Learning to recognize misaligned hyperfine orbital angular momentum modes

XIAO WANG,1 YUFENG QIAN,1 JINGJING ZHANG,1 GUANGDONG MA,1 SHUPENG ZHAO,1 RUIFENG LIU,1,* HONGRONG LI,1 PEI ZHANG,1 HONG GAO,1 FENG HUANG,2,3 AND FULI LI1

1Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
2School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
3e-mail: huangf@fzu.edu.cn
*Corresponding author: ruifeng.liu@mail.xjtu.edu.cn

Received 20 October 2020; revised 4 January 2021; accepted 26 January 2021; posted 29 January 2021 (Doc. ID 412965); published 15 March 2021

Orbital angular momentum (OAM)-carrying beams have received extensive attention due to their high-dimensional characteristics in the context of free-space optical communication. However, accurate OAM mode recognition still suffers from reference misalignment of lateral displacement, beam waist size, and initial phase. Here we propose a deep-learning method to exquisitely recognize OAM modes under misalignment by using an alignment-free fractal multipoint interferometer. Our experiments achieve 98.35% recognizing accuracy when strong misalignment is added to hyperfine OAM modes whose Bures distance is 0.01. The maximum lateral displacement we added with respect to the perfectly on-axis beam is about 0.5 beam waist size. This work offers a superstable proposal for OAM mode recognition in the application of free-space optical communication and allows an increase of the communication capacity. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412965

1. INTRODUCTION

It is well known that the orbital angular momentum (OAM) of photons was discovered by Allen et al. [1] in 1992. Since the topological charge \(\ell \) can be any integer, the OAM-carrying beams have countless orthogonal eigenstates, which allows them to have high-dimensional characteristics [2]. Benefiting from such high-dimensional characteristics, current applications of free-space optical (FSO) communication with OAM states are widely studied in the lab and real urban environments [3–10]. Naturally, the recognition of OAM modes in the receiving unit is one of the most important tasks for an optical communication system. A Gaussian mode converted by a forked hologram from the target OAM mode is the only mode that couples efficiently into the single-mode fiber [11]. More complicated computational holograms can be designed for the recognition of OAM superposition states [12]. Leach et al. presented the cascading additional Mach–Zehnder interferometers with dove prisms, which can sort OAM eigenstates into different paths [13]. By employing the Cartesian to log-polar transformation, one can convert the helically phased light beam corresponding to OAM state into a beam with a transverse phase gradient, and separate OAM eigenstates into different lateral positions [14–17]. Extensive research has also been carried out to characterize OAM modes by letting beams form diffraction patterns by passing through well-designed masks, such as multipoint interference [18], triangular aperture diffraction [19], angular-double-slit interference [20], and gradually changing-period grating [21].

However, all the above OAM mode-recognizing methods require a complicated optical alignment process for FSO communication. Generally, the OAM of a light beam depends on the choice of the reference axis [22]. A pure OAM eigenstate will transform into the superposition of OAM states in a displaced coordinate frame [23] and result in the mixing of information between adjacent modes. In the standard approaches to FSO communication with the polarization of photons, the transmitting and receiving units with a shared reference frame are required. In 2012, Ambrosio et al. implemented the quantum communication [24] with hybrid polarization-OAM-entangled states, and this proposal is rotation-immune to the shared reference frame. Displacement of the reference frame also imposes serious obstacles to the application of FSO communication with OAM states. To overcome these obstacles, misalignment correction is implemented by using the mean square value of the OAM spectrum as an indicator [25]. However, OAM spectrum measurement with high precision under the case of misalignment is necessary before the OAM spectrum correction.
Recently, with the rapid increase in computing power, deep learning (DL) [26] has once again become a hot topic in various disciplines. Trained deep neural networks (DNNs) show state-of-the-art performance in imaging through scattering media [27–29], phase retrieval [30,31], structure light recognition [9,32–36], and creating new quantum experiments [37]. A milestone in the history of convolutional neural networks (CNNs) is the appearance of ResNet proposed by He et al. [38]. The core of the ResNet model is to establish shortcuts or skip connections between early layers and later layers, which helps in the backpropagation of the gradient during the training process, so as to train a deeper CNN. As a representative of CNNs, DenseNet [39] performs well in the ImageNet data set, it establishes dense connections between all early layers and later layers, and, specifically, each layer accepts all preceding layers as its additional inputs. Another major characteristic of DenseNet is the feature reuse through the connection of features on the channel. These characteristics allow DenseNet to achieve better performance than ResNet with fewer parameters and computational costs.

