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A new approach to optical fiber sensing is proposed and demonstrated that allows for specific measurement even
in the presence of strong noise from undesired environmental perturbations. A deep neural network model is
trained to statistically learn the relation of the complex optical interference output from a multimode optical
fiber (MMF) with respect to a measurand of interest while discriminating the noise. This technique negates
the need to carefully shield against, or compensate for, undesired perturbations, as is often the case for traditional
optical fiber sensors. This is achieved entirely in software without any fiber postprocessing fabrication steps or
specific packaging required, such as fiber Bragg gratings or specialized coatings. The technique is highly general-
izable, whereby the model can be trained to identify any measurand of interest within any noisy environment
provided the measurand affects the optical path length of the MMF’s guided modes. We demonstrate the ap-
proach using a sapphire crystal optical fiber for temperature sensing under strong noise induced by mechanical
vibrations, showing the power of the technique not only to extract sensing information buried in strong noise but
to also enable sensing using traditionally challenging exotic materials. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.415902

1. INTRODUCTION

Changes in the optical path length (OPL) of the guided modes
in an optical fiber can be induced by various external pertur-
bations such as temperature, strain, pressure, and biochemical
binding [1–5]. This is the underlying principle of many optical
fiber sensors (OFSs), particularly intrinsic type OFSs, to date.
For the same reason, intrinsic OFSs are cross-sensitive to any
other environmental parameters that affect the OPL beyond
the intended measurand. This ubiquitous issue for intrinsic
OFSs, indeed any sensor, requires careful management or com-
pensation [3–5].

Most intrinsic OFSs developed to date are based on con-
verting the change in an external measurand to a measurable
change in OPL of the waves propagating in the fiber.
Calibration of these intrinsic OFSs typically involves a single
variable, where the change in the measurand is mapped to
one measurable optical signal, be it a change in optical intensity
or the shift of a resonant wavelength or interference fringe.
Even for a spectral-based sensor such as a fiber Bragg grating
(FBG), the calibration does not utilize the whole spectrum
in the sense that it only focuses on the spectral shift of one

dominant optical feature, the reflected Bragg wavelength.
Indeed, much of the effort in developing intrinsic OFSs is to
create interference structures such as gratings or cavities so that
there are such discrete resonant wavelengths. However, when
changes from other perturbations are also encoded in the wave-
length shift, the measurement becomes nonspecific, and such
ambiguities need to be accounted for in real time. While having
been implemented in various forms, the general approach to
active compensation against undesired perturbations is to si-
multaneously measure both the intended measurand and the
other competing perturbations using multiple sensor heads.
Each sensor head is designed to yield different sensitivity to
each measurand so that the calibration maps several optical fea-
tures to each measurand to discriminate the cross-sensitivity
between them [6,7]. A search with the keywords “simultaneous
measurement fiber sensor” in Google Scholar returns roughly
400,000 papers for various dual-parameter sensing schemes [8].

The challenge becomes further pronounced when utilizing
multimode optical fibers (MMFs) for sensing. Despite being
otherwise deterministic optical systems [9], transmission
through MMFs is both complex, due to the interference be-
tween many propagating optical modes, and dynamic, due
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to their high sensitivity to environmental disturbances. That is,
any small change in the OPL, such as through temperature,
strain, bending, pressure, or biochemical binding, will lead
to complex and sensitive changes in the interferometric output.
Sensing can be achieved using MMFs, such as by tracking
changes in the speckle output of multimode optical fibers
[10], but it is often done as an ensemble measurement on
the entire specklegram output rather than individual speckle
features and is therefore highly susceptible to cross-sensitivity.
The complex yet deterministic behavior of the MMF has also
been well utilized for imaging using techniques such as optical
or digital phase conjugation [11,12], wavefront optimization
methods [13–17], or machine learning methods such as con-
volutional neural networks (CNNs) [9,18]. However, the dy-
namic behavior of MMFs due to undesired environmental
perturbations is a hindrance to both sensing and imaging, as
the propagation characteristics will change due to environmen-
tal disturbances and thus reduce image quality or cause sensor
drift. It is challenging to avoid these impacts due to the complex
interactions of many interfering optical modes. While deep
neural networks (DNNs) have previously been applied to han-
dle dynamic changes in the MMF, such as for spectrometry
[19] and pulse characterization [20], they are fundamentally
analyzing the optical input rather than quantifying the dynamic
changes that are occurring to the optical fiber itself, that is,
sensing.

