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Dual-wavelength in-line digital holography (DIDH) is one of the popular methods for quantitative phase imaging
of objects with non-contact and high-accuracy features. Two technical challenges in the reconstruction of these
objects include suppressing the amplified noise and the twin-image that respectively originate from the phase
difference and the phase-conjugated wavefronts. In contrast to the conventional methods, the deep learning net-
work has become a powerful tool for estimating phase information in DIDH with the assistance of noise sup-
pressing or twin-image removing ability. However, most of the current deep learning-based methods rely on
supervised learning and training instances, thereby resulting in weakness when it comes to applying this training
to practical imaging settings. In this paper, a new DIDH network (DIDH-Net) is proposed, which encapsulates
the prior image information and the physical imaging process in an untrained deep neural network. The DIDH-
Net can effectively suppress the amplified noise and the twin-image of the DIDH simultaneously by automatically
adjusting the weights of the network. The obtained results demonstrate that the proposed method with robust
phase reconstruction is well suited to improve the imaging performance of DIDH. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.441054

1. INTRODUCTION

Digital holography (DH) can “capture and freeze” the wave-
front of an object wave and realize lensless imaging based
on interference [1]. The ability to recover phases makes DH
widely used in biomedicine and materials science as a means
of quantitative phase imaging [2]. Typically, DH employs
two major configurations: in-line and off-axis structures
[3]. Even though the off-axis technique allows wavefront
reconstruction from a single-shot digital hologram, space band-
width and resolution losses are frequently introduced [4,5]. In
comparison, in-line DH, with its relatively simple and compact
setup, is often preferred in many microscopic imaging tech-
niques [5]. However, the original phase map reconstructed by
DH, in both the off-axis and in-line approaches, is often lim-
ited by 2π phase wrapping [6]. This phase wrapping can be
subsided by using unwrapping algorithms [7]. However, out-
standing performances are hardly achieved due to the influences
that are easily caused by many factors. Moreover, such algo-
rithms often fail to measure samples that have a high-
aspect-ratio or a rough surface [8].

Compared with single-wavelength DH, recording holo-
grams with dual-wavelengths is another effective method to
quantitatively retrieve unwrapped phase information of samples

[9,10]. Dual-wavelength in-line digital holography (DIDH)
not only expands the range of the measured optical path differ-
ence (OPD) by a synthesized beat wavelength but also achieves
high-resolution measurement and fast implementation [10].
Unfortunately, two inherent factors often obfuscate the
reconstruction in practical DIDH: (1) the noise signals at each
wavelength detection appear in the dual-wavelength hologram
at the same time, leading to amplified noise in the phase
reconstruction [11], and (2) the well-known twin-image prob-
lem that manifests itself as an out-of-focus version of the recon-
structed plane should be bounded to in-line DH [5].

To reduce the phase noise and increase the reconstructed
accuracy in DH, numerical filtering, a headmost approach,
can be easily implemented to remove noises, but the details of
the object itself are also often filtered out [12]. Additionally, the
phase distribution with suppressed noise can be directly ac-
quired via the linear regression [13], although it is common
for the determination of parameters to hardly satisfy the imag-
ing relationship. In contrast, the level of the amplified noise can
be reduced to the order of a single wavelength by introducing
the guiding phase [11]. In terms of the twin-image problem,
existent solutions can be mainly classified into two strategies,
i.e., the physical modification in a holographic setup [14] and
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the numerical compensation [5,6]. Even though some specific
setups have been proven to get rid of the twin-image, the com-
plexity of the DH setup is often unavoidably increased. In con-
trast, numerical solutions, known as phase retrieval [15], are
essentially a class of iterative algorithms that reduce the
twin-image and acquire a relatively real phase at each iteration,
such as the finite transmission constraint [16] and the
Gerchberg–Saxton (GS) algorithm [17]. Moreover, based on
Fourier analysis and sparsity, the wave propagation is physically
modeled with compressive sensing (CS), which leads to a phys-
ics-driven compressive sensing-digital holography (CS-DH)
method [18], taking advantage of the significant difference be-
tween the twin-image and the existing object. However, most
of these traditional frameworks often struggle in the presence of
strong noise [19], which becomes more notable when encoun-
tering amplified noise in DIDH.

