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We demonstrate a smart sensor for label-free multicomponent chemical analysis using a single label-free ring
resonator to acquire the entire resonant spectrum of the mixture and a neural network model to predict the
composition for multicomponent analysis. The smart sensor shows a high prediction accuracy with a low root-
mean-squared error ranging only from 0.13 to 2.28 mg/mL. The predicted concentrations of each component in
the testing dataset almost all fall within the 95% prediction bands. With its simple label-free detection strategy
and high accuracy, the smart sensor promises great potential for multicomponent analysis applications in many
fields. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.411825

1. INTRODUCTION

Ring resonators are in an emerging class of versatile and highly
sensitive photonic sensors that use recirculating light confined
within a microcavity to detect the changes in surrounding bio-
logical, physical, and chemical environments [1–3]. They are
well suited for integrated sensing systems because of their high
sensitivity, compact size, label-free detection, real-time moni-
toring capability, low sample consumption, multiplexing
capability, and resistance to electromagnetic interference [4,5].
Ring resonators could be easily fabricated into a large array for
multiplexed detection. In theory, each individually addressable
ring resonator in the array could be labeled with a unique cap-
ture agent to detect a specific target of interest in a mixture [6].
The capture agent labeled on the ring resonator ensures the
sensing specificity. However, this approach presents a practical
challenge—the ring resonators would be so closely spaced in
the array that it would be impractical to selectively label each
ring resonator while avoiding contaminating the adjacent ones
without employing expensive and bulky microdispensers [7].
Therefore, a simple unlabeled multiplexed detection strategy
is highly desired for ring resonator–based sensors. Indeed,

the ring resonator is well recognized for its capability of label-
free sensing. When target molecules come into proximity of the
ring resonator, the resonant peak shifts to a different wave-
length, and the degree of this resonant shift reflects the target
concentration. This label-free sensing strategy works well for
single-component analysis but shows poor performance for
multicomponent analysis due to its lack of specificity. With the
endpoint measurement of the resonant peak shift as the only
parameter for sensing, the ring resonator is incapable of distin-
guishing a specific component from a mixture. One conven-
tional solution to this problem is to extract the component of
interest from the mixture and measure all components one at a
time. However, the extraction processes are often tedious, labo-
rious, and time-consuming [8]. Moreover, not all components
can be extracted from a mixture. A more popular approach of
multicomponent analysis is based on multivariant calibration of
spectral information obtained by using UV spectrophotometry,
Raman spectroscopy, nuclear magnetic resonance spectroscopy,
and other kinds of spectroscopy [9–11]. This approach requires
a large database containing the spectra of each individual com-
ponent in their pure forms. To identify all components, the
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superimposed spectrum of the mixture is decomposed into the
spectra of individual components using algorithms such as
multiple linear regression, principle component regression,
and partial least squares [12,13]. One major assumption made
by this approach is that the spectrum of the mixture is a linear
superposition of the spectra of individual components, which is
not always substantiated. This approach also has difficulty in
identifying components with substantial overlapping spectra
and indistinguishable features. Although several models have
been proposed to distinguish those spectra by introducing addi-
tional handcrafted features, they have not been widely adopted
in practice [14,15].

Instead of using features handcrafted by users, machine
learning identifies characteristic features from the dataset on
its own. It is able to build data-driven models with its unique
learning ability. In recent years, machine learning, especially
deep learning [16], has received a lot of attention and has re-
defined data science [17,18]. The rapid development of ma-
chine learning has enabled a wide range of data-driven
sensing applications. For example, research in drug discovery
and development employs machine learning to explore the
causal association between drugs, biomarkers, and diseases
[19,20], which promotes data-driven decision-making and
has the potential to speed up drug development and reduce
failure rates. Machine learning is also used to predict drug–drug
interactions during clinical trials, which reduces adverse drug
reactions and healthcare costs [21]. Machine learning has also
become a crucial technique for device and material develop-
ment [22–25]. Researchers have attempted to optimize the de-
sign of metamaterial on demand with machine learning
[26–28]. Various types of sensors, such as microring resonators
and surface plasmon resonance–based sensors [29,30], have
benefited from machine learning. Machine learning is em-
ployed to boost the selectivity of gas sensors [31] and improve
the performance of low-cost and mobile plasmonic sensing
platforms by reducing the inter-device variability [32].