In this work we seek to exploit both the complex and highly
sensitive nature of multimode optical fibers to achieve a new
paradigm in optical fiber sensing: specific measurement even
in the presence of strong noise from other perturbations.
Working in the wavelength domain, using a broadband input
to an MMF, we vary the measurand of interest and at the same
time apply random strong noise on the fiber to generate a large
number of complex output spectra from the MMF. These spec-
tra, encoded with both the measurand information and noise,
are used together with the measurand labels to train a DNN to
statistically relate the change of the measurand to complex
changes in the output spectrum of the MMF while discrimi-
nating the noise.

The advantage of this approach is that the DNN maps the
entire complex optical spectrum to the measurand change
rather than focusing on single or several principal spectral fea-
tures, such as an FBG peak, eliminating the need for such res-
onant structure for sensing. MMFs particularly present a
unique platform to consider this DNN strategy due to their
property of guiding many hundreds or thousands of discrete
modes that can each contain important and unique informa-
tion related to sensing.

We demonstrate this concept for the specific case of temper-
ature sensing using sapphire crystal optical fiber (SOF), a single
crystal fiber that has great potential for extreme temperature
sensing, but where progress has been hampered by the com-
plexity in sensing using this unstructured and thus highly mul-
timoded waveguide [21–23]. The SOF is therefore particularly
suitable for demonstrating the power of our proposed ap-
proach, but our technique can be applied, in principle, to
any measurand in the presence of any environmental noise us-
ing any multimode optical waveguide.

2. PRINCIPLE OF OPERATION AND
EXPERIMENTAL DESIGN

The output intensity I from an MMF, assuming coherence is
maintained, is a superposition of N guided modes and can be
expressed as
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����
2

, (1)

where ai, ~̂ei�x, y�, and neffi are the modal amplitude, orthonor-
mal electric field distribution, and effective refractive index of
the ith mode, respectively; λ is the free space wavelength, and L
is the length of the fiber. Equation (1) represents a speckle pat-
tern at the output of the MMF for a given wavelength. One
could measure the output speckle pattern of the MMF using
a camera, but this is unsuitable for temperature sensing, the
focus of our work, as imaging optics would need to be con-
tained within a high-temperature furnace. We choose to utilize
wavelength domain interference, and for this the orthogonality
of the modes must be broken through spatial filtering, such as
by splicing the MMF to a single-mode fiber (SMF) [24].
Through the coupling of the many modes of the MMF into
the SMF, a complex interference spectrum is formed with
the number of features increasing as the number of modes
N increases. That is, each pair of modes in the MMF creates
an interference that is transposed into a spectral interference
feature after coupling into the SMF. This is equivalent to
the high-dimensional data suitable for training a DNN [25].

The output interference spectrum is highly sensitive to any
environmental changes on the optical fiber such as tempera-
ture, strain, and pressure, or a combination of these and others,
as they affect the OPL of the multimode fiber’s modes and thus
the phase of the interference spectrum. For example, a temper-
ature change will change the refractive index of the MMF
material through the thermo-optic effect and thus change
the effective index of the propagating modes. If the environ-
mental changes have different impacts on different modes, al-
beit an intended measurand or unwanted noise, it is in
principle possible to decouple these effects through analysis
of the interference spectrum. In the case of temperature, each
mode effective index responds differently, as the optical field
has varying degrees of overlap with the MMF materials
(e.g., sapphire core and air cladding), while mechanical effects
such as strain largely impact the MMF length. While these
changes to the output spectrum are highly sensitive and com-
plex, in principle they contain rich information on changes that
have occurred along the fiber length, and our task is to find an
accurate method to extract such information.

Figure 1 shows a schematic diagram of our proposed
approach for specific measurement under strong noise using
MMF and DNN. The multimode interference in the wave-
length domain was realized via a single-mode/multimode/
single-mode fiber configuration [Fig. 1(a)]. Broadband light
from a lead-in SMF is decomposed into the multiple propaga-
tion modes of the MMF. At the end of the MMF a wavelength-
dependent speckle pattern is formed, which then couples to the
lead-out SMF, creating a complex wavelength-dependent inter-
ference spectrum at the output. Due to the large number of
modes in the MMF, this interference is highly sensitive to
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the splicing condition between the fibers (e.g., tolerance in
sensor fabrication) or any perturbations on the MMF. By using
the DNN [Fig. 1(b)], even if the spectral change due to a
chosen measurand is buried under strong spectral noise created
by other environmental perturbations, it is still possible to ex-
tract the measurand information unambiguously. On the other
hand, this task is extremely challenging if using traditional cal-
ibration techniques as shown in Fig. 2.

