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As an analog model of general relativity, optics on some two-dimensional (2D) curved surfaces has received in-
creasing attention in the past decade. Here, in light of the Huygens–Fresnel principle, we propose a theoretical
frame to study light propagation along arbitrary geodesics on any 2D curved surfaces. This theory not only
enables us to solve the enigma of “infinite intensity” that existed previously at artificial singularities on surfaces
of revolution but also makes it possible to study light propagation on arbitrary 2D curved surfaces. Based on this
theory, we investigate the effects of light propagation on a typical surface of revolution, Flamm’s paraboloid,
as an example, from which one can understand the behavior of light in the curved geometry of
Schwarzschild black holes. Our theory provides a convenient and powerful tool for investigations of radiation
in curved space. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.435993

1. INTRODUCTION

In general relativity (GR), spacetime is distorted in the vicinity
of massive celestial bodies. Dynamics of electromagnetic (EM)
waves in the context of strong gravitational fields has attracted
increasing attention, ranging from wave optics [1] to gravita-
tional lensing [2] and scattering theory [3], as well as photon
rings [4], which are predicted to be ensconced in the shadow of
the M87* black hole image recently published by EHT
Collaboration [5]. Despite the flourishing astrophysical explo-
rations, investigations from the perspective of optics are still
rare. Because of feeble gravitational effects, measurements
and verification of GR phenomena are difficult to perform un-
less in an astronomical scale. Therefore, researchers have pro-
posed various analog models to study GR phenomena using
tabletop equipment in laboratories [6], such as observation
of spontaneous Hawking radiation in a flowing Bose–
Einstein condensate [7], emulation of Schwarzschild precession
with a gradient index lens [8], and mimicking gravitational
lensing by a microstructured optical waveguide [9]. Another
analog model is to abandon one spatial dimension and fix
the time coordinate of the four-dimensional (4D) curved space-
time. In this manner, the remaining 2D spatial metric tensor
can be depicted as a 2D curved surface embedded in 3D space,
and the interplay between EM waves and spatial curvature can
be revealed by investigating light propagation on such appro-
priately fabricated surfaces. Ever since this notion was put for-
ward by Batz and Peschel [10] in 2008, various optical

phenomena have been reported both theoretically [10–18]
and experimentally [19–23]. Besides optics and photonics, sim-
ilar studies on curved surfaces have also been extended to sur-
face plasmon polaritons [24], acoustic topological insulators
[25], and quantum particles [26].

The theory of light propagation in 2D curved space was ini-
tiated by Batz and Peschel [10], by obtaining a nonlinear
Schrödinger equation on surfaces of revolution (SORs) with
constant Gaussian curvature. Owing to the rotational sym-
metry of SORs, the curvilinear coordinates on surfaces are con-
veniently taken along longitudes and latitudes. This paradigm
ingeniously simplifies the calculation to a great extent.
However, the solution applies exclusively to propagation along
the longitudinal direction, which is special among innumerable
geodesics. Indeed, considering light propagation along non-
longitudinal directions is more challenging, not only because
of the tedious calculation of analytically solving the covariant
wave equation but also the ambiguous physical images that are
beyond intuitive imagination. Due to the rotational symmetry
of SORs, a light beam launched tangent to a longitude recog-
nizes an axisymmetric distribution of spatial curvature, which
guarantees its propagation right along the very longitude.
However, such axisymmetry does not hold true for light beams
with other initial directions, whose trajectories will therefore be
bent somehow. Intriguing questions naturally arise; for in-
stance, which pathway would the light beam take and how
would the curvature of the surface affect its divergence? It
has also been revealed in prior studies [10,15,17,20] that
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the existing method for calculating light fields on closed SORs
collapsed at artificial singularities (such as both the north and
south poles on spherical surfaces), leading to an artificial
“infinite intensity” thereat.