In this work, we implement an alignment-free fractal multipoint interferometer for hyperfine OAM mode recognition assisted by DL. By using a well-designed fractal multipoint mask (FMM) to sample the complex phase fronts of OAM modes, wealthy diffraction intensity patterns can be recorded for different OAM modes. Meanwhile, the diffraction patterns are stable against reference misalignment because of the inherent periodic structure of the FMM. Stochastic disturbances of three different parameters of the OAM states are set in the experiments: (i) beam waist size \(\omega \in [0.45, 0.55] \) mm; (ii) initial phase of OAM states \(\phi_0 \in [0, 2\pi] \); (iii) lateral translation range along the \(x \) and \(y \) directions \(\Delta x, \Delta y \in [-0.25, 0.25] \) mm. Here, the maximum lateral displacement of the FMM we added with respect to the perfectly on-axis beam is about \(\pm 0.5 \) beam waist size along the \(x \) and \(y \) directions, respectively. With the above three parameters changing randomly at the same time, we implement the recognition of OAM eigenstates with an accuracy of 100%. Adjacent OAM superposition states with a Bures distance (BD) close to 0.01 are also recognized with an accuracy higher than 98.3%. Benefiting from the simple FMM configuration and superhigh resolution recognition with high accuracy, our detection method is very useful for systems where the random lateral displacement of the FMM we added with micromirror device (DMD) (DLP4500, 1140 x 912 diamond pixel array of 7.6 \(\mu \)m x 7.6 \(\mu \)m mirrors) by a 4f imaging system L3 and L4. A well-designed FMM as shown in the inset of Fig. 1(b) is loaded on the DMD. After leaving the DMD plane, the beam passes through lens L5, and the far-field diffraction intensity pattern is collected by a charge-coupled device (CCD) (Lumenera INFINITY3-1C) with 1392 x 1040 pixels. We set the CCD to operate in 12-bit mode. Figure 1(c) shows an example of the recorded diffraction intensity patterns.

The LG modes have a complex field amplitude given by

\[
L(\ell, p) = \frac{2\pi}{\omega} \int e^{-i \ell \phi} L_p^\ell (r/\omega) \, dr,
\]

where \((r, \phi) \) are the radial and azimuthal coordinates, respectively. \(\omega \) is the beam waist, and \(L_p^\ell (2r^2/\omega^2) \) is the associated Laguerre polynomial. \(\ell \) is the topological charge, and \(p \) is the radial mode index. The complex amplitude field after the FMM is

\[
U(x, y) = \sum_{n=1}^N \text{circ} \left(\frac{(x-x_n)^2 + (y-y_n)^2}{r_0} \right) L(\ell_n, p),
\]

where \(\text{circ}(x, y) \) is the transmittance function of the aperture in the FMM, and \(r_0 \) is the radius of the FMM aperture. \(x_n, y_n \) are the central coordinates of the \(n \)th aperture. In the experiments, we implement the lateral translation misalignment by adding random lateral displacement \(\Delta x \) and \(\Delta y \) along the \(x \) and \(y \) directions, respectively, for the FMM. Here we employ a model for the pattern of florets in the head of a sunflower proposed by Helmut Vogel [41] in 1979 to arrange the position of each aperture, which is given by

\[
x_n = C_1 \sqrt{n} \cos \left(\frac{2\pi}{C_2 n} \right), \quad y_n = C_1 \sqrt{n} \sin \left(\frac{2\pi}{C_2 n} \right),
\]

where \(C_1 \) is the constant scaling factor, and \(C_2 \) is the divergence angle. Considering the Fraunhofer limit, the far-field intensity pattern in the detector plane \(I \) is given by the Fourier transform of the field in the FMM plane,

\[
I \propto |\mathcal{F}[U(x, y)]|^2,
\]

and \(\mathcal{F}[\cdot] \) represents the Fourier transform.

To estimate the topological charge of the LG modes with the recorded intensity patterns \(I \), we define \(I = H(\ell) \), where the \(H(\cdot) \) represents the forward physical process that produces the diffraction pattern from the incident LG mode with the topological charge \(\ell \). The optimization problem can be implicitly written as.
\[
\hat{\ell} = \arg\min_{\ell} \mathcal{L}(\hat{H}(\ell), I, R(\ell)),
\]

where \(\hat{\ell}\) is the estimate of the inverse, \(\mathcal{L}\) is the objective function to minimize, and \(R(\ell)\) is the regularizer, or prior knowledge term that imposes constraints on the solution.