In this paper, we demonstrate a machine learning–enabled
smart sensor based on a ring resonator for multicomponent
chemical analysis. The smart sensor integrates a ring resonator
and microfluidic network onto a single chip using silicon pho-
tonic fabrication technology. Instead of using an array of ring
resonators selectively labeled with capture agents for multiplex-
ing, a single label-free ring resonator is used to sense all com-
ponents of interest in a mixture by analyzing the resonant
spectrum of the mixture using a machine learning model.
The machine learning model based on artificial neural network
is trained to decompose the resonant spectrum of the mixture
into spectra of the individual components. Instead of solely re-
lying on the resonant peak shift, the machine learning algo-
rithm extracts features from the entire spectrum for target
identification and quantification. As a proof of concept, we
have accurately quantified glucose, polyethylene glycol (PEG)
200, and bovine serum albumin (BSA) mixed at arbitrary ratios
using this smart sensor with a low root-mean-squared error
(RMSE) ranging only from 0.13 to 2.28 mg/mL over the tested
range of 0–30 mg/mL. The reported smart sensor significantly
simplifies the ring resonator–based sensing platform for multi-
component chemical analysis and shows a high quantification

accuracy. Although this work just presents a simple model
system for proof of concept, it promises great potential for
multicomponent analysis of complex samples in micro- and
nanodevices.

2. METHODS AND MATERIALS

A. Sensing System and Data Analysis
The ring resonator–based smart sensor [Fig. 1(a)] consisted of a
silicon ring resonator chip (details are shown in Appendix A)
that was integrated with a microfluidic network, a 1550 nm
light source, a polarization controller, an optical spectrum ana-
lyzer (OSA), and a data acquisition (DAQ) circuit, all packaged
into a portable system. The light source was tuned to TE polari-
zation via a fiber polarization controller and coupled into the
bus waveguide through a lensed fiber. After propagating
through the chip, the light that exited from the through port
of the sensing ring was coupled out of the bus waveguide via the
other lensed fiber to the OSA for spectrum acquisition. The gap
between the bus waveguide and the ring ought to be kept in the
range of hundreds of nanometers, so that the light propagating
along the waveguide could be coupled into the adjacent ring
resonator to form a whispering-gallery mode for resonance de-
tection under critical conditions. A piece of oxygen plasma-
treated polydimethylsiloxane (PDMS) film was bonded to
the ring resonator chip to form a microfluidic channel, the
depth of which was 1 μm and the width was 100 μm
[33–36]. The resonator chip was first rinsed with isopropyl al-
cohol (IPA), ethanol, and deionized (DI) water, followed by
oxygen plasma cleaning (PDC-002, Harrick Plasma) for
5 min to remove possible surface contamination. The chip
was passivated to prevent molecule adsorption by being im-
mersed in undiluted Sigmacote (SL2, Sigma) solution for
5 min with shaking immediately after oxygen plasma cleaning.
After the incubation, the chip was dried at room temperature in
a sterilized hood for one hour and washed with sterilized

Fig. 1. Schematic illustration of smart sensor framework.
(a) Acquisition of resonant spectrum using ring resonator–based smart
sensor. (b) Resonant spectra are collected into a data library.
(c) Transformation of resonant spectra to matrices. (d) Neural network
training with transformed resonant spectra. (e) Composition predic-
tion with neural network model.
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double-distilled water to remove hydrochloric acid (HCl) by-
product. The chip was dried at 90°C in an oven for 30 min
before use.

The data library contained resonant spectra of mixtures
comprising PEG200, glucose, and BSA mixed at various con-
centrations [Fig. 1(b)]. To measure the resonant spectra, the
running buffer (Ancillary Reagent Kit 2, DuoSet) was first in-
jected into the microfluidic channel at 30 μL/min for 2 min.
The sample was then injected, and the resonant wavelength of
the ring resonator was monitored over time to obtain the
resonant spectrum. A total of 343 mixtures were measured
with the concentration of each component varying from 0 to
30 mg/mL with an increment of 5 mg/mL, while each com-
position was measured at 5 different flow rates ranging from
10 to 90 μL/min with an increment of 20 μL/min. The micro-
fluidic channel was washed with ample running buffer between
measurements.

