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We discover single and homocentric optical spheres of the three-dimensional inhomogeneous nonlinear
Schrödinger equation (NLSE) with spherical symmetry, which is a novel model of light bullets that can present
a three-dimensional rogue wave. The isosurface of this light bullet oscillates along the radius direction and
does not travel with the evolution of time. The localized nature of rogue wave light bullets both in space and
in time, which is in complete contrast to the traveling character of the usual light bullets, is due to the localization
of the rogue wave in the one-dimensional NLSE. We present also an investigation of the stability of the optical
sphere solutions. The lower modes of perturbation are found to display transverse instabilities that break
the spherical symmetry of the system. For the higher modes, the optical sphere solutions can be classified as
stable solutions. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.415687

1. INTRODUCTION

In recent years, considerable effort has been devoted to the in-
vestigation of optical solitary waves [1] due to their fundamen-
tal impact on nonlinear wave propagation, spawning exciting
applications along the way such as supercontinuum light
sources [2], soliton lasers [3], and an improved understanding
of the development and control of rogue waves (RWs) [4]. A
special type of solitary waves, the RW phenomenon, which was
first observed in the ocean, is a rare, short-lived, and high-
energy event with amplitude much higher than the average
wave crests around it [5]. The typical feature of RWs is that
they suddenly appear and increase up to a very high and ab-
normal amplitude to finally disappear without a trace [6,7].
The experimental observation and theoretical analysis of
RWs have ranged from Bose–Einstein condensates (BECs)
[8,9] to optical systems [10–12], oceans [13], superfluids
[14], and plasmas [15,16]; see more details in two recent review
articles [17,18]. One possible mathematical model to describe
such RWs is the rational solution of one-dimensional nonlinear
Schrödinger (NLS) type equations. Moreover, research has
diversified, also addressing optical solitary waves in higher-
dimensional media, which display a more complex phenom-
enology due to the increased degrees of freedom [19].

In this context, the formation of self-trapped wave packets
or light bullets, is one of the most exciting yet experimentally

unsolved problems in optics [20,21]. Light bullets are
spatiotemporal solitons that form when a suitable nonlinearity
arrests both spatial diffraction and temporal group-velocity
dispersion. Despite considerable theoretical work, experimental
research on light bullets is rare, and one of the main reasons is
that in nonlinear propagation, three-dimensional light bullets
tend to disintegrate due to inherent instabilities. However, dif-
ferent situations are found in BECs and nonlinear optics with
temporally or spatially modulated parameters. In particular, it
was shown in Ref. [22] that complete stabilization of a cylin-
drical (2+1)-dimensional [(2+1)D] spatial soliton can be se-
cured in a layered medium with nonlinearity management.
A scheme for stabilizing spatiotemporal solitons in media with
cubic self-focusing nonlinearity and dispersion management
was proposed in Ref. [23]. The formation of tandem structures,
which are composed of periodically alternating linear dispersive
and nonlinear layers, was studied in Refs. [24,25]. Moreover,
alteration of atomic scattering length achieved by Feshbach res-
onance has been used to dynamically stabilize higher-dimen-
sional bright solitons [26]. Thus, the study of the (2+1)D
and (3+1)D variable coefficients NLS equations (NLSEs) has re-
cently been one of the central issues in the field of nonlinear
optics. One of the interesting challenges concerns how to char-
acterize the nonlinear light bullets on analytical level [27–29]. In
general, the analytical study of the multidimensional light bullets

Research Article Vol. 9, No. 4 / April 2021 / Photonics Research 643

2327-9125/21/040643-06 Journal © 2021 Chinese Laser Press

https://orcid.org/0000-0002-2068-1849
https://orcid.org/0000-0002-2068-1849
https://orcid.org/0000-0002-2068-1849
https://orcid.org/0000-0002-6478-628X
https://orcid.org/0000-0002-6478-628X
https://orcid.org/0000-0002-6478-628X
mailto:hejingsong@szu.edu.cn
mailto:hejingsong@szu.edu.cn
mailto:hejingsong@szu.edu.cn
https://doi.org/10.1364/PRJ.415687


is impeded by the lack of the corresponding integrable systems.
Therefore, several approaches have been recently developed to
overcome this limitation. The traveling wave and light bullet sol-
iton solutions to the generalized NLSE in (3+1)D for a cubic
nonlinearity were first developed in Ref. [30] for anomalous
dispersion and were generalized in Ref. [31] for normal
dispersion by using the F-expansion technique. Exact solutions
for varying potential and nonlinearity were found in Ref. [32]
by similarity transformations. Nonautonomous rogue wave solu-
tions have also been found for the generalized NLSEs with var-
iable coefficients in three-dimensional spaces [33] based on the
similarity analysis idea.