In our proof-of-concept experiment we used a 200 mm
length of multimoded SOF spliced between two standard sin-
gle-mode fibers (SMF28e). Details of the experimental setup
are presented in Appendix A, but briefly, transmission interfer-
ence spectra were measured using a swept wavelength optical
sensor interrogator (National Instruments PXIe-4844) operat-
ing at 1 Hz. The spectral resolution of the interrogator was
4 pm over 1510–1590 nm, which was downsampled to 1000
spectral data points (0.8 nm spacing). The SOF was mounted
loosely inside a stainless steel tube, which was vibrated with a
white noise vibration spectrum using a mechanical shaker. The
mounted SOF was placed into a temperature-controlled tube
furnace and the temperature was recorded using a thermocou-
ple adjacent to the SOF.

The strong noise induces significant changes in the OPL of
the SOF modes as shown in Fig. 2(a). Figure 2(b) shows a sim-
ilar set of spectra under the same noisy conditions at several
different temperatures. The impact of the mechanical noise
on the sensor makes it difficult to calibrate the wavelength shift
or the intensity variation of an individual peak or trough with
respect to a change in temperature. Figures 2(c) and 2(d) show
the predicted temperature from the many spectra at different
temperatures in the presence of strong mechanical noise using
traditional calibration techniques. Figure 2(c) was obtained
through direct peak tracking [26], which can be improved
by applying a centroid function to determine the peak position
[27]. These methods can be considered the most intuitive to
apply but are not expected to perform well with complex in-
terference spectra. A more appropriate method to extract shifts
in interferometric data is to use the Fourier phase-shift method
[28–31] as shown in Fig. 2(d). Here the phase of the dominant
Fourier component was tracked, which corresponds to a free
spectral range of 3.6 nm for the data in Fig. 1(b). It is evident
that these traditional methods suffer poor accuracy in the pres-
ence of strong noise, with only 15%, 33%, and 40% of values
determined within �1°C for the peak tracking, centroid, and

Fig. 1. Schematic diagram of specific measurement under strong noise using MMF and DNN. (a) An SMF-MMF-SMF structure is used to
realise complex interference spectra from MMF with a broadband input. The sensing MMF is subjected to both changes in the measurand and
strong noise to create complex changes in the output interference spectrum. The speckle images in the MMF conceptually show the impact of the
measurand (red), which may be relatively small compared to the noise (white). (b) Various spectra together with their corresponding measurand
labels are used to train a DNN. Once trained, the DNN is able to predict the measurand value buried within each interference spectrum.
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Fourier methods, respectively. On the other hand, as will be
discussed in the following sections, a trained DNN can signifi-
cantly improve the temperature measurement on the same data
as shown in Table 1.

3. DEEP LEARNING OF THE DYNAMIC
MULTIMODE INTERFERENCE

The results above confirm that without means to shield or com-
pensate OFSs for such cross-sensitivity, calibration for the in-
tended measurand becomes impossible. In addition, when it
comes to using the multimode sensor architecture, arguably
the simplest optical fiber sensing structure, any deviation in
sensor preparation such as splicing and cleaving will lead to
complex changes in the interference spectrum due to the
involvement of many modes. These deviations are noise in their

own right. Therefore, a calibration technique that works di-
rectly with noisy data is of great advantage, as all the complexity
in materials and optical engineering to mitigate cross-sensitivity
is shifted to software, a much more scalable and adaptable
approach.

Supervised deep learning or DNN can be thought as a
highly complex fitting function that maps a high-dimensional
raw input, such as an image, to an output, such as another im-
age, the class of an object, or a measurement value [25]. The
training is typically performed by showing the DNN many ex-
ample inputs and requesting it to optimize a loss function, that
is, the difference between ground truth and the output of the
DNN model. Once the loss function is minimized for a large
number of example inputs the model is considered trained and
should be able to generalize to inputs it never saw during train-
ing. While DNNs have been investigated for decades [32], in-
cluding early applications of DNN in MMF [33–35], recent
advances in computing power, availability of data, and ad-
vanced network architectures have spawned the use of DNN
for a very wide range of successful applications [25]. This in-
cludes recent promising results in reconstructing or recognizing
image transmission through scattering media such as MMF
[9,18,36]. In this case, the DNN is trained to understand
the relation between the MMF output and input (mapping
the output speckle to the original input image) where the
MMF is protected from environmental perturbations. The
learning capability, given a fixed network structure and data
set, deteriorates with respect to the MMF length due to per-
turbations on the MMF such as temperature and vibration,