Recently, deep learning (DL) has been successfully utilized
for phase retrieval from only one intensity pattern [4], which
also converts reconstructions to artifacts-free [20], twin-image-
free [21], or noise-free [22] versions. As a powerful machine
learning method, DL should be naturally introduced in DIDH.
However, most DL-based strategies are data-driven or end-to-
end net approaches [22], including derivatives like the regulari-
zation by denoising (RED) frame [23], which results in
excessive data dependency and limited generalization ability,
especially when the reconstructed target is out of the training
set [23]. In contrast, an untrained network, as a training-free
DL approach, has been investigated to directly reconstruct
high-quality image or phase information through self-
calibration, typically via a deep image prior (DIP) framework
[24,25] or by coupling double DIPs with more decomposed
basic components [26]. In these paradigms, a complete physical
model that represents the imaging process and the DIP frame
can be combined for more practical interpretability [24]. Even
though single-wavelength twin-image-free DH has been imple-
mented with DIP, called deep DIH [27], artifacts are caused
when measuring phases with relatively strong noises due to the
lack of special treatments, thereby hardly transferring to the
DIDH directly as the distortions of the phase should be further
deteriorated due to the amplified noise. In contrast, concise
deep decoder (CDD), as a variant of DIP, provides a much
simpler and under parameterized architecture to learn a low-
dimensional manifold and a decoding operation of the full im-
age, which can be a relatively more robust and faster convergent
than DIP [28]. However, the CDD has hitherto not been in-
corporated into a complete physical model with practical im-
aging interpretability.

Enlightened by previous studies, this work demonstrates
that it is possible to experimentally recover the phase distribu-
tion of a sample with suppressed twin-image and noise from
DIDH via untrained neural networks, i.e., DIDH-Net, which

is built by combining concise and non-convolutional networks
[28] with a real-world imaging model. In terms of DIDH-Net,
the incorporation of CDD with a task-specific DIDH model
for optical imaging reduces the amount of labeled data required
to train the network. Thus, neither additional modification of
the setup nor operations (for example, phase shifting, training
data) are required, which enables a high-resolution and high-
accuracy measurement.

2. METHODS

A. Problem Statement
Suppose that a sample with a certain optical thickness L is il-
luminated simultaneously by two different wavelengths of λ1
and λ2 without color absorption. In most cases, L is larger than
λ1 and λ2, and thus the corresponding phase diagram Φm

est

(m � 1, 2), estimated from the captured hologram Imcap, can
be written as follows:

Φm
est � Φm

pure � 2πεm � φm � 2πcm � 2πεm, (1)

where Φm
pure is the noise-free phase, φ1 and φ2 are the un-

wrapped phases at each single-wavelength and belong to
�0, 2π�, c1 and c2 are unknown nonnegative integers at a certain
point �x, y� of the wrapped phase image, and 2πεm represents
the variance of noise that was introduced by the detection noise
into the phase estimation. For the DIDH technique, the optical
thickness of sample L can be calculated as follows [6,13]:

L �
�
Λ Φ1

est�x, y�−Φ2
est�x, y�

2π , Φ1
est�x, y� −Φ2

est�x, y� ≥ 0,

Λ Φ1
est�x, y�−Φ2

est�x, y��2π
2π , Φ1

est�x, y� −Φ2
est�x, y� < 0,

(2)

where Λ � λ1λ2∕jλ1 − λ2j is the beat wavelength [6].
Moreover, due to the high wavelength selectivity of the
Bayer mosaic filter of the color camera, two single-wavelength
holograms, I 1cap and I2cap, can be extracted from the single-shot
dual-wavelength hologram IRGBcap for subsequent processing
without the crosstalk between the two wavelengths [6,29] as
follows:�I 1cap
I 2cap

�
�
� a21r�a21g�a21b a1ra2r�a1g a2g�a1ba2b

a1ra2r�a1g a2g�a1ba2b a22r�a22g�a22b

�−1

×

"
a1r IHR

cap �a1g IHG
cap �a1bIHB

cap

a2r IHR
cap �a2g IHG

cap �a2bIHB
cap

#
, (3)

where �IHR
cap , IHG

cap , IHB
cap � are the red, green, and blue (RGB)

components of the recorded color hologram IRGBcap , and
�a1r , a1g , a1b� and �a2r , a2g , a2b� are the RGB components of
the single-wavelength hologram at λ1 and λ2, respectively,
which can be calibrated with the corresponding single-
wavelength imaging at the beginning of the experiment.

