are shifted toward a certain target spike, there is an additional
consideration in the DW-ReSuMe that the injection power of
the output neuron should be limited to protect devices of pho-
tonic neurons and to ensure spiking dynamics.

A. Spike Sequence Learning
Then a spike sequence learning task is implemented via a sin-
gle-layer photonic SNN. Both DW-ReSuMe and ReSuMe are
considered for comparison. The PRE includes 60 input neu-
rons stimulated via pre-coded rectangular pulses with a time
interval Δτi of 0.1 ns, each connected to the POST with a pho-
tonic synapse. In Fig. 5 we show the learning process of the two
algorithms. The black line in Fig. 5(a1) describes the carrier
density na of the POST after training of 300 epochs based
on DW-ReSuMe. When na exceeds a threshold value (marked
in red dotted line), a spike is emitted. We can see that after
training, the POST is able to fire accurately at the desired time
(denoted by blue dotted line). The training process is further
illustrated in Fig. 5(b1), where the SSD converges quickly from
2 to 0 within about 20 training epochs.

The evolution of synaptic weights and delays is shown in
Fig. 6. The initial weights and delays of all neurons are iden-
tical, as indicated by Figs. 6(a) and 6(b), respectively. After
training, some of the weights and delays are potentiated, while
others are depressed or hardly changed. It is interesting to note
that for some synapses, the weights and (or) delays change ob-
viously at the first six training epochs. Such fluctuations during
training are mainly caused by the combined effect of delay
learning and weight learning. That is, when initially the output
spiking time to is far before the target td , the update amount of
both weight and delay is relatively large as the distance between

Fig. 4. Comparison of the learning capability of a single neuron
based on (a) weight-based ReSuMe and (b) DW-ReSuMe. The value
of SSD after the 50th, 100th, and 300th training epoch is presented
for different t i . (c) The valid input window as a function of ηω for
different ω0 based on DW-ReSuMe. (d) The valid input window
as a function of ω0 for different ηω based on DW-ReSuMe.
n � 1, td � 8 ns.

Fig. 5. (a1) Carrier density of the POST after training and (b1) the
evolution of output spikes based on the DW-ReSuMe; (a2) and (b2)
those based on ReSuMe. The black solid line is na and the red solid
line represents P.
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to and td is large. In this case, the combined adjustment of
weight and delay may make to lag far behind td but closer
to td than in the previous epoch. Note that the weight-based
ReSuMe is not able to solve this problem in an SNN with 60
PREs, as shown in Figs. 5(a2) and 5(b2). The results show that
combined with delay learning, DW-ReSuMe is more powerful
than the weight-based algorithm.

Moreover, we found that in the cases of target spikes that have
arbitrary different ISIs, the DW-ReSuMe also performs better
than the traditional weight-based algorithm. Here, two
cases are considered (refer to Ref. [57]). Figure 7 illustrates the
learning process and evolution of SSD during 300 learning
epochs. The desired spike sequence is [10 ns, 12 ns, 14 ns,
18 ns, 20 ns, 22 ns, 24 ns, 26 ns, 29 ns] in Figs. 7(a1) and 7(a2)
and [10 ns, 11 ns, 13 ns, 14.5 ns, 17 ns, 21 ns, 23 ns, 25.5 ns,
27 ns] in Figs. 7(b1) and 7(b2). In both cases, with the increase
of the learning epoch, the POST gradually learns to produce
spikes at the desired time, and the values of SSD gradually de-
crease to approximate 0 after about 20 learning epochs and stay
steady. Compared with our previous work [57], the network
based on the DW-ReSuMe algorithm has better learning ability
than that based on the weight-based ReSuMe.