Table 1. Temperature Measurement Accuracy for
Different Calibration Methodsa

�1°C �2°C �5°C

Peak tracking 15% 30% 70%
Centroid 33% 59% 89%
Fourier phase shift (linear) 33% 60% 96%
Fourier phase shift (quadratic) 40% 70% 97%
Deep learning 99% 100% 100%

aFor the peak tracking, centroid, and Fourier methods a linear fit has been
applied. In addition, a quadratic fit was also applied for the Fourier method to
account for nonlinearities in the response seen in Fig. 2(d).

Fig. 2. Complex cross-sensitivity problem in specific measurement with MMF-based sensors under OPL noise. (a) Transmission interference
spectra from the SOF at a fixed temperature under white noise in OPL created by shaking the loosely mounted SOF. (b) Interference spectra at
several temperatures under OPL noise. (c) Predicted (calibrated) temperature by peak tracking (black) and after applying a centroid function to
improve the accuracy (red). (d) Predicted (calibrated) temperature obtained using a Fourier phase-shift technique. The measured temperature in
(c) and (d) was obtained using a reference thermocouple.
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leading to an unstable speckle pattern at the distal end [18].
Therefore, such learning can be considered static in the sense
that the transmission medium is fixed, and the training data is
generated by many different input-speckle pairs.

Rather than training the DNN with many different labelled
images, here we use a fixed optical input to the MMF and rely
on the change of a specific measurand together with random
noise along the MMF to generate a large number of different
outputs, which are then used together with the measurand label
to train the DNN. In this case, without prior knowledge of the
light propagating in the MMF, the DNN is trained to sta-
tistically understand the relationship between the measurand
and the distorted interferometric output from the MMF while
ignoring the noise. In other words, the DNN is taught to learn
the dynamic multimode interference with respect to an in-
tended perturbation buried under the noise.

Figure 3 shows a schematic diagram of the DNN architec-
ture we used for learning the relation between the transmission
spectra and temperature. Here the input is MMF interference
spectra inclusive of both temperature changes and noise as de-
picted in Fig. 1, and the DNN is trained to understand such
changes buried in the OPL noise induced by strong mechanical
vibration. This is analogous to the way in which DNN net-
works are trained to understand a cat or a dog in various light-
ing and background settings (noise). We used a multilayer
perceptron (MLP) [37] consisting of four hidden layers, each
having 512, 256, 128, and 64 nodes, respectively, resulting in
684,096 trainable parameters. The output of each layer was
activated by the rectified linear unit (ReLU) [38]. No regulari-
zation, dropout, or batch normalizations were used. The loss
function optimized in this regression case was the standard
mean square error (MSE). An Adam optimizer [39] with a fixed
learning rate of 10−3 was used to minimize the loss. All the code
was conducted using Keras—an open-source neural network
written in Python [40].

While there are numerous open source deep learning archi-
tectures available, they are generally convolutional neural net-
works (CNNs) designed to work with 2D images that typically
have a high level of spatial correlation between neighboring pix-
els. These large architectures are often trained using the large
data set ImageNet [41], which consists of 14 million daily life

images. In contrast, the spectral data in our work is a one-di-
mensional array containing intensity values at different
wavelengths. The wavelength spacing in our experiment was
set at 0.8 nm, which we can compare to an estimate of the
correlation bandwidth for a multimode optical fiber given
by δλ ≈ λ2∕�2ΔnL�, where Δn is the difference between the
highest and lowest effective indices supported by the optical
fiber [42]. For a 20 cm length of SOF with a refractive index
of 1.7 surrounded by air (n � 1.0) the correlation bandwidth is
estimated to be 8.6 pm, much less than our wavelength spac-
ing. This means that each intensity value at one wavelength
(superposition of many modes at said wavelength) is decorre-
lated from its neighbors and can be treated as an independent
feature. Therefore, an MLP that is designed based on matrix
multiplication to describe the interaction between all features
within a layer is the preferred architecture for the spectral data
obtained from highly multimode interference in our work.
Further comparison with results obtained from training and
testing the same data sets with a CNN to test this hypothesis
is presented in Section 4.B.