1. Amplified Noise Obstructs the High-Precision Reconstruction
According to Eqs. (1) and (2), the optical thickness L can also be expressed as follows:

L �
�
Λ Φ1

pure�x, y�−Φ2
pure�x, y�

2π � Λ�ε1 � ε2�, Φ1
pure�x, y� −Φ2

pure�x, y� ≥ 0,

Λ Φ1
pure�x, y�−Φ2

pure�x, y��2π
2π � Λ�ε1 � ε2�, Φ1

pure�x, y� −Φ2
pure�x, y� < 0:

(4)
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In other words, the amplitude of the noise contained in
the single-wavelength phase wrapping diagram φm�x, y� is
2πεm, and the corresponding noise in the optical path change
Lm�x, y� is λmεm. In the phase difference distribution
φ1�x, y� − φ2�x, y�, i.e., the noise level is 2π�ε1 � ε2�, and
the corresponding noise in the finally reconstructed optical
thickness L is Λ�ε1 � ε2�. Compared with the single wave
length, the noise increases by Λ�ε1 � ε2�∕λmεm, which approx-
imately reaches 2Λ∕λm, thereby amplifying the noise in the
phase distribution and the reconstructed thickness. A smaller
beat wavelength can weaken the problem of amplified noise,
but its range in measurement is limited. Thus, the amplified
noise can be suppressed under the condition of a large beat
wavelength by eliminating the noise at each wavelength.

2. Twin-Image Problem Caused by Interference
To illustrate the twin-image problem of DIDH, Um

obj is used as
an object wave in terms of the m-th wavelength, and the non-
scattered wave Rm

ref is used as the reference wave. Subsequently,
the hologram Imcap exists simultaneously in the interference of
the physical symmetry [18] as follows:

Imcap � Hm
DIDHfΦm

pureg � Em
cap

� jUm
obj � Rm

ref j2 � Em
cap

� �Um
obj��Rm

ref � Um
obj�Rm

ref �� � jUm
objj2 � jRm

ref j2 � Em
cap,

(5)

where Hm
DIDHf·gmeans the forward operator or mapping func-

tion, Em
cap is the detection noise, and * represents the conjugate

term. Even though the original intention of DH is to record
the wavefront Um

obj, the physical conjugate terms �Um
obj��Rm

ref

and Um
obj�Rm

ref �� are recorded together, and the conjugate wave
�Um

obj�� is also recorded as a by-product. As a result, the
reconstruction of the virtual image plane is the superposition
of the original object and the twin-image. This is usually be-
cause the reconstruction of holograms is considered to be a
wave rather than a transmission reconstruction problem.

B. Untrained Network-Based DIDH Reconstruction
Since DIDH only depends on intensity measurement, the
reconstruction can be regarded as a highly ill-conditioned in-
verse problem. The DIDH-Net method proposed here only
needs one captured intensity hologram, IRGBcap �z � d �, which
specifically means a diffraction DH pattern formed at the dis-
tance of d from the imaging plane located at z � 0. As
shown in Fig. 1, after extracting holograms �I 1cap�z � d�,
I 2cap�z � d �� at each wavelength from the single-shot dual-
wavelength hologram IRGBcap �z � d� used in Eq. (3), the diffrac-
tive DH pattern Imcap�z � d � is then input to the designed
structure for generating the estimated phase of the object
Φest�z � 0�. In a traditional neural network, it is necessary
to know the true phase object Φpure�z � 0� in the training
set and calculate the error between Φest�z � 0� and
Φpure�z � 0� to optimize the weight and deviation.
However, the proposed DIDH-Net does not require the true
phase Φpure�z � 0�. Instead, the physical model Hm,z

DIDHf·g, a
specific mapping process in Eq. (5), is utilized to calculate
Φest�z � 0� from Imest�z � d �. Then the weight and bias of
the net are optimized by the error between Imest�z � d � and
the measured Imcap�z � d � with gradient descent. In other
words, the estimated diffraction hologram Imest�z � d� is forced
to gradually converge to the measurement hologram

Fig. 1. Schematic of the DIDH-Net imaging system. A captured hologram IRGBcap �z � d � of a phase object is the input to the neural networks after
extracting holograms at each wavelength. The output of the neural networks is taken as the estimated phase Φm

est�z � 0�, which is then numerically
propagated to simulate the diffraction and measurement processes Hm,z

DIDHf·g to generate Imest�z � d�. The mean square errors (MSEs) between
Imcap�z � d� and Imest�z � d� are measured as the loss value to adjust the neural network parameters. The optical thickness distribution L can finally
be acquired with the suppressed amplified noises and the free twin-image.
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Imcap�z � d�, which continues as an iterative process, as shown
in Fig. 1. Finally, the phase search can converge to a feasible
solution after the whole iterative process, subsequently recon-
structing the optical thickness distribution L.