Very recently, the spatiotemporal dynamics of RW solutions
in a composite (2+1)D were investigated in Ref. [34]. A novel
type of light bullets, which take the shape of RWs and travel on a
finite (2+1)D space-time background, has been obtained. It was
shown that both the fundamental and second-order RWs have a
directional preference or a bullet nature that can propagate in a
certain direction with transverse double localization. Such special
(2+1)D RW behavior has been called rogue wave bullets. We
shall in this paper proceed along this direction to get rogue wave
bullets of a new inhomogeneous (3+1)D integrable system where
coefficients depend on time and transverse radial coordinates.
The main result of the present work is the possibility to obtain
a single optical sphere and homocentric optical spheres for an
inhomogeneous (3+1)D NLSE with spherical symmetry.

2. THE THREE-DIMENSIONAL ROGUE WAVE
LIGHT BULLETS

The three-dimensional inhomogeneous NLSE with variable co-
efficients can be written in a dimensionless form:

i
�
∂
∂t
ψ

�
� β�r, t�∇2ψ − v�r, t�ψ − g�r, t�jψ j2ψ � 0, (1)

where ψ�r, t� is the complex envelope of the optical field,
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p
is the distance from a point (x, y, z) to

the origin of the coordinates, and ∇2ψ � r−2∂∕∂r�r2∂ψ∕∂r�
is the 3D Laplacian describing beam diffraction or group veloc-
ity dispersion in a 1D time-domain configuration. The external
potential v�r, t� and nonlinear coefficient g�r, t� are real-valued
functions of time and spatial coordinates. This equation arises
in many fields such as nonlinear optics [1,21] and BECs
[32,35–37]. The 1D version of Eq. (1) was considered in
Refs. [38–40], where the soliton, together with first- and sec-
ond-order RW solutions, was obtained. We present here 3D
RW solutions to the NLSE in (3+1)D. In order to investigate
the dynamic properties of the optical rogue wave solution for
Eq. (1), we perform a specific reduction, namely,

ψ�r, t� � ρ�r� exp�iϕ�r, t��Φ�X �t�,T �r, t��, (2)

where the functions ρ�r� and ϕ�r, t� represent the amplitude
and the phase, respectively. The complex function Φ satisfies
the following NLSE with constant coefficients:

i
�
∂
∂X

Φ�X ,T �
�
� ∂2

∂T 2 Φ�X ,T � � 2ϵjΦ�X ,T �j2Φ � 0,

(3)
which is obtained by substituting Eq. (2) into Eq. (1) with the
following specific transformation:

T � αr � t, X � t, ρ � 1

r
ffiffiffi
α

p , ϕ � −
αr
2
−
t
2
, (4)

β � 1

α2
, g � −2ϵαr2, v � 1

4
: (5)

Here ϵ � �1 and α is a positive constant.
According to the above transformation defined by Eqs. (2),

(4), and (5), we set α � 1, ϵ � 1, and then Eq. (1) leads to a
solvable three-dimensional inhomogeneous NLSE with spatial
nonlinearities:

i
∂
∂t
ψ �

�
∂2

∂r2
ψ � 2r

∂
∂r

ψ

�
− 14ψ � 2r2jψ j2ψ � 0: (6)

This equation is a solvable model due to the established trans-
formation and the solvability of the NLSE, which is the main
result of this paper. We shall focus on rational-like solutions of
Eq. (6), which provide novel localized optical spheres and thus
generate new kinds of light bullets. These optical spheres os-
cillate along the radius direction and do not travel like the usual
light bullets.

In optics, spatially inhomogeneous nonlinearities can be real-
ized in various ways [41]. In a BEC, Eq. (6) describes the evo-
lution of matter waves, where the spatially modulated
nonlinearity landscape can be generated by the Feshbach reso-
nance in nonuniform external fields [42,43]. Nonlinearity can
also be modulated in optical structures, e.g., in photonic crystal
fibers with the holes infiltrated with a highly nonlinear material,
for example, index-matching nonlinear liquids [44,45].

Here we use the lowest-order rational solution of Eq. (3)
[46–49], which serves as a prototype of roguewaves, to construct
the optical spheres of Eq. (6). Setting Φ to be the first-order
rogue wave [46–49] of the NLSE, α � 1, ϵ � 1, and, according
to the transformations defined by Eqs. (2), (4), and (5), then the
first-order rational-like solution of Eq. (6) can be rewritten as

ψ � ψ rw � −4r2 − 8rt − 20t2 � 3� 16it
�4r2 � 8rt � 20t2 � 1�r exp

�
−
1

2
i�r − 3t�

�
:

(7)

Fig. 1. Evolution of U rw1 on the (r, t) plane. It is obvious to find
U rw1 exhibiting oscillations along r when t is very small.
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There is only one singularity of ψ at r � 0, which is demon-
strated by Figs. 1 and 2 and which originates from the
ρ � 1

r
ffiffi
α

p in the transformation from Eq. (2).
We next investigate the features of the amplitude

U rw1 � jψ rwj of the 3D RW solution from Eq. (7). Indeed,
there exists a critical point t0 such that U rw1 oscillates with
respect to r when t < t0, but it is a monotonic function of
r when t > t0.