Here we adopt an end-to-end DL method, the DenseNet-121, to solve the above optimization problem. The architecture of the DenseNet-121 is shown in Fig. 2. The diffraction intensity patterns collected by the CCD are cropped and resized to \(224 \times 224\) pixels from raw \(1392 \times 1040\) pixels, with their corresponding state labels artificially added. The diffraction patterns and labels are paired to form the training set as inputs to the DenseNet-121. Then the inputs are fed to a convolution layer with filter size \(7 \times 7\) and strides \((2, 2)\) followed by a \(3 \times 3\) max pooling layer with stride \((2, 2)\). After that, four dense blocks with \(6, 12, 24,\) and \(16\) convolution units, respectively, are implemented, and a \(1 \times 1\) convolution layer followed by \(2 \times 2\) max pooling is utilized as transition layers between two contiguous dense blocks. At the end of the last dense block, a global max pooling is performed; then a fully connected layer with a softmax classifier is attached. In DenseNet-121, rectified linear units (ReLUs) are used as the activation function, categorical-cross-entropy loss as loss function, and stochastic gradient descent (SGD) as optimizer. It is worth pointing out that the difference between the adjacent superposition states we selected is very small, and the inherent average pooling layer of DenseNet-121 will further weaken this difference. Therefore, we choose a max pooling layer to amplify small differences of the diffraction intensity patterns between different states. The program in our experiment was implemented on the Keras framework with Python 3.5, and sped up by a pair of GPUs (NVIDIA GTX 1080ti).

3. RESULTS

We first perform the DenseNet-121 to recognize LG eigenstates with topological charge \(\ell \in \{0, 1, \pm 2, 5\}\) and \(p = 0\). In order to test the robustness of the proposed method, stochastic disturbance of three parameters of the OAM states is set simultaneously for the acquisition of each diffraction intensity pattern: (i) beam waist size \(\omega \in [0.45, 0.55]\) mm; (ii) initial phase of OAM states \(\phi_0 \in [0, 2\pi]\); (iii) lateral translation range along the \(x\) and \(y\) directions \(\Delta x, \Delta y \in [-0.25, 0.25]\) mm. A total of 1100 experimental diffraction intensity patterns and their corresponding topological charge \(\ell\) as labels are used as the data set, with 100 samples for each topological charge \(\ell\). All 1100 samples are randomly shuffled, of which the first 850 samples are used as the training set; the remaining 250 samples never participate in the training process.

Figure 3 shows the examples of recorded diffraction intensity patterns for LG eigenstates with topological charge \(\ell \in \{0, 1, \pm 2, 5\}\). Figures 3(a1)–3(e1) are diffraction patterns when LG beams are perfectly on-axis. Figures 3(a2)–3(e2) and 3(a3)–3(e3) are diffraction patterns when lateral translations of \(\Delta x = \Delta y = 0.15\) mm and \(0.25\) mm are added on the LG beams, respectively. We collect each diffraction pattern in Fig. 3 by keeping the parameters \(\omega\) and \(\phi_0\) to vary randomly according to the range mentioned above. The diffraction patterns show characters of donut-shaped intensity profile in the center with surrounding asteroid-belt-like speckles. The patterns in the center keep an intensity profile similar to the input LG eigenstates. The additional asteroid-belt-like speckles behave as completely different intensity profiles resulting from the interference of different spiral wavefronts, and it is helpful for the recognition of LG modes. Since the apertures of the proposed FMM are uniformly distributed from the center to...
the edge according to Eq. (3), it may help to maintain the
details of the diffraction patterns to some extent. One can find
that the enlarged details of the insets in Figs. 3(e1)–3(e3)
are basically retained under different FMM displacements.
Furthermore, this distribution of the proposed FMM is asym-
metric with respect to any axis in its plane, which contributes to
the robustness of distinguishing the diffraction patterns from
positive and negative ℓ. After careful tuning, the trained
DenseNet-121 is fed with test data to evaluate its ability for
classification. A normalized confusion matrix for misaligned
LG eigenstates $\ell \in \{-5, -4, \ldots, 5\}$ and $p = 0$ is shown in
Fig. 4. All test data are correctly recognized, and an accuracy
rate of 100% is achieved. As can be seen from the curves on
the top right of Fig. 4, it only took five epochs for the DenseNet-
121 to reach 100% accuracy in both the training and test sets.
This indicates that the diffraction patterns formed by the LG
eigenstates with different topological charge ℓ are quite differ-
ent and can be easily learned by the DenseNet-121 to achieve
accurate classification.