Specifically, as a phase object Φpure�z � 0� is illuminated by
dual-wavelength coherent plane waves, the diffraction pattern
Um

obj�z � d � with a propagation distance z � d can be
expressed as follows:

Um
obj�z � d � �

ZZ
�Um

obj�z � 0��FFm,z

× exp�i2π�f xx � f yy��df xdf y

� Gm,z �Φm
pure�z � 0��, (6)

where Fm,z � exp
h
ikz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λmf x�2 − �λmf y�2

q i
is the trans-

fer function, �Um
obj�z � 0��F is the 2D Fourier transform of

Um
obj�z � 0� � A exp�iΦm

pure�z � 0��, A is the amplitude that
can be normalized in the subsequent process, f x and f y are the
spatial frequencies, and Gm,z �·� is a transform operator express-
ing from Φm

pure�z � 0� to Um
obj�z � d �. As mentioned before,

the sensor not only records Um
obj�z � d� but also records its

conjugation, �Um
obj�z � d ���. According to Eq. (5), note that

the term jRm
ref �z � d�j2 is simply a constant, and hence the

effect of jRm
ref �z � d �j2 can be removed by eliminating the

DC term. Also, the term jUm
obj�z � d �j2 can be regarded as

the noise term Em
cap�z � d �. In addition, Rm

ref �z � d� can be
assumed as one without loss of generality [30,31]. Then,
the complete mapping from the object phase to the hologram
can be expressed as follows:

Imcap�z � d� ≈ 2RefUm
obj�z � d�g � Em

cap�z � d �
� 2RefGm,z �Φm

pure�z � 0��g � Em
cap�z � d �

� Hm,z
DIDHfΦm

pure�z � 0�g: (7)

It should be noted that Hm,z
DIDHf·g not only includes the

physical imaging procedure of the generated diffraction pattern
but also encapsulates and emphasizes the noising process in the
imaging. Then, the typical method for phase imaging, which is
a highly ill-posed problem, is to solve the minimization prob-
lem as follows:

Φm
est�z � 0� � argmin

Φ
kHm,z

DIDHfΦm
pure�z � 0�g − Imcap�z � d�k2

2

� r�Φm
pure�z � 0��, (8)

where a priori term r�·� is designed artificially or has the char-
acteristics of a dictionary, which can capture the general regu-
larity of objects Φm

est�z � 0�. The idea of the optimization of
Eq. (8) is the core in most of the numerical approaches of the
phase retrieval.

In contrast, a typical DL-based approach, i.e., end-to-end
net [4,20,21], tries to extract a large number Q of the labeled
data �Φm

pure�z � 0�, Imcap�z � d ��, q � 1, 2,…, and Q for
each wavelength m � 1, 2, that come from the corresponding
training set ST m�f�Φm

pure�z� 0�,Imcap�z� d��,m� 1,2,q�
1,2,…,Qg to learn the mapping function of the neural
network Rm

typ, which can be expressed as follows:

Rm
typ � arg min

θ∈Θ
kRm

typ�Imcap�z � d �� −Φm
pure�z � 0�k2,

∀ �Φm
pure, Imcap� ∈ ST m: (9)

Here, Rm
typ is defined by a set of weights and deviations

θ ∈ Θ. The training process produces a feasible mapping func-
tion Rm

typ, which can map the diffraction hologram Imcap�z � d �
that is not in the STm back to the corresponding phase,
i.e., Φm

est�z � 0� � Rm
typ�Imcap�z � d��. In a typical DL applica-

tion, the size Q of the training set STm can be thousands or
even larger. It is experimentally time-consuming to collect such
a large group of diffraction holograms Imcap�z � d � and their
corresponding original phases Φm

pure�z � 0�. This usually re-
quires maintaining mechanical and environmental stability
in the process of data acquisition for several hours. Although
the training set can be created by numerical modeling of the
imaging physical process, the mapping function learned in this
case is only applicable to those similar test images in the train-
ing set. Only the object set with the same priority used in the
training process can obtain a good generalization effect [24].