It is easy to show that U rw1 presents oscillations for very small
t and approaches 1

r when t goes to ∞, so the continuity of U rw1

guarantees the existence of a critical point t0 of the turning of the
monotonicity with respect to t. We found numerically that there
exists a critical point t0 ∈ �0.118,0.119�, such that, if t > t0,
U rw1 monotonically decreases with respect to r, and if t < t0,
it oscillates with respect to r. This feature is complementary to
the pioneering RW structure, which appears from nowhere

and disappears without a trace [6,7]. This can be confirmed
by profiles of U rw1 on the (r, t) plane in Fig. 1. According to
our analysis, if t > 0.119, the isosurface of U rw1 is just a single
sphere. But for 0 ≤ t < 0.118, the isosurfaces can form three ho-
mocentric spheres with suitable values of U rw1. For example,
when t � 0.25, U rw1 decreases with respect to r [see Fig. 2(b)].
However, when t � 0.05, U rw1 exhibits oscillations with respect
to r and thus presents two extreme points at 0.851 and 1.507;
their values are 0.233 and 0.419, respectively [see Fig. 2(a)]. So,
by settingU rw1 ∈ �0.233,0.419�, the isosurface has three homo-
centric optical spheres (see Fig. 3). Of course, by setting
U rw1∉�0.233,0.419�, the isosurface of U rw1 is a single sphere.

The radius of these spheres increases to a certain value and
then reaches an upper limit, which corresponds to localized fea-
ture of the rogue wave. In this process, the radius r of the sphere
may have oscillation. Equivalently, r is not a monotonic func-
tion of time t , although it is bounded. In other words, the iso-
surface of U rw1 forms size-bounded sphere, which is a strong
reflection of the localized nature of rogue waves in three dimen-
sions. Moreover, the polynomial form of the rogue wave in the
one-dimensional NLSE is reflected by the oscillation of the ra-
dius r of the isosurface. Therefore, the behavior of the sphere of
the isosurface represents the nature of the first-order rogue wave
of the NLSE: polynomial and having a doubly localized prop-
erty. The asymptotical radius of the isosurface valued at
U rw1 � k is given by ras � 1

k.
For example, for the isosurface of U rw1 valued at 0.5, there

are only two extreme points at �t � 0.03404, r � 0.68574�
and �t � 3.24987, r � 2.00604� in the profile of r varying
with t (see Fig. 4). Note that the asymptotic value of r reaches

Fig. 2. Profiles of U rw1 along r for different values of t. (a) Two
extreme points are (0.851,0.233) and (1.507,0.419) for t � 0.05;
(b) there is no extreme point for t � 0.25.

Fig. 3. Profiles of U rw1. (a) The isosurface of U rw1 at t � 0.05
when U rw1 � 0.4; (b) the inside of (a) plotted from a bird’s-eye view
and z ∈ �−0.9,0.9�; (c) the contour line of U rw1 at z � 0. The latter
two panels verify that there are three homocentric spheres.

Fig. 4. Radius of the sphere for the isosurface given by U rw1 � 0.5.
Panel (b) is plotted for very small t of panel (a), and there is a mini-
mum rmin � 0.68574. Panel (c) is plotted for large t of panel (a), and
there is a maximum rmax � 2.00604. The asymptotical value of r is
ras � 2.
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2 for large t, but the maximum value of r is larger than 2 (see
Fig. 4). The animation (Visualization 1) of an isosurface valued
at U rw1 � 0.5 confirms remarkably the enlargement of the ra-
dius r and asymptotical value ras of the sphere. Due to very tiny
variation of r around the two extremes, the animation cannot
show the oscillation of r significantly, although it happened
during the increase of r. However, this can be confirmed by
a two-dimensional animation (Visualization 2) of contours
of the sphere U rw1� 0.5jz�0 with respect to t.

The U rw1 is also very well localized in the (x, y) plane,
although the peak changes with respect to t, which can be con-
firmed in Fig. 5 and the animation (Visualization 3). We can
see from the animation that the peak of U rw1 is oscillating with
time t. We have found here that if r < 0.35, the peak decreases
with time; if r ∈ �0.35,0.85�, the peak oscillates with time; if
r > 0.85, the peak increases with time. So there exists a critical
value of time at which the profile and the amplitude of the
solution remain unchanged; see Fig. 6. Note that 0.35 and

0.85 are just approximate values. As we know, limt�∞U rw1 �
1
r , so U rw1jz�0.5 has an asymptotic maximum value of 2 as con-
firmed by the animation.