B. Fisher’s Iris Data Set
The Fisher’s Iris flower data set (Fisher, 1936) is a classic bench-
mark of pattern recognition that contains three classes of Iris

flowers with a total of 150 case entries [31]. One of the classes is
linearly separable from the other two, while the other two
classes are linearly inseparable. Four measurements are used
to describe and differentiate the three classes, and each mea-
surement is directly encoded into single spike firing at different
times and is linearly rescaled into the interval of [5 ns, 10 ns].
The network comprises 4 PREs and a single POST. The en-
coding spikes are fed into the 4 PREs of the SNN via synapses
with adjustable delay and weight. The initial delays are 2 ns for
all of the four input neurons, and the initial weight ω0 for each
synapse is randomly selected as a constant coefficient (which is
0.1 here) multiplied by a random number from [0,1]. In this
case, nearly all of the PRE neurons are capable of generating
just a single spike in response of each input pattern. The weight
learning rate ηω is 0.01 and decays by half every 20 training
epochs to enhance the convergence of learning. The output
of the network is represented by the precise spiking time of
the POST, which fires a desired spike at different times for dif-
ferent classes. Here, the target spikes for the three classes are
8 ns, 9 ns, and 10 ns, respectively. If the output spike locates
within 40% the interval of target spikes around a certain td , the
input entry is classified into the corresponding class.

In our scheme, according to Ref. [31], 50% of the IRIS data
are used for training and the rest for testing. The training and
testing processes are implemented through program simulation
based on MATLAB. For each training epoch, all of the entries
in the training data set are injected into the input neurons of
the SNN successively. Based on the learning algorithm, theΔωi
(Δd i) of the i-th input synapse for each entry is calculated and
summed as ΔW i (ΔDi). After each training epoch, the mean
value of ΔW i (ΔDi) is used for weight (delay) update, namely,
the actual update amount for weight (delay) is Δωi �
ΔW i∕N train (Δd i � ΔDi∕N train), where N train � 75 is the
size of the training data set. After each training epoch, the up-
dated weights and delays are also used for testing. The accuracy
is defined as the number of correctly classified entries divided
by the total entry number. Both training accuracy and testing
accuracy with different learning algorithms are presented in
Fig. 8. Based on the DW-ReSuMe, the accuracy arises rapidly
at first and gradually approaches 96% for the training data set

Fig. 7. Learning spike sequences with ununiformed ISI. (a1) and
(b1) The evolution of output spikes for spike sequence [10 ns,
12 ns, 14 ns, 18 ns, 20 ns, 22 ns, 24 ns, 26 ns, 29 ns] and [10 ns,
11 ns, 13 ns, 14.5 ns, 17 ns, 21 ns, 23 ns, 25.5 ns, 27 ns], respectively.
(a2) and (b2) The evolution for the corresponding distance.

Fig. 6. Evolution of (a1) synaptic weights ωi and (a2) delays d i dur-
ing the first 20 training epochs.

Fig. 8. (a) Training accuracy and (b) testing accuracy varying with
training epochs for weight-based ReSuMe (blue solid line) and DW-
ReSuMe (red solid line). T d � 1 ns, T ω � 4 ns. The blue dotted line
indicates an accuracy of 90%.

Research Article Vol. 9, No. 4 / April 2021 / Photonics Research B123



and 92% for the testing data set, as indicated by the red
solid line.

For a detailed illustration of the classification results, a scat-
tered plot of the target spiking time td and actual output spik-
ing time to is shown in Figs. 9(a) and 9(b) for the training data
set and testing data set, respectively. However, based on the
same SNN architecture, the accuracy of the weight-based
ReSuMe (blue solid line) only reaches 65%, with the same ini-
tial weights and delays, but a higher learning rate (ηω � 0.1) is
required to make the algorithm work efficiently. The results
indicate that the performance can be greatly enhanced by intro-
ducing time-delay learning.

Moreover, we also investigate the effect of learning window
on the classification accuracy. The testing accuracy as a function
of weight learning window T ω and delay learning window T d
is shown in Figs. 10(a) and 10(b), respectively. We can see that
a relatively larger T ω is required for achieving higher accuracy.
However, T d should be selected as the minimum ISI of target
spikes, which is 1 ns. Note that the accuracy can reach more
than 85% even without the adjustment of weight. The results
indicate that delay learning is an extremely efficient learning
algorithm in a photonic SNN with temporal encoding, which
suggests that delay learning may be an essential mechanism in
the biological spiking neuron systems.