On the contrary, in the proposed DIDH-Net model, the
phase recovery formula is as follows:

Rm
DIDH� argmin

θ∈Θ
kHm,z

DIDHfRm
DIDH�Imcap�z� d ��g− Imcap�z� d �k2:

(10)

In this objective function, there is no real phase on the
ground, which means that the DIDH-Net does not need to
be trained in the basic truth stage. The interaction between
Hm,z

DIDHf·g and Rm
DIDH makes the artificial neural network cap-

ture the prior information of Imcap�z � d �. After optimization,
the phase can be reconstructed using the obtained mapping
function Rm

DIDH as follows:

Φm
est�z � 0� � Rm

DIDH�Imcap�z � d ��: (11)

It should be noted that there is no limit to the network ar-
chitecture that can choose to implement Rm

DIDH. In this study,
CDDwas used, which only consists of a simple combination of a
few building blocks, thereby achieving a relatively outstanding
performance. Typically, the network structure includes an input
with a diffraction hologram and a decoder path outputting a pre-
dicted phase pattern. Specifically, five main modules were used to
connect the input and the output [28]: batch normalization
(BN), rectified linear unit (ReLU) nonlinearity, up block, sig-
moid, and the pixel-wise linear combination of channels, respec-
tively. The neural network is based on the platform of PyTorch
1.8.0, and it was implemented with Python 3.7.6. An Adam
optimizer was used with a learning rate of 0.01 to optimize the
weight. In our study, the size of the input image IRGBcap �z � d �
was 512 × 512 pixels. The network usually required 7000 peri-
ods to find a very good estimation in less than 10 min on a com-
puter with an Intel Xeon CPU e5-2696 V3 processor with
256 GB of RAM and a double NVIDIA Titan V GPUs.

3. RESULTS AND DISCUSSION

A. Evaluation with the Simulated Test Dataset
Simulations were first performed to compare the performance
of the proposed DIDH-Net with the backpropagation (BP),
CS-DH, end-to-end net, deep DIH, and RED frameworks.
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A phase object, 512 × 512 pixels in size, was used in the trans-
mission, which is shown in Fig. 2(a). The simulated illumina-
tion wavelengths were λ1 � 647 nm and λ2 � 485 nm. The
maximum value of L was set to be 1.6 μm, which was a little
smaller than the beat wavelength of 1.94 μm but much larger
than each illumination wavelength. The distance z � d be-
tween the image plane and the image sensor was set to
10 mm to generate a pure noise-free diffraction hologram
IRGBpure �z � d�. The pixel size was set to 5.5 μm. Since the model
mismatch and the shot noise are the main sources of noise in
many phase retrieval applications, the robustness of several
frameworks was evaluated with the noise process [32] as
follows:

IRGBcap �z � d� � IRGBpure �z � d � � ERGB
cap �z � d � � ξZ � B,

(12)

where Z ∼ �IRGBpure �z � d �∕ξ� follows a Poisson distribution,
and B ∼ N �0, σ2� follows a Gaussian distribution, which is
the dominant noise with a noise level of σ2. The simulated sin-
gle-shot DIDH hologram IRGBcap �z � d� is shown in Fig. 2(b),
with σ � 0.30 and ξ � 0.02. Figures 2(c) and 2(d) show the

extracted single-wavelength holograms I1cap�z � d � and
I 2cap�z � d � at λ1 and λ2, respectively.

The corresponding reconstruction results are shown in
Fig. 3. All the methods used only the single-shot diffraction
hologram to reconstruct the phase, accompanied with a quan-
titative assessment through the peak-signal-to-noise-ratio
(PSNR) [33] and the structural similarity (SSIM) [34] com-
puted against the ground truth, which are shown in Table 1.
Intuitively, the DIDH-Net presented an obvious improvement
compared to the backpropagation and the CS-DH results. The
end-to-end net (the same neural network structures composed
of U-Net [35] without a physical model of DH for each wave-
length) with fitting of the training set (400 images were used for
training [22]) was used to obtain a training model that mapped
the intensity pattern to the phase image. As expected, the
PSNR and SSIM of the end-to-end DL method slightly in-
creased to 22.49 dB and 0.77, respectively, since the recovery
quality was unpredictably reduced and caused by the similarity
error between the test object and the training object. In con-
trast, directly applying deep DIH for each wavelength relatively
enhanced the suppression of the twin-image compared to the

Fig. 3. Comparison of the different phase retrieval methods (from left column to right column): the ground-truth images for intuitive comparison,
the phase maps reconstructed by means of direct reconstruction via backpropagation, the CS-DH method, the end-to-end net with the pre-trained
network, the deep DIH, the RED frame, and the DIDH-Net. The cross-section optical thickness profiles (along the red line) of each optical
thickness map were also measured and are shown in the last row.