In this paper, we propose an alternative approach to study
light propagation along arbitrary geodesics on any curved sur-
faces, in light of the Huygens–Fresnel principle. We assume the
light wave propagates along the geodesic, the natural path of its
ray counterpart in curved space. This approach not only figures
out the problems mentioned above but also in a manner that
refrains from using complicated mathematics. With this ap-
proach, we take a Flamm’s paraboloid, which is the 2D corre-
spondence of the Schwarzschild metric, as an example, and we
demonstrate the behaviors of both collimated and highly diver-
gent light in such curved space. We then figure out the remain-
ing enigma of artificial singularities in the previous method and
suggest some possible schemes for experimental verification.

2. RESULTS AND DISCUSSION

A. Basic Theory
Consider an arbitrary 2D curved surface that can be fabricated
by deforming a plane. The points on an arbitrary curved surface
can be expressed by the 3D Cartesian coordinates as �x, y, z �
H �x, y��, with x, y being the planar Cartesian coordinates and
an arbitrary function H marking the height difference between
the curved surface and the xy plane, as is sketched in Fig. 1. The
corresponding metric of the curved surface is

ds2 � gijdx
idxj
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where the third term indicates that the coordinate system we
choose to parametrize the surface is not orthogonal on the
curved surface. On curved surfaces, light rays propagate along
the so-called geodesics, which are the counterparts of the
straight lines in flat space. The geodesic equation is given by
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are Christoffel connections, gσρ are the elements of the inverse
of the metric tensor g, and Einstein summation convention is
applied, with xσ , xμ, xν running through x, y. Therefore, one
can track a light ray on a curved surface by solving the following
equations:
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Generally, it is difficult to acquire the analytical solution to this
equation set, unless some extra properties of surfaces, such as
symmetries, are present. Usually numerical methods, such as
the Runge–Kutta method, can be used to solve the above equa-
tions as long as the step length meets the accuracy require-
ments. We would like to make a remark here that in this
work, we consider exclusively a spatial metric. This reduction
is justified if Eq. (1) is the “Fermat metric” (aka “optical met-
ric”; see Ref. [27] and references therein) of a 4D spacetime
metric, where the projection of a 4D null geodesic in its spatial
section is exactly the solution of Eqs. (2) and (3).

Now let us consider the propagation of light on curved sur-
faces. First, we build up the coordinates on a curved surface, as
is shown in Fig. 1. The optical propagation axis of a light beam
is taken along the arbitrary geodesic that we are interested in, e.
g., the red line on the surface. Vertical to the optical propaga-
tion axis, the input and output interfaces are taken along the
orthogonal geodesics, respectively, denoted by Σi and Σo on
that surface. In light of the Huygens–Fresnel principle, each
point Si on the input interface Σi is a source of secondary
spherical wavelet. The secondary wavelets emanating from dif-
ferent points on the initial interface interfere mutually; the
superposition forms the far-field wavefront at Po on the output
interface Σo. Put mathematically, the complex amplitude at Po
on Σo is described as

Φo�Po� �
ffiffiffiffi
1

iλ

r Z
Σi

Φi�Si�
eikL�Si , Po�

L�Si,Po�
K �Si, Po�dl, (4)

where Φi�Si� and Φo�Po� are, respectively, the incident and
output complex fields at the input and output ends,
k � 2π∕λ is the wavenumber with wavelength λ, and dl de-
notes the primary wave source on the incident end Σi, which
now is essentially 1D. Here, K � cos θ is the obliquity factor,
with θ being the angle between the propagation axis and the
geodesic connecting any input point Si on Σi and the output
point Po on Σo, as is shown in the inset of Fig. 1. Figure 2(b)
shows that this obliquity factor can be reasonably taken as 1
when the propagation distance d is 1 order of magnitude larger
than the transverse dimension. Here, we emphasize again that
both the incident and output ends, Σi and Σo, should be taken
along the geodesics, which are locally orthogonal to the propa-
gation optical axis, and thus the points on Σi and Σo are
Si � �x, y, z� and Po � �x 0, y 0, z 0�, obeying Eqs. (2) and (3).
The function L�Si, Po� represents the eikonal function, which
is essentially the length of the geodesic connecting Si on Σi and
Po on Σo, obtained by L � R