To train and evaluate the MLP, the data set was split into
three subsets: training, validation, and testing. The training and
validation subsets were used to train and cross-validate to fine-
tune hyperparameters such as learning rate and mini-batch size,
while the testing subset was reserved for evaluation purposes.

The MLP was trained following a standard iteration process.

(i) Mini-batches of spectra were randomly sampled from the
training subset and passed forward through the MLP, produc-
ing predicted temperature values.
(ii) The MSE between the predicted and the actual temper-

atures was calculated.
(iii) The error was minimized by adjusting the network’s
weights following the standard backpropagation.
(iv) When all mini-batches in the training data set were com-
pleted, corresponding to 1 epoch, the training set was re-
randomized and the next iteration of the training commenced.
(v) This process was repeated until the error or loss con-

verged to a minimum value.

The training was carried out using approximately 50,000
SOF transmission spectra inclusive of random noise and their

Fig. 3. Schematic diagram of the multilayer perceptron (MLP) architecture used in this work. After being trained using thousands of different
noisy MMF interference spectra with their corresponding temperature labels, the trained model takes an MMF spectrum as its input and produces a
predicted temperature value at its output.
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corresponding temperature labels. Training took approximately
7 h on an Intel Core i7-7700HQ CPU at 2.8 GHz and 32 Gb
RAM until the loss converged. During the training, the predic-
tion accuracies on the training subset and the held-out valida-
tion subset were monitored after every epoch to fine-tune
hyperparameters, if necessary, to prevent overfitting.

To evaluate the trained MLP, the spectra in the testing sub-
set were passed through the network to predict the correspond-
ing temperatures. The obtained temperatures were then
compared with the ground-truth temperatures to assess the ac-
curacy of the predictions made by the trained MLP.

4. RESULTS AND DISCUSSION

A. Temperature Sensing under Strong Noise
Figures 4(a) and 4(b) show the reference (thermocouple) mea-
sured temperatures and their corresponding predicted values
from the trained model. Two different data sets were used
for training as shown in Table 2. The modal accuracy is defined
as the fraction of model-predicted values that are within �1°C
or�2°C of the measured values. The trained MLP successfully
maps almost all the values in the interference spectrum to their
corresponding temperature while discriminating the effect from
the OPL noise. The better accuracy for the T1 data set, reach-
ing a �1°C accuracy of 99%, is attributed to the finer temper-
ature variation in the training data compared with that of the
T2 data set.

Figures 4(c) and 4(d) show the inter-testing results where
the DNN is trained with one data set and tested on the other.

For the case of training with T1 and testing with T2, shown in
Fig. 4(c), the accuracy is very poor, since there are many tem-
perature values that are out of the training range. When the
testing data T1 is within the training data T2, as shown in
Fig. 4(d), the accuracy is better but still significantly less than
the case of testing with the same data set T2 [e.g. �2°C accu-
racy of 92% in Fig. 4(d) compared with 100% in Fig. 4(a)].
This is still significantly better than the Fourier shift method
result (70%). We also note that the amount of training data in
the temperature range of interest (29°C–75°C) is significantly
less for Fig. 4(d) compared to Fig. 4(a) at approximately 6000
spectra compared to 78,450. This is because the 29°C–75°C
region is only a small subset of the total T2 data set. One would
therefore expect that the accuracy could be improved by in-
creasing the number of spectra in the T2 training data set.

In this particular case of temperature sensing using SOF,
since the furnace temperature includes OPL change along
the entire SOF while the temperature labels are collected at
a single point, the T1 and T2 data sets are likely shifted in their
thermal distributions with respect to temperature values, and
thus they would not work well in an interplay manner.

Fig. 4. Comparison of temperatures predicted from the trained MLP using SOF interference spectra as input and measured temperatures under
OPL noise. (a) Training and testing on the same temperature range using the short temperature range from 30°C to 70°C (T1) with 8400 testing
examples (data points). (b) Training and testing on the same temperature range using extended temperature range from 30°C to 630°C (T2) with
7845 testing examples. (c) Same procedure but training and testing on different data sets, the MLP is trained on the short temperature range and
tested on the extended temperature range, where many temperature values are out of the training range. (d) The MLP is trained on the extended
temperature range and tested on the short temperature range. In this case all the testing temperatures are predicted within the range of the training set
but with less accuracy compared with (b) due to a shift in the data set.