C. Breast Cancer Data Set
The breast cancer data set contains 608 case entries, and, is
divided into benign and malignant cases, each has nine mea-
surements [62]. Five significant measurements are selected and
pre-encoded into rectangular pulses, which trigger the input
neurons to fire spikes at specific time within the range of
6.5 to 11 ns. The network contains 5 PREs and 1 POST.
The initial delays are 0 ns for all of the 5 PREs, and the initial
weights are randomly selected using the same method as for the
Iris data set. The weight learning rate ηω is 0.0001. The SNN is
trained to fire a spike at 9 ns for the first case and at 13 ns for
the second case. Four hundred eight entries are used to train the
network, with the rest for testing. The accuracy on the training
data set and testing data set reaches 93% and 92%, respectively,
as shown in Figs. 11(a) and 11(b). The training data set is
trained for over 100 epochs, and the accuracy converges quickly
within 20 training epochs. However, with weight-based
ReSuMe, the classification accuracy is less than 30% with
the same operating parameters (not shown here). It is worth
noting that in this case, the ReSuMe algorithm does not work
efficiently, limited by the simple network structure and encod-
ing schemes. The accuracy mainly depends on the initial syn-
aptic delay d 0. In Fig. 11, we also present the training results
based on ReSuMe (blue solid line), with an initial delay of
0.5 ns. The weight learning rate here is 0.01.

Moreover, in consideration of the effect of initial delay d 0 on
the training performance of ReSuMe and DW-ReSuMe, we
show in Fig. 12 the accuracy of the two data sets after 60 train-
ing epochs as a function of different initial delays based on the
two algorithms. Both training and testing results are consid-
ered. Figures 12(a1) and 12(a2) show the training and testing
accuracy of the Iris data set, respectively, and the results of the
breast cancer data set are shown in Figs. 12(b1) and 12(b2).
Obviously, the proposed DW-based algorithm is less sensitive
to varying initial delays. Note that in the Iris data set, the learn-
ing accuracy of DW-ReSuMe is small when d 0 is less than
1.5 ns, which is mainly constrained by the relatively small delay
learning window (1 ns).

Finally, note that in Fig. 11 there is a downward fluctuation
when the accuracy is close to the stable state. The fluctuations
may be related to learning rate. A larger learning rate

Fig. 9. Illustration of classification results for (a) training data set
and (b) testing data set. The orange cycles denote target spiking time,
the blue squares represent the actual spiking time, and misclassified
samples are highlighted in bright blue.

Fig. 10. Testing accuracy as a function of (a) weight learning win-
dow T ω and (b) delay learning window T d.

Fig. 11. (a) Training accuracy and (b) testing accuracy varying with
training epochs based on DW-ReSuMe (red solid line) and ReSuMe
(blue solid line), respectively. T d � 4 ns, T ω � 5 ns.
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usually generates more obvious fluctuations, as illustrated in
Figs. 13(a1) and 13(a2). The training accuracy fluctuates more
obviously when the weight learning rate ηω is larger. However,
at about the 10th training cycle, the obvious downward fluc-
tuation is not affected by weight learning rate. We can reason-
ably assume that the fluctuation is caused by the relatively larger
constant delay learning rate (ηd � 0.5). As this value contrib-
utes to better training performance in different tasks, we con-
sider a decaying ηd that is reduced by half after about five
training epochs. The results are presented in Figs. 13(b1)
and 13(b2), from which we can see that the fluctuation disap-
pears. However, not surprisingly, the accuracy grows much
more slowly.

DW-based learning has shown excellent performance in sin-
gle-layer networks. However, the real neural networks are usu-
ally hierarchical, and synaptic weights and delays can be
modulated based on different biological mechanisms, which
form the foundations of complex brain functions. It is quite

interesting and challenging to consider how to effectively intro-
duce delay adjustment into deep learning networks.

4. CONCLUSION

This paper proposed a supervised DW learning method in an
optical SNN. Based on precise timing of spikes, delay learning
trains coherent inputs in the input layer of an SNN via shifting
the synaptic delays according to the desired and actual output
timing. The proposed DW-ReSuMe is applied to spike se-
quence learning and two classification benchmarks, the Iris data
set and breast cancer data set, successfully. The performance of
the SNN is significantly improved compared with its weight-
based counterpart. By introducing time-delay learning in a
photonic SNN, fewer optical neurons are required to solve dif-
ferent tasks, which is significant to photonic neuromorphic
computing. The results also suggest that synaptic delay and
weight may be a combined learning mechanism in real biologi-
cal neural networks, which deserves deeper investigation.
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