3. THE STABILITY OF THE OPTICAL SPHERE
SOLUTIONS

In order to determine the stability of the optical sphere solu-
tions with respect to perturbations that break the initial spheri-
cal symmetry, we consider the Laplacian of Eq. (1) in spherical
coordinates and choose an appropriate perturbation in the
form [50]

ψ�r, θ,ϕ, t� � ψ rw�r, t� � μg�r, t�ϒm
l �θ,ϕ�: (8)

Here μ is a small expansion parameter and g�r, t� is a radial
perturbation function. The spherical harmonic function is de-
fined as ϒm

l �θ,ϕ� � Pm
l �θ� cos�mϕ�, where Pm

l is the associ-
ated Legendre function with l ≥ m ≥ 0. Note that the
angular perturbation function must be real to obtain the lin-
earized equation that follows. Inserting Eq. (8) into Eq. (1)
and linearizing in the small parameter μ, we obtain the follow-
ing linear partial differential equation for the evolution of the
radial perturbation function:

i
∂g
∂t

� 1

r2
∂
∂r

�
r2
∂g
∂r

�
−
l�l � 1�

r2
g

−
1

4
g � 2r2�jψ rwj2g � ψ2

rwg	� � 0: (9)

The asterisk denotes the complex conjugation. Note that the
angular dependence appears solely by virtue of parameter l,
and the azimuthal index m does not appear in the perturbation
equation. Since this is a linear equation in g , we expect the
solution to be of the form [51] g�r, t� � g�r�eλt as t → ∞,
where λ is the maximum positive (real) eigenvalue and g�r�
is the corresponding eigenfunction. Starting with a small ran-
dom initial condition for g�r; 0�, Eq. (9) is integrated by using a
Crank–Nicolson algorithm [52]. Figure 7(a) shows the numeri-
cally calculated growth rates λ as a function of the spherical
harmonic modes l . As can be seen on this figure, for the modes
l < 70, the positive growth rate decreases with parameter l and
the optical sphere solution is unstable. However, for the modes
l > 70, the growth constant can become zero, which means
that the optical sphere solution can be classified as stable for
these modes. Figure 7(b) shows the radial perturbation func-
tion corresponding to the most unstable mode l � 4. It is
shown that an exponentially growing radial profile for jgj
emerges and affects only the edges of the optical spheres,

Fig. 5. Localized profiles of the U rw1 with z � 0.5 in the (x, y)
plane: (a) t � 0; (b) t � 0.5.

Fig. 6. Profiles of U rw1 with respect to t for different values of r:
(a) r � 0.25; (b) there are two extreme points (0.007,1.635) and
(0.663,2.113) for r � 0.5; (c) r � 1.

Fig. 7. (a) Growth rates λ as a function of the spherical harmonic
modes l . (b) Dominant unstable l � 4 radial perturbation eigenmode
emerging from a small random initial condition.
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leaving the central core relatively untouched. Note that stable
vortex solitons have also been obtained in 3D NLSE with spa-
tially inhomogeneous nonlinearities [53].

4. CONCLUSION

In conclusion, we have shown that in the (3+1)-dimensional
NLSE with varying coefficients, localized solutions in the form
of rational formulas can exist owing to a specific transformation
that allows us to reduce the dimensionality of the equation
from (3+1) dimensions to (1+1) dimensions. These solutions
are localized both in space and in time, and thus their corre-
sponding isosurfaces are single spheres or homocentric spheres,
which oscillate along the radius direction and are completely
different from the well-known standard traveling light bullets.
They can be interpreted as prototypes of RW light bullet sol-
utions in the (3+1)-dimensional time-space. The other proper-
ties of the new nonautonomous RW light bullets have been
studied analytically. Our analytical findings are confirmed by
numerical plots of these solutions. A linear stability analysis
in terms of spherical harmonic modes has been investigated.
We have found that the RW light bullet solutions are stable
for higher modes and transversely unstable for lower modes
of the perturbation. Experimental advances have recently pro-
vided a strong incentive in the area of RWs in complex media
[54]. Note that a demonstration of the direct observation of
RWs in self-excited 3D longitudinal plasma density waves
was reported in Ref. [55] by using self-excited dust acoustic
waves as a platform. We believe that the results obtained here
can stimulate further research on the experiments and help to
understand the behavior of 3D RWs in a wide range of non-
linear physical areas.
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