Table 2. Data Set Used for Training and Testing

Data Set
Label

Temperature
Range (°C)

Ramp Rate
(°C/h)

Total
Spectra

Data Collection
Time (h)

T1 29–75 1 84,000 23.3
T2 29–630 15 78,450 21.8
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These results highlight a well-known issue of machine learning
generalization where the testing data belongs to a different data
distribution compared with the training data [43–46].

While mitigating the generalization issue with advanced
deep learning techniques is not within the scope of this paper,
readers are referred to reviews of this active area of machine
learning research [47–49]. Nevertheless, the most straightfor-
ward approach is to collect more diverse data. In the case of
optical fiber sensing, it implies that the noise needs to include
diversity in OPL variations that mimic the changes due to
many other perturbations, as well as obtaining measurand la-
bels in a localized manner (i.e., distributed measurement)
rather than a single point. Figures 5(a) and 5(b) show the im-
proved results where the training was done on a more diverse
data set, which is the combination of T1 and T2, and tested
with constituent data sets. However, it is often very time con-
suming and expensive to have a large and diverse data set readily
collected, and hence a more practical approach is to simply de-
ploy a model trained on available data and continuously fine-
tune it with newly collected data [50].

B. Temperature Sensing: Comparison between MLP
and CNN Architectures
A 1D convolutional neural network [10] with a similar number
of parameters (see Appendix B) was also trained and tested us-
ing the same data sets to determine whether the model can be
improved by taking into account the wavelength locality. As
discussed previously in Section 3, the SOF supports many dif-
ferent guided modes, yielding a decorrelated interference spec-
trum that does not have a regular form. Therefore, it is not
expected that the CNN can perform with greater accuracy com-
pared to the MLP, in contrast to traditional image recognition
problems. Figure 6 compares the 1°C accuracy between the
MLP and CNN models for the cases of T1, T2, and the com-
bined data set T1 + T2. The MLP is found to consistently per-
form better than its CNN counterpart for a similar number of
network parameters.

The MLP and CNN architectures are two different kinds of
neural networks used to model different types of data [51].
MLPs are designed based on matrix multiplication to describe
the interaction between all features within a layer, allowing the
network to work with any type of data. The trade-off is the
linearly increasing number of parameters used. In contrast,

CNNs rely on the convolution operation that models sparse
interaction between features, resulting in fewer parameters.
Due to the spatial nature of the convolution operation,
CNNs are likely to perform better on data where the correla-
tion is strong between adjacent features and gradually reduces
for features that are further away. In our case, where the inter-
ference spectrum arises from the highly multimode SOF with
many modes involved, there should be weak localized structure
in the wavelength spectrum, and the superposition of all modes
at a certain wavelength can be treated as an independent feature
to its neighbor. Therefore, the MLP is preferable over the CNN
in learning this type of data, due to both the increased accuracy
shown in Fig. 6 and the relative simplicity of the network.

5. CONCLUSIONS AND OUTLOOK

We have proposed the use of deep learning to learn the dy-
namic behavior of multimode fiber interference in order to
achieve specific measurement even under strong noise, without
shielding the sensor from, or compensating for, cross-sensitivity

Fig. 5. Mitigating the domain shift issue using a combined data set T1 + T2. (a) The testing set was T1 using 8400 example spectra. (b) The
testing set was T2 using 7845 example spectra. The test results were improved for both cases.

Fig. 6. Comparison between MLP and CNN architectures with a
similar number of parameters. Training and testing were done in the
same manner as in Figs. 4 and 5. The CNN produces inferior predic-
tions compared with its MLP counterpart, indicating that the raw in-
terference spectra from the highly multimode SOF do not possess
significant wavelength locality.
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from undesired perturbations. We have achieved a proof-of-
concept demonstration for the specific example of mapping
the interference spectrum of an SOF and temperature, under
induced OPL noise from mechanical shaking. From here our
proposed technique can be expanded to any type of measurand
and OPL noise provided a sufficiently diverse data set is ob-
tained. The technique can also be readily extended to other
MMF optical waveguides, again, provided a training data set
is obtained for that device.