To further demonstrate the performance of the proposed
method, we experimentally implement the recognition of hy-
perfine OAM superposition states. We choose two mutually
orthogonal bases, $|\ell| = \pm 1$, to construct the Bloch sphere,
and each point on the sphere is a superposition state con-
structed by this set of bases. As shown in Fig. 5(a), the state $|\psi\rangle$ represented by an arbitrary point on the Bloch sphere is
given by

$$|\psi\rangle = \cos \frac{\theta}{2}|1\rangle + \sin \frac{\theta}{2}e^{i\phi}|-1\rangle,$$

where θ is the polar angle and ϕ is the azimuthal angle.
We take 200 and 400 points uniformly from $[0, \pi]$ and $[0, 2\pi]$ according
to the respective ranges of θ and ϕ. In this way, 80,000 points
with an interval of 0.005π evenly distributed on the spherical
surface are obtained, as schematically shown in Fig. 5(b).
Without loss of generality, we randomly select an area on
the Bloch sphere with nine superposition states. The nine
superposition states combined by θ and ϕ are shown in
Table 1, and we name them Modes 1–9 for convenience.
The values of θ are 0.52π, 0.525π, and 0.53π, while the values of ϕ are 0.02π, 0.025π, and 0.03π.
The red box in Fig. 5(b) schematically shows the position distribution of the nine
superposition states on the Bloch sphere. We utilize the BD
$[42] D_{\theta}^2[\rho_A, \rho_B] = 2[1 - F(\rho_A, \rho_B)]$, where
$F(\rho_A, \rho_B) = |\text{Tr}\sqrt{\rho_A \rho_B} \sqrt{\rho_A}|^2$ is the fidelity of the two states, to calculate
the distance between adjacent modes ρ_A and ρ_B on the Bloch
sphere. The distance between two horizontal (e.g., Modes 4
and 7) or vertical (e.g., Modes 1 and 2) adjacent modes of
the nine modes we selected on the Bloch sphere is 0.01, while
the distance between diagonally positioned adjacent modes
(e.g., Modes 5 and 9) is 0.015. This means that any two ad-
jacent modes are so similar that their corresponding diffraction
patterns are also very similar and difficult to recognize.

In the experiments, stochastic disturbances of parameters,
(i) beam waist size $w \in [0.45, 0.55]$ mm, (ii) initial phase $\varphi_0 \in [0, 2\pi]$, and (iii) lateral translation $\Delta x, \Delta y \in [-0.25,
0.25]$ mm, are also introduced in these superposition states.
A total of 9000 recorded diffraction intensity patterns and their
Corresponding labels are used as the data set: 1000 samples for
each category, 7000 of which are used as the training set and
2000 are used as the test set. The diffraction intensity patterns
for superposition states of Mode 4, Mode 5, and Mode 6 under
different stochastic disturbances of the above three parameters
are shown in Figs. 6(a1)–6(c3). Similar to the results of eigen-
states, the diffraction patterns for superposition states also con-
sist of two parts: central lobes that have the similar intensity
profile to the input superposition states and the surrounding
asteroid-belt-like speckles. One can see that the diffraction
patterns formed by different superposition states are highly

![Confusion matrix for the recognition of misaligned LG eigenstates $\ell \in \{-5, -4, \ldots, 5\}$ and $p = 0$, with the curves of accuracy and loss as functions of epochs on the top right.](image)

Table 1. Nine Superposition States Combined by θ and ϕ

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\theta = 0.520\pi$</th>
<th>$\theta = 0.525\pi$</th>
<th>$\theta = 0.530\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>Mode 4</td>
<td>Mode 5</td>
<td>Mode 7</td>
</tr>
<tr>
<td>Mode 2</td>
<td>Mode 3</td>
<td>Mode 5</td>
<td>Mode 8</td>
</tr>
<tr>
<td>Mode 3</td>
<td>Mode 5</td>
<td>Mode 6</td>
<td>Mode 9</td>
</tr>
</tbody>
</table>

![Schematic diagram of a Bloch sphere constructed with $|\ell| = \pm 1$ bases.](image)
4 to Mode 8 here represent the superposition states with fusion matrix for superposition states from Mode 4 to Mode 8. Mode for superposition states from Mode 1 to Mode 9 with the curves of accuracy and loss as functions of epochs on the top right.