B. Training of Neural Network for Composition
Detection
The data library was divided into training and testing datasets,
and each dataset was divided into five subgroups based on the
flow rate. Each spectrum in the datasets was labeled with
36 attributes that encoded the concentrations of the three
components—PEG200, glucose, and BSA—in the mixture,
with 12 attributes for each. The 12 attributes for each compo-
nent at a particular concentration were extracted from the res-
onant spectrum of the component in its pure form. The
resonant spectra of the mixtures were transformed into matrices
[Fig. 1(c)] as the input of the neural network [Fig. 1(d)]. The
neural network was trained to decompose the resonant spec-
trum of the mixture into resonant spectra of individual com-
ponents and predict the respective concentration of each
component [Fig. 1(e)].

A three-layer perceptron neural network (one input layer,
one output layer, and a single hidden layer) was adopted to
implement a regressor to predict the concentration of each
component in a mixture [Fig. 2(a)]. The input layer had
160 neurons, the hidden layer had 64 neurons, and the output
layer had 36 neurons. The collected datasets included 343 sam-
ples, of which 229 samples were used for training, and the re-
maining 114 samples were used for the blind testing of the
neural network model. Each sample was measured at five differ-
ent flow rates, and therefore the total number of training sam-
ples was 343 × 5. The training and testing datasets were
randomly selected from the spectrum library without overlap,
which guaranteed that the trained model did not get any in-
formation about the testing dataset. The input datasets had
a dimension of 160 attributes, and the output had a dimension
of 36 attributes, with 12 attributes for each component. The
hidden layer had 64 neurons, and thus the matrix sizes for the
input layer, hidden layer, and output layer were 160 × 64,
64 × 64, and 64 × 36, respectively. The three layers were fully
connected and activated by a rectified linear units (ReLU) func-
tion. The training model was set up using TensorFlow [37] and
trained over a GPU server with one Nvidia GeForce RTX 2080
card and one Intel Xeon CPU E5-2650. The cost function was
defined by the mean square error (MSE), and the optimizer was
set to the RMSPropOptimizer with a learning rate of 0.0005

and a decay rate of 0.9. The learning rate and decay rate were
selected by trial and error. The cost function was plotted against
the number of iterations [Fig. 2(b)]. It quickly descended to a
value close to zero after ∼700 iterations, which indicated the
low error of the model on the training set, and no overfitting
was observed up to 5000 iterations. Our successful blind test on
the 114 × 5 testing samples was unknown to the trained model.
All evidence proved that the number of training samples was
sufficient. Different from other machine learning applications
on published datasets, we used a high-quality dataset experi-
mentally collected. The 343 × 5 samples and their correspond-
ing labels were of high quality and reliable resolution. With this
high-quality dataset, a relatively small number of training sam-
ples were able to generate satisfactory machine learning models
for accurate prediction. The RMSE is a frequently used way to
measure the error of a model in predicting quantitative data.
The deviation between prediction and ground truth was evalu-
ated over nsamples by the RMSE, which was expressed as

RMSE�y, ŷ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsamples

Xnsamples−1

i�0

�yi − ŷi�2
vuut , (1)

where ŷi was the predicted value of the ith sample, and yi was
the corresponding true value.

Fig. 2. Neural network of the smart sensor. (a) The resonant spec-
trum of an unknown sample mixture is acquired with the ring reso-
nator and fed into the trained neural network. The number of neurons
in the input, hidden, and output layers is 160, 64, 36, respectively.
The 36 attributes of the output are divided into three groups, each
with 12 attributes. Each group of 12 attributes is used to predict
the concentration of one component in the mixture. The composition
of the unknown sample is determined by the predicted concentrations
of all three components. (b) Cost function versus training interactions
for samples at 10 μL/min as an example.
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3. RESULTS AND DISCUSSIONS