Fig. 2. Simulation results of the numerical phase target for the single-shot DIDH. (a) The simulated optical thickness distribution of the object.
(b) The simulated single-shot recorded dual-wavelength in-line hologram calculated at z � 10 mm. (c) and (d) are the extracted single-wavelength
holograms from (b). The white scale bar measures 200 μm.
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CS-DH method, but the exact optical thickness distributions
were still stranded by amplified noise. In terms of the
RED method, the denoising convolutional neural network
(DnCNN) [22] was employed to fit the training dataset to ob-
tain the denoiser for the RED frame. The imaging result
is shown in Fig. 3, where the PSNR and SSIM were
27.50 dB and 0.85, respectively. Even though the REDmethod
could improve the imaging performance, small artifacts and
blurring still existed. In contrast, the DIDH-Net avoided
the predicated errors introduced by traditional training and
showed better robustness than other methods. Moreover, the
red line is selected in Fig. 3 for optical thickness measurement.
For backpropagation, due to the influence of the twin phase
and the expanding noise, the optical thickness information
was seriously distorted. However, the DIDH-Net had the best
suppression effect on the twin phase and expanding noise.
Therefore, accurate phase and optical thickness information
were obtained. As a matter of fact, the noise and twin image
can seriously affect the reconstruction [18], i.e., from the ac-
curately recovered phase information, the sharp optical thick-
ness of the target can be easily obtained [27]. As a result,
employing neural network of the DIDH-Net to eliminate the
amplified noise and twin image in holography is self-consistent

and can become an effective and powerful approach, which is
mainly beneficial from the interplay between a handcrafted net-
work structure and a physical image formation model.

Additionally, the effect of the diffraction distance z on the
quality of the reconstructed image was also numerically ana-
lyzed. Four diffraction distances z � 1, 10, 25, and 50 mm
were selected as examples to test their properties, where the
maximum value of L was set to 1.6 μm. The results are shown
in Fig. 4. As shown, in all cases, the DIDH-Net successfully
reconstructed the phase from the corresponding diffractive
DH pattern. Compared with the true value phase image in
Fig. 4(f ), the SSIM values of the reconstructed optical thickness
distributions from Figs. 4(a)–4(d) were 0.92, 0.91, 0.90, and
0.88, respectively. This observation is also consistent with the
convergence of mean square errors (MSEs), which gradually
decreased in all the cases as the number of epochs increased
in Fig. 4(e). Even though this simulation demonstrated that
the DIDH-Net could accurately reconstruct the phase and op-
tical thickness information of samples despite different diffrac-
tion distances, the distance between the target and the image
sensor should be adjusted by considering the adequacy of the
diffraction patterns and the image size acquired by the imaging
sensor.

Fig. 4. Effect of the diffraction distance z on the quality of the reconstructed image. The diffraction holograms [top row (a1)–(d1)] were calculated
at z values of 1 mm, 10 mm, 25 mm, and 50 mm, each of which followed their DIDH-Net reconstructed single-wavelength phase images and
optical thickness maps in the corresponding rows. The ground truths of images are listed [far right column (f1)–(f3)] under the evolution of the MSE
with an increasing number of epochs [top right corner (e)]. The scale bar measures 200 μm.

Table 1. Quantitative Results on Imaging with Different Methods

Backpropagation CS-DH End-to-End Net Deep DIH RED DIDH-Net

PSNR/dB 18.59 19.32 22.49 24.32 27.50 31.36
SSIM 0.68 0.73 0.77 0.81 0.85 0.91
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The captured hologram can be noisy due to the real record-
ing procedure. Consequently, the performance of the DIDH-
Net under different noise conditions was investigated.
Specifically, the diffraction hologram at z � 10 mm with noise
levels σ of 0.22, 0.30, and 0.38, respectively, is shown in Fig. 5.
The optical thickness maps could be successfully reconstructed
from the corresponding holograms by the proposed method,
despite the large noises slightly decreasing the imaging quality.