Disturbances of the other two parameters: (i) beam waist size position states under different misaligned configurations. The collection of each diffraction pattern in the figure is carried out with stochastic image clearly, we reduce the contrast of the image by setting the values of

\[
\frac{\Delta x}{\Delta y} = 0, \quad \frac{\Delta x}{\Delta y} = 0.15, \quad \frac{\Delta x}{\Delta y} = 0.25
\]

Fig. 7. Confusion matrix of LG modes with \(p = 1 \). (a) Confusion matrix for LG eigenstates of \(\ell \in \{-2, -1, \cdots, 2\} \) and \(p = 1 \); (b) confusion matrix for superposition states from Mode 4 to Mode 8. Mode 4 to Mode 8 here represent the superposition states with \(p = 1 \) at the same positions on the Bloch sphere in the case of \(p = 0 \).

噪声的相机。预测准确性对准FSO OAM状态的噪声是降低的，因为我们在捕获目标的详细信息上设置了值为 \(I = 0.3 \times \max\{I\} \)，以及 \(I > 0.3 \times \max\{I\} \)； (d) 分类误差矩阵

Experimental results of hyperfine LG superposition states. (a)–(c) Examples of the recorded diffraction intensity patterns for OAM superposition states under different misaligned configurations. The collection of each diffraction pattern in the figure is carried out with stochastic disturbances of the other two parameters: (i) beam waist size \(\omega \in [0.45, 0.55] \) mm; (ii) initial phase of OAM states \(\phi_0 \in [0, 2\pi] \). To show the image clearly, we reduce the contrast of the image by setting the values of \(I = 0.3 \times \max\{I\} \), where \(I > 0.3 \times \max\{I\} \); (d) classification error matrix for superposition states from Mode 1 to Mode 9 with the curves of accuracy and loss as functions of epochs on the top right.

Fig. 6. Experimental results of hyperfine LG superposition states. (a)–(c) Examples of the recorded diffraction intensity patterns for OAM superposition states under different misaligned configurations. The collection of each diffraction pattern in the figure is carried out with stochastic disturbances of the other two parameters: (i) beam waist size \(\omega \in [0.45, 0.55] \) mm; (ii) initial phase of OAM states \(\phi_0 \in [0, 2\pi] \). To show the image clearly, we reduce the contrast of the image by setting the values of \(I = 0.3 \times \max\{I\} \), where \(I > 0.3 \times \max\{I\} \); (d) classification error matrix for superposition states from Mode 1 to Mode 9 with the curves of accuracy and loss as functions of epochs on the top right.

On the other hand, the roughly retained details in the insets of Figs. 6(c1)–6(c3) and the raise in the number of training data help DenseNet-121 achieve better feature extraction. In fact, if one reduces the intensity of the illumination laser beam, the asteroid-belt-like speckles will be drowned in the electron noise of the camera. The predictive accuracy of the hyperfine OAM states is reduced as we lose the detailed information of the asteroid-belt-like speckles.

Here, to fully demonstrate the robustness of the proposed method, we implement the hyperfine OAM mode recognition for the case of \(p \neq 0 \). In experiments, we set \(p = 1 \), and all other conditions remain the same as the above experiments. The normalized partial confusion matrices of the eigenstates \(\ell \in \{-2, -1, \cdots, 2\} \) and superposition states of Mode 4 to Mode 8 in Table 1 are shown in Figs. 7(a) and 7(b), respectively. Similar to the result in the case of \(p = 0 \), the DenseNet-121 easily realized an accuracy of 100% for the eigenstates, and an accuracy of 98.82% for superposition states with the radial mode index \(p = 1 \).

4. CONCLUSION

In conclusion, we experimentally implemented hyperfine OAM mode recognition under strong misalignment by using an alignment-free fractal multipoint interferometer assisted by DL. The misalignment includes three stochastic disturbances of parameters: (i) beam waist size \(\omega \in [0.45, 0.55] \) mm; (ii) initial phase \(\phi_0 \in [0, 2\pi] \); (iii) lateral translation \(\Delta x, \Delta y \in [-0.25, 0.25] \) mm. Here, the maximum lateral misalignment of the FMM we added with respect to the perfectly on-axis beam is about ±0.5 beam waist size along the \(x \) and \(y \) directions, respectively. The well-tuned DenseNet-121 is demonstrated to be robust for recognizing very similar superposition states with a small BD of 0.01 between adjacent modes under the above strong misalignment. Benefiting from the robustness of the proposed method and simple FMM configuration, this scheme shows potential application for FSO communication where the optical vortices are expected to be on a large scale and the misalignment between the transmitting and receiving units is inevitable.
Disclosures. The authors declare no conflicts of interest.

REFERENCES