The light is coupled into the ring resonator through fiber align-
ment [38,39]. The light at resonant wavelength is strictly con-
fined in the ring resonator, which results in periodic resonant
peaks in a spectrum measured at the through port of the bus
waveguide. The cross section of the waveguide in our device is
450 nm by 220 nm, which could confine single-mode light
very well. On the other hand, the evanescent field is able to
leak from the waveguide to interact with matter that alters
the effective refractive index surrounding the ring resonator.
This effect is reflected as a shift in the resonant wavelength
in the measured spectrum. The ring resonator is an exceptional
optical sensor because of its higher Q value, high sensitivity,
ease of fabrication, multiplexity capability, and label-free detec-
tion [40]. During operation, the ring resonator is immersed in
the running buffer that flows stably in the microfluidic channel,
and a stable resonant peak is observed. As the sample flows over
the surface of the ring resonator, the resonant peak would shift
as a result of the difference in refractive index between the sam-
ple solution and the running buffer. This principle is used to
analyze chemicals dissolved in the solution. The proposed
smart sensor combines the advantage of the highly sensitive
ring resonator and neural network to empower intelligent la-
bel-free multicomponent chemical analysis. The representative
resonant spectra of individual components under a constant
flow rate of 30 μL/min are shown in Figs. 3(a)–3(c). The con-
centrations of PEG200 [Fig. 3(a)], glucose [Fig. 3(b)], and BSA

[Fig. 3(c)] increase from 0 to 30 mg/mL with an increment of
5 mg/mL. In all cases, the shift of the resonant peak increases
with time and eventually reaches a plateau. The constant value
at the plateau is dependent on the concentration of the
chemical—the higher the concentration, the larger the resonant
wavelength shifts. The representative resonant spectra of indi-
vidual components at a constant concentration of 20 mg/mL
are shown in Figs. 3(d)–3(f ). The spectra of each sample are
obtained at five different flow rates ranging from 10 to
90 μL/min with an increment of 20 μL/min. As seen in the
figures, all measurements for each chemical component reach
almost the same plateau regardless of the flow rate, which cor-
roborates that the degree of resonant shift is determined by the
chemical concentration. In both the constant-concentration
and constant-flow-rate scenarios, samples under different con-
ditions show distinct behaviors in the response region (between
zero and the maximum shift). It is speculated that the response
region results from the diffusion of target molecules at the in-
terface between the sample solution and running buffer. The
microfluidic channel is filled with running buffer before
the sample injection. Due to laminar flow at the microscale,
the sample solution and the running buffer do not mix
at the interface. As the sample solution flows towards the ring
resonator, target molecules in the sample solution diffuse into
the running buffer and generate a chemical gradient across the
interface. The front portion of the chemical gradient, which has
a low concentration of target molecules, reaches the ring res-
onator first, causing a slight shift in resonant wavelength. As
the interface flows over the ring resonator, the effective concen-
tration detected by the ring resonator increases with the con-
centration gradient until it reaches the bulk concentration
evidenced by the plateau. The higher the target concentration,
the faster the resonant wavelength shifts due to steeper concen-
tration gradient as evidenced by the larger slope in the response
regions [Figs. 3(a)–3(c)]. The response region of the resonant
spectrum hence contains rich information related to the con-
centration, diffusion coefficient, and other physical and chemi-
cal properties of the target molecules. Similarly, the flow rate
also has a strong effect on the response region of the resonant
spectrum through the concentration gradient. As the flow rate
increases, it takes a shorter time for the interface to reach the
ring resonator and hence less time for the molecules to diffuse,
causing a steeper concentration gradient at the interface. As a
result, the resonant spectrum shows a rapid takeoff and a larger
slope in the response region [Figs. 3(d)–3(f )].

The representative resonant spectra of sample mixtures are
shown in Figs. 3(g)–3(i). Unfortunately, the resonant spectra of
the mixtures do not show prominent features unique to each
specific component. Because the key feature regions (i.e., the
response regions) of the three components substantially overlap
with each other, it is difficult to perform multicomponent
chemical analysis by using handcrafted features. Fortunately,
we are able to train a neural network for multicomponent
chemical analysis using the resonant spectrum of the mixture
acquired with the ring resonator. The training of the neural
network is described in detail in Section 2.B. The neural net-
work is able to predict the concentration of each individual
component based on the resonant spectrum of the mixture.