B. Experimental Results of Different Samples

1. Experimental Setup
Experiments were carried out to verify the effectiveness and fea-
sibility of the proposed method in practice, and the experimen-
tal setup is shown in Fig. 6. Two semiconductor lasers with
wavelengths of λ1 � 647 nm and λ2 � 485 nm (OBIS,
Coherent, Inc., USA) were used as illumination sources.
The two laser beams were combined by the dichroic mirror
(DM, Thorlabs Inc., USA) before passing through a reversed
telescope (L1, f � 50 mm and L2, f � 150 mm) for beam
expansion. After passing through a polarizer (P, Thorlabs Inc.,

USA) to ensure consistent polarization and through the non-
polarizing cube beam splitter 1 (NPBS1, Thorlabs Inc., USA),
the beams were split into object waves and reference waves,
respectively. The collinear object waves illuminated the speci-
men, and the transmitted waves were collected by the objective
(20 × ∕NA0.55, Nikon Inc., Japan) that was aligned in a 4f
configuration with tube lens L4 (f � 200 mm) to image the
sample onto the image plane. To ensure the equal optical path,
the reference waves passed through an identical objective
(20 × ∕NA0.55, Nikon Inc., Japan) and tube lens L3
(f � 200 mm). The thickness of the specimens was smaller
than the beat wavelength but larger than each illumination
wavelength. The object wave and reference wave interfered
after the NPBS2, and the dual-wavelength in-line hologram
was recorded by a color CMOS camera (UI-3370CP-C-
HQ, 2048 × 2048 pixels and 5.5 μm pixel size, IDS GmbH,
Germany). At first, the CMOS camera was fixed on a moving
stage (travel range of 25 mm, displacement accuracy of
0.05 μm, KMTS25E/M, Thorlabs, USA) and placed in the
image plane to make sure the target was in focus. Then, the

Fig. 5. Reconstructions for the different noise levels: (a1) and (a2) the noise-free hologram at z � 10 mm. The DIDH-Net reconstructed optical
thickness maps along with the corresponding results with noise levels of (b1) and (b2) σ � 0.22, (c1) and (c2) σ � 0.30, and (d1) and
(d2) σ � 0.38. The PSNRs and SSIMs of the optical thickness maps computed against the noise-free ones were also evaluated. The scale bar
measures 200 μm.

Fig. 6. Schematic of the experimental setup of the DIDH.
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CMOS camera was controlled by the moving stage to translate
along the z axis. With an accurate and achievable movement,
the actual propagating distance could be acquired with high
precision. Ultimately, the phase was reconstructed from the dif-
fraction hologram recorded at a distance from the image plane,
where the imaging distance z was empirically set to 10 mm by
considering the data adequacy and pixel size of the imaging
sensor. Additionally, the optical system used the achromatic
lenses to eliminate the chromatic aberration.

2. Imaging Results with Different Samples
First, a 180-nm-thick rectangular phase step was selected for
the imaging experiment, and the dual-wavelength diffraction
hologram was recorded and is shown in Fig. 7(a). The proposed
DIDH-Net took the diffraction hologram as its only input and
generated the output phase diagram, where the noise level
could also be estimated accurately [36]. Compared with the
other methods, an envelope curve representing the optical
thickness was smoother and in line with the actual situation,
which shows the advantages of the proposed method in sup-
pressing the twin-image and the expanding noise again. The
average optical thickness, calculated according to the envelope
curve, was 180.13 nm, which matched the actual value well.
Furthermore, a micro-lens with a spherical top optical thickness
of 800 nm was also tested and is shown in Fig. 7(b). Like the
phase step results, both the phase image and the corresponding
optical thickness curve of the DIDH-Net showed the best
reconstruction. Among these methods, the robustness of the
CS method in practical application was not good, which also
verifies that the convergence of the algorithm was greatly af-
fected in the presence of strong interference. Moreover, the
measured results were almost in agreement with the nominal
values, which convincingly proves that the proposed method
could directly reconstruct the quantitative optical thickness dis-
tribution of the specimen from one single-shot dual-wavelength
in-line hologram at a high accuracy.