ds. Technically, except for a few

Fig. 1. Schematic of a 2D curved surface generated from the planar
Cartesian coordinates �x, y�, here as an example with the height of the
surface z � H�x, y� � sin x cos y. The red solid line denotes an ar-
bitrary geodesic as the propagation axis of a light beam on this curved
surface. Σi and Σo are the two geodesics locally vertical to the propa-
gation axis as the input and output interfaces, respectively. The gray
dark lines are the shortest geodesics from the points on Σi to the orange
point on Σo, and one of the angles between these shortest geodesics
and the propagation axis is denoted by θ in the inset figure.
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special surfaces, the analytical expression of L is scarcely avail-
able, leading to the difficulty in the integral in Eq. (4).
Therefore, in practice, for a certain point Po on Σo, we also
calculate the geodesic lengths directly, according to Eqs. (2)
and (3), connecting Po and hundreds of discrete points Si
on Σi, which are deviated from the optical propagation axis
as shown in Fig. 1. Thus one can obtain the exact field distri-
bution of light along Σo.

In practice, the rotational symmetry exists extensively in
many celestial systems. Here we consider a special family of
curved surfaces with rotational symmetry, universally known
as SORs, whose metrics can be generally expressed as
ds2 � �1� �dHdr �2�dr2 � r2dφ2 in a polar coordinate system
for convenience. Thanks to the orthogonality of the coordi-
nates as well as the rotational symmetry, now one is able to
solve Eqs. (2) and (3) analytically (for mathematical details,
see Appendix A):

dφ � � κ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
dH
dr

�
2

s
dr, (5)

where κ � r2initial�dφds �initial is a constant determined by initial
conditions, and the sign of � corresponds to two different tra-
jectories according to the sign of the initial condition dr

ds.

B. Light Propagation on Flamm’s Paraboloids
Next we will use the above approach to consider the light
propagation on a specific SOR, the Flamm’s paraboloid, as
is shown in Fig. 2(a). This interesting surface reveals the spatial
curvature in the vicinity of a Schwarzschild black hole [28]. As
known, the gravitational field outside the Schwarzschild radius
rs of an uncharged irrotational spherical mass is described by
the Schwarzschild metric:

ds2�−

�
1−

rs
r

�
c2dt2�

�
1−

rs
r

�
−1
dr2�r2dψ2�r2 sin2ψdφ2:

(6)

With its spherical symmetry, the equatorial slice is taken
(i.e., ψ � π∕2) without loss of generality, and the remnant
of the spatial part of Eq. (6) establishes an SOR with H �r� �
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs�r − rs�

p
for r > rs. As shown in Fig. 2(a), first we con-

sider the propagation of a well-collimated Gaussian wave packet
launched along four different geodesics. The Gaussian profile is
well maintained at an arbitrary output end when the beam is a
little bit away from the event horizon of the black hole. For
example, when the beam propagates along the curve (ii) (the
purple curve), the beam width changes little from A to B1 since
the light is far away from the black hole (r ≫ rs), while it in-
creases fast as the light approaches the black hole, such as near
the points B2 and B3. The intensity profiles at these points are
shown in the right side of Fig. 2(a). In this situation, we can
define the beam width σ of light as the full width at its half
maximum of the intensity profile and track its evolution along
the propagation. The changes of the beam width along the red
and green geodesics in Fig. 2(a) are demonstrated in Figs. 2(c)
and 2(d), respectively, along with their intensity evolution in
the corresponding inset figures. The propagation distance d
along the propagation axis is normalized by the Rayleigh dis-
tance zr of light in flat space. It is seen that the light beams in
both of these cases diverge rapidly even within a short distance
compared to the cases in flat space. This tells us that the di-
vergence of light beams on such a curved surface is greatly am-
plified due to the large spatial curvature generated from the
strong gravitational field near the black hole. The diverging
nature of light beams on Flamm’s paraboloid is further revealed
in Figs. 2(e) and 2(f ), where the variation of σ�d � at a certain
output end versus the initial beam width σ0 along the four