Fig. 3. Resonant spectra measured by the ring resonator under vari-
ous conditions. (a)–(c) Resonator spectra for PEG200, glucose, and
BSA solution under a constant flow rate of 30 μL/min. The concen-
tration ranges from 0 to 30 mg/mL with an increment of 5 mg/mL.
(d)–(f ) Resonator spectra for PEG200, glucose, and BSA solution
under a constant concentration of 20 mg/mL. The flow rate ranges
from 10 to 90 μL/min with an increment of 20 μL/min. (g) For
the resonant spectrum of the mixture with 15 mg/mL PEG200,
5 mg/mL glucose, and 15 mg/mL BSA at 50 μL/min flow rate;
(h) for the resonant spectrum of the mixture with 25 mg/mL
PEG200, 5 mg/mL glucose, and 5 mg/mL BSA at 50 μL/min flow
rate; and (i) for the resonant spectrum of the mixture with 20 mg/mL
PEG200, 10 mg/mL glucose, and 5 mg/mL BSA at 50 μL/min
flow rate.
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The accuracy of the neural network model is evaluated with the
testing dataset by comparing the predicted composition of the
mixture (i.e., the concentrations of all three components) with
the ground truth. The prediction error is defined by the RMSE
between the predicted values and the ground truth. Each sam-
ple composition is measured at five different flow rates, and the
predicted compositions at these flow rates are averaged to im-
prove the accuracy of prediction. The neural network model
has a low prediction error on the entire testing dataset, ranging
only from 0.13 to 2.28 mg/mL over the tested range of 0–30
mg/mL. Figure 4(a) presents an intuitive visualization of the
relationship between the predicted composition (magenta dots)
and the ground truth (blue dots) of 10 representative mixtures.
As seen in the figure, each predicted composition is located
close to the respective ground truth, suggesting a high predic-
tion accuracy. The predicted compositions of three mixtures are
listed in Table 1. In this case, RMSE is reflected by the distance
between the prediction point and ground truth point in
Fig. 4(a), which is a measure of difference between the predic-
tion and the ground truth. While the neural network model
gives reasonably accurate prediction of the composition at each
flow rate, the prediction error may vary over a relatively wide
range from one flow rate to another (Tables 1–3). It is noticed
that the average prediction values lead to small prediction er-
rors. Hence, the average prediction values are used to determine
the composition of the mixture. The distribution of the pre-
diction array of all samples in the testing dataset is shown in
Fig. 4(b). All prediction errors are below 2.5 mg/mL over

the tested range of 0–30 mg/mL, with more than 75% of the
predictions having an error no greater than 1 mg/mL. The
median is 0.63 mg/mL, and the average is 0.76 mg/mL with
standard deviation of 0.47 mg/mL. The predicted concentra-
tions of the three components (PEG200, glucose, and BSA) for
all the samples in the testing dataset are plotted against the
ground truth (i.e., the expected concentrations) as shown in
Fig. 5. The predicted concentrations show a good linear cor-
relation with the ground truth, with almost all the data points

Fig. 4. Composition predicted by the neural network model.
(a) 3D distribution of the prediction composition and the ground
truth (10 representative points). (b) Histogram of prediction error
(RMSE) for all 114 samples in the testing dataset.

Table 1. Representative Sample 1 Composition
Prediction under Different Experiment Conditionsa

Flow Rate
(μL/min)

PEG200
(mg/mL)

Glucose
(mg/mL)

BSA
(mg/mL)

Prediction
Error RMSE
(mg/mL)

10 15.4 5.9 14.8 0.58
30 15.7 4.6 15.3 0.50
50 15.0 6.0 14.3 0.70
70 14.6 4.9 14.6 0.33
90 14.3 5.1 14.8 0.42
Average 15.0 5.3 14.8 0.21

aPredicted composition of the sample with the expected composition
(ground truth) of PEG200 of 15 mg/mL, glucose of 5 mg/mL, and BSA of
15 mg/mL.