In this proof-of-concept demonstration we have focused on
a single optical fiber sensor, whereby the training data and test
data have been measured with the same device. A key future
investigation will be to understand the generalization of our
model for other nominally identical devices within prescribed
tolerances. One would expect that model generalization could
be achieved in a brute force approach by collecting diverse
training data for many similar, but slightly different, optical fi-
ber sensors. Understanding and solving this problem in a prac-
tical way would be key to the successful implementation of our
method in an industrial setting.

This work opens an entirely new direction in optical fiber
sensing in which complexity in hardware to combat cross-
sensitivity or noise is shifted into software using intelligent
sensor calibration that exploits advances in machine learning.

APPENDIX A: EXPERIMENTAL SETUP

Figure 7 shows a schematic diagram of the experimental setup
that was used to collect SOF interferometric data inclusive of
OPL noise and temperature effect for training and testing the
DNN architectures. A 200 mm length of SOF was spliced with
lead-in and lead-out SMFs and inserted into a stainless steel
(SS) tube of 7 mm inner diameter with both ends glued such
that the SOF was loosely hung inside the SS tube. The SOF was
purchased from Micromaterials and has a quoted diameter
of 70 μm.

Given the diameter and refractive index of the SOF, the fi-
ber is estimated to support approximately 100,000 modes.
However, it should be noted that the SOF is made via a crystal
growth process that produces a diameter variation along the
fiber, and thus the number of supported mode numbers is ex-
pected to vary along the fiber as well. The SS tube was con-
nected to a mechanical shaker (Bruel & Kjear LDS V455)
that was driven with white noise vibration from 20 to 2000 Hz
with a root-mean-squared acceleration of Grms � 3.0g.

This created random movement of the SOF within the SS tube
while the temperature was independently varied.

The transmission spectrum of the SMF-SOF-SMF structure
was recorded using an optical sensor interrogator (National
Instrument PXle-4844). The interrogator has a wavelength res-
olution of 0.004 nm, which was swept at 1 Hz over a wave-
length bandwidth of 80 nm so that a full range spectrum
contains 20,000 intensity values. No polarization optics were
used as any polarization state output from the interrogator
would in any case be scrambled in the highly multimoded vi-
brating sapphire optical fiber. To reduce the number of dimen-
sions in the input data, the wavelength resolution was reduced
20× to 0.08 nm, and thus the resultant spectra used for training
and testing the DNN were composed of 1000 intensity values.
A thermocouple was placed at the center of the SOF, and the
temperature value was recorded in synchronization with the
spectrum acquisition. Each data point is therefore represented
as a 1001-dimensional vector whose first element is the temper-
ature label (output) and the remaining 1000 elements are the
spectrum (input). A random selection of 10 data points (spectra
together with their temperature labels) is shown in Table 3.
The intensity values in each spectrum were normalized to val-
ues between 0 and 1 for training.

APPENDIX B: 1D CONVOLUTIONAL NEURAL
NETWORK

A schematic diagram of the one-dimensional convolutional
neural network (1D CNN) used to train the same data sets that
led to the comparison with the MLP in Fig. 6 is shown in
Fig. 8. It has hidden layers consisting of six convolutional

Fig. 7. Experimental setup. The SOF was mounted loosely inside the SS tube so that it vibrated within the SS tube. The shaker was driven by a
white noise vibration profile. The SS tube was placed centrally within a tube furnace and the temperature referenced with a thermocouple.

Table 3. Example Data Set

TC (°C) I 1 (AU) I 2 (AU) I 3 (AU) … I 1000 (AU)

28.722 346.607 386.807 430.726 … 285.396
37.895 111.564 124.290 151.859 … 234.433
33.059 295.809 363.931 385.505 … 286.972
31.913 262.195 301.755 343.645 … 291.099
33.059 295.809 363.931 385.505 … 286.972
38.173 295.809 207.829 263.489 … 271.466
49.200 172.730 92.328 103.878 … 191.467
64.408 81.229 223.914 215.993 … 125.078
70.939 242.774 223.597 162.985 … 114.785
41.516 260.047 97.779 98.382 … 231.725
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modules and one fully connected layer with a total of 707,601
trainable parameters, comparable to that of the MLP. Each
module uses a 4 × 1 convolutional kernel, followed by batch
normalization, ReLU, and 2 × 1 max pooling. The number
of channels in each layer is doubled as their sizes are halved
through down-sampling. The output of the final convolutional
module was flattened onto a single vector of 6144 elements and
passed through the last fully connected layer to output pre-
dicted temperature. The training of the 1D CNN was similar
to that of the MLP.
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