Fig. 2. (a) (Left) Sketch of a Flamm’s paraboloid, and (right) the output-field intensity distribution at different propagation distance d for the cases
of a well-collimated Gaussian beam launched from point A (the incident end) to points B1, B2, and B3 (different output ends) along the curve (ii).
The curves (i)–(iv) with different colors on the surface show four typical geodesics along which a light beam propagates. (b) Magnitudes of the
obliquity factor K between the input and output ends under different values of d � 110 and 280 mm. (c) and (d) Changes of the beam width σ�d�
of light along the geodesics (i) and (iii) in (a), respectively. The insets in (c) and (d) show the intensity evolution along the geodesics (i) and (iii),
respectively, and the near-horizontal dot lines in (c) and (d) denote the changes of σ�d � in flat space. (e) and (f ) The dependence of the output σ�d �
on the initial σ0 along the four geodesics in (a) with the fixed value of d � 220 mm, when the input end is locating differently at (e) r � 200 mm
and (f ) r � 300 mm. Other parameters are rs � 20 mm, λ � 7 × 10−5 m, r�Σi� � 200 mm, σ0 � 10 mm.
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geodesics in Fig. 2(a) is illustrated. We can see that the
Gaussian beams with small σ0 are subject to strong divergence,
under the same d , due to the experience of the strong spatial
curvature, and the turning points in these four cases are slightly
different. These effects are actually related to the strength of
negative spatial curvature [10,14].

Now we consider the propagation of a very narrow light
beam with a large divergent angle launched directly toward
the black hole, along the geodesic (iv) in Fig. 2(a). This is usu-
ally similar to the situation that a point-like light source is far
away from a black hole. The beam is so divergent that instead of
being entirely captured, only the central portion is absorbed by
the event horizon, while the periphery grazes the black hole and
escapes. As a result, signals can be detected at the opposite side
of the light source (i.e., the forward scattering), or even be de-
tected at the same side of the light source (i.e., the backward
scattering). In practice, we calculate the distribution of the light
field on the entire surface of Flamm’s paraboloid, rather than
taking a specific far-field output end as we did above.
Interestingly, there are always two possible geodesics from a cer-
tain point on the input interface to an arbitrary point on such
Flamm’s paraboloid surface of the black hole. As an example, in
Fig. 3(a), we can see that light rays can travel clockwise and
anticlockwise along two different geodesics, respectively, to
reach the cross and/or asterisk points in the forward and/or
backward directions. The interplay of these two branches of
light rays may lead to interference fringes on the forward
hemi-surface, as is clearly revealed in Fig. 3(b). Such behaviors
are similar to the interference characteristics shown in a recent
work by Nambu et al. [1]. Furthermore, some portions of light
rays may even return as the backward scattering, via the back-
ward geodesics after circling around the black hole, to the vicin-
ity of the incident source, resulting in the complicated
interference patterns in Fig. 3(c). We believe such forward-
scattering and backward-scattering phenomena, in spite of
its feebleness, could possibly be used to obtain the structural
information of black holes and detect the gravitational effects
of invisible and small black holes. More detailed properties of
the forward- and backward-scattering effects for light near a
black hole will be further explored elsewhere. Indeed, the in-
teraction between two branches of rays also exists in the colli-
mated light beams investigated in the above, yet one branch

dominates, and consequently no interference can be observed
(see Appendix B).

C. Deciphering the Leftover Singularity Puzzle
In Ref. [10], an ingenious expression about the propagation of a
light beam on the special SORs with constant Gaussian curva-
ture is analytically given by solving the covariant Helmholtz
equation in the longitude–latitude coordinate system under
paraxial approximation. Taking the hemispherical surface in
Fig. 4(a) as an example, the longitudinal coordinate u along
the longitudinal arc direction has the range of u ∈ �0, πR∕2�,
with R being the radius of the hemisphere, while the latitudinal
coordinate v, being the rotational angle, is within the range
�0, 2π�. The arc length of latitudes is thus 2πR cos�u∕R�, which
varies with u and vanishes at the north pole u � πR∕2, result-
ing in a mathematical singularity. The intensity evolution of a
Gaussian beam propagating along the meridian and starting
from the equator follows

I�u, v� � 1
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R
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where zr � kσ20∕2 is the Rayleigh distance in flat space, and
accordingly the beam width obeys

σ�u� � σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where σ0 is the initial beam width (for the detailed derivation,
see Appendix C). Apparently the intensity is infinite at
u � πR∕2, yet the beam width is not vanishing at the singu-
larity. Such singularity will not occur when the light beam
propagates along the equator, which, however, should be ex-
actly identical to the propagation along a meridian, owing
to the perfect symmetry of a sphere. Clearly, such singular
behaviors along a meridian are artificial.