Table 2. Representative Sample 2 Composition
Prediction under Different Experiment Conditionsa

Flow Rate
(μL/min)

PEG200
(mg/mL)

Glucose
(mg/mL)

BSA
(mg/mL)

Prediction
Error RMSE
(mg/mL)

10 20.7 25.7 15.8 0.73
30 21.5 24.6 15.8 1.01
50 20.4 25.5 14.6 0.44
70 19.9 25.2 13.9 0.65
90 19.5 25.0 14.2 0.54
Average 20.4 25.3 14.9 0.29

aPredicted composition of the sample with the expected composition
(ground truth) of PEG200 of 20 mg/mL, glucose of 25 mg/mL, and BSA
of 15 mg/mL.

Table 3. Representative Sample 3 Composition
Prediction under Different Experiment Conditionsa

Flow Rate
(μL/min)

PEG200
(mg/mL)

Glucose
(mg/mL)

BSA
(mg/mL)

Prediction
Error RMSE
(mg/mL)

10 21.1 10.4 4.1 0.85
30 20.6 10.1 5.3 0.39
50 19.6 11.4 4.8 0.85
70 19.4 10.3 5.4 0.45
90 19.4 9.7 5.3 0.42
Average 20.0 10.4 5.0 0.23

aPredicted composition of the sample with the expected composition
(ground truth) of PEG200 of 20 mg/mL, glucose of 10 mg/mL, and BSA
of 5 mg/mL.
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falling within the 95% prediction bands, again suggesting ac-
curate prediction of our neural network model.

Conventional ring resonator–based sensors only use a single
parameter, which is the maximal shift of the resonant wave-
length at the steady state (i.e., the plateau in the resonant spec-
trum), to detect the target. Such a single parameter carries very
limited information of the target molecules. By monitoring the
resonant wavelength shift over time and plotting the entire res-
onant spectrum, our sensor is able to acquire more information
on the physical and chemical properties of the target molecules.
Nevertheless, these pieces of information are buried in the re-
sponse region of the resonant spectrum because the response
regions of individual components substantially overlap with
each other. As a result, it is a great challenge to predict the com-
position of a mixture by decomposing its resonant spectrum
using conventional algorithms that are based on handcrafted
features. Fortunately, the buried features can be uncovered
by machine learning. The machine learning model is able to
predict the composition of a mixture with a high accuracy.
By combining the highly sensitive ring resonator–based sensor
and the intelligent neural network model, we demonstrate a
highly accurate smart sensor for label-free multicomponent
chemical analysis.

4. CONCLUSIONS

In summary, we demonstrate a machine learning assisted smart
sensor for label-free multicomponent chemical analysis. The
smart sensor uses the resonant spectrum of a mixture measured
by the high-sensitivity and label-free ring resonator to perform
multicomponent chemical analysis. The prediction of the
mixed compounds is realized by utilizing a neural network
model. It shows a high prediction accuracy with a low RMSE
ranging only from 0.13 to 2.28 mg/mL. The predicted concen-
trations of all compounds fall within the 95% prediction bands.
With its simple label-free detection strategy and high accuracy,
the smart sensor unveils great potential applications for the
analysis of various chemical compounds. It also opens up a
new avenue for the development of data-driven smart sensors.

APPENDIX A: FABRICATION PROCESS OF
MICRORING RESONATOR

The sensing structure, a microring resonator, is fabricated on a
silicon-on-insulator (SOI) wafer with a 220-nm Si top layer.
First, the 70-nm thick silicon is etched by inductively coupled
plasma reactive ion etching (RIE) to form grating couplers,
and the remaining 150-nm Si is etched to define the wire
waveguides. Subsequently, an upper cladding layer of 1.5-μm

silica is deposited by plasma-enhanced chemical vapor deposi-
tion (PECVD). After that, the sensing window of the microring
resonator is opened by anisotropic RIE dry etching and
isotropic etching based on vapor hydrogen fluoride (HF) to re-
move the silica upper cladding. The scanning electron micro-
graph (SEM) of the fabricated microring resonator is shown
in Fig. 6.
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