Furthermore, imaging experiments on biological specimens
(Ascaris eggs and a water flea jumping foot) were also per-
formed, where the corresponding three-dimensional optical
thicknesses based on the reconstructed phase information were
simultaneously calculated. Specifically, the plane wave was
guided to illuminate the samples, which also produced intensity
images of a bright field, as shown in Figs. 8(a1) and 8(b1). Only

the images illuminated by a single wavelength are shown for
better understanding and comparison with the phase results.
To acquire the diffraction hologram, the camera was placed
at a distance z � 10 mm from the image plane. After that,
the phase results were reconstructed using different methods,
which are shown in Figs. 8(a3)–8(a6) and 8(b3)–8(b6).
Moreover, as the ground truth was unavailable, a no-reference
perceptual blur metric (NPBM [37]), spanning from 0 to 1
(lower was better) was introduced to evaluate the results.
Similarly, due to the influence of the twin-images, there were
many artifacts in the backpropagation method, and the
averaged NPBM was 0.58. By using the CS regularization con-
straint, the twin-images and the expanded noise were sup-
pressed to a certain extent, in which the averaged NPBM
reached 0.41, but the signal-to-noise ratio was still low. In con-
trast, the traditional RED method could obtain relatively sat-
isfactory results in terms of the reconstructed phase and optical
thickness information, but a small amount of information was
lost after optical thickness information reconstruction, which is
reflected in the averaged NPBM of 0.34. The DIDH-Net
method was more accurate in the presence of the twin-image
and the amplified noise, and it showed good robustness and the
best-averaged NPBM of 0.30. It should be noted that all experi-
ments removed the additional phase brought by the transparent
substrate or coverslips. Specifically, a hologram of the specimen-
free area, which includes the substrate or the substrate and the
coverslips, was recorded at the beginning of each experiment to
retrieve a specimen-free phase map that was subtracted from
the reconstructed phase distributions with the specimen,
i.e., the phase subtraction with double exposure [38] was
implemented. In addition, the DIDH-Net requires precise
modeling of the image formation mechanism, i.e., Hm,z

DIDHf·g
in our study, which means that the more accurate the measure-
ments, the better the reconstruction results. In order to over-
come the effects of the slightly imperfect measurements to
achieve the accurate reconstruction, such as phase aberrations
caused by nonideal beam collimation and propagating distance
measurement, double-exposure [38], mentioned above, and
auto-focusing [39] could be respectively utilized, thereby bring-
ing some benefits in imaging, whereas this is not the focus of
current study.

Compared with the other numerous approaches (based on
GS, CS, and so on) that often make a trade-off between

Fig. 7. Experimental images of the rectangular phase-step [top row (a1)–(e1)] and micro-lens [second row (a2)–(e2)] processed with the back-
propagation, the CS, the RED, and the DIDH-Net methods, respectively. The cross-section optical thickness profiles (along the dashed line) were
also measured in insets. The scale bars measure 30 μm.
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accurate phase reconstructions and robustness, the DL-based
methods have several advantages in the phase measure of holog-
raphy [21,40]. However, the traditional end-to-end approaches
often learn the mapping function from a set of training data. In
fact, when the test data are not fitted with the same set of
weights, error is inevitable in the data-driven methods, leading
to artifacts and noises in the reconstructed phase. This is more
serious under the condition of the amplified noise and the twin-
image. In contrast, without any labeled data for training, the
DIDH-Net requires relatively accurate modeling of the image
forming mechanism. The incorporation of the generated physi-
cal model into the traditional deep neural network makes it
effective and accurate for reconstructing the phase map of
an object with a single hologram of DIDH. However, the cal-
culation errors were enlarged in this current study when the
depth of the target exceeded the beat wavelength, which will
be addressed in future research.

4. CONCLUSION

In summary, a DL-based technique for overcoming the ampli-
fied noise and twin-image problems in DIDH was proposed
and verified. In this DIDH-Net, a complete physical model
representing the DIDH imaging process is added to the un-
trained deep neural network to avoid the pre-training of the
network and to eliminate the requirement for large amounts
of labeled data. By using the interaction of the network and
the physical model, the physics-generalization-enhanced
method can automatically optimize the network and effectively
suppress the amplified noise and the twin-image of DIDH si-
multaneously, without any additional requirements for data ac-
quisition or illumination conditions. Both simulations and
experiments proved the advantages of the method in both ac-
curacy and robustness. Therefore, the proposed DIDH-Net
method offers a high-accuracy optical thickness measurement

and a robust phase reconstruction for DIDH. This method can
also be extended to other schemes of digital holographic
imaging.
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