Fundamentally, these puzzles are consequences of mischoice
of the far-field output interface and can be well solved by the
method mentioned in this work. In the longitude–latitude
coordinate system, both the incident and far-field interfaces
are supposed to be taken along the latitudinal lines, which

Fig. 3. (a) Sketch of two geodesics from a certain point (red) on the input to an arbitrary point (black cross or black asterisk) on the surface.
(b) and (c) Intensity distributions (denoted by the common logarithm of intensity I � jΦoj2) in the green and blue regions of (a) are shown in
(b) and (c), respectively, with magnitude being normalized by the maximal intensity of the incident light. Note that the intensity distribution in the
gray region of (a) is not shown in (c) in case the intense field near the input end obscures the remaining region in (c). Other parameters are
rs � 15 mm, λ � 1.5 cm, r�Σi� � 150 mm, σ0 � 1 mm.
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are actually not geodesics (except the equator). In practice,
when an observer stands on the curved surface, the coordinates
should be taken locally along the two orthogonal geodesics.
In this situation, the propagation of a light beam is illustrated
in Fig. 4(a). In particular, on the north pole, the geodesic
perpendicular to the propagation axis is marked by the blue
bold line, and thus the north pole is naturally a regular point
instead of an artificial singularity. Furthermore, we also inspect
the propagation of a light beam circling a sphere in Fig. 4(b)
and find that the evolution of the beam width oscillates after
each half circumference on the spherical surface. This interest-
ing property was discovered under the condition that the
propagation is along the equator via the coordinate transforma-
tion [10]. By our method, this periodic oscillation of the beam
width can also be obtained when the incident Gaussian beam
starts from arbitrary positions on a sphere, which is unavailable
in the previous method. These results not only solve the arti-
ficial singularity enigma but are also more pragmatic in real
experiments, since it is more appropriate to take an arbitrary
geodesic as the incident interface when a laser beam is coupled
onto a curved surface.

D. Possible Experimental Schemes
Our theory can be experimentally implemented both macro-
scopically and microscopically. In pioneering experiments, con-
straining light propagation on curved surfaces was realized
either by total internal reflection in curved crown glass [19–21]
or by a thin liquid waveguide covered on a 3D solid object
[19,20]. The 3D objects with prescribed shapes can be fabri-
cated by state-of-the-art technologies, such as high-precision
diamond turning for macroscopic structures [19] and the
Nanoscribe 3D laser lithography technique [22,29] in
nanometric scale. Very recently, an intriguing work [30]

demonstrates light propagation on thin curved soap mem-
branes (see its supplementary video 3). This scheme provides
a promising novel platform, especially when the varying thick-
ness of the membrane, acting as an effective refractive index,
could be an extra dimension for modulation. Moreover, it is
proved that a curved surface of revolution is equivalent to a
plane with azimuthally symmetric distribution of refractive in-
dex [31]. Therefore, an alternative pathway is to fabricate the
predesigned refractive index profile on a planar surface, by,
e.g., a microsphere-embedded variable-thickness polymethyl
methacrylate waveguide [9,32], or through the optically in-
duced giant Kerr effect in liquid crystal [33], with its landscape
being provided by a spatial light modulator working in
reflection.

3. CONCLUSION

In conclusion, we develop heuristics to study the propagation
of light in 2D curved space, founded on the Huygens–Fresnel
principle. This method is feasible when the direction of light
propagation is along arbitrary geodesics on any curved surface.
By this method, we study the behaviors of light beams on a
Flamm’s paraboloid, which is the 2D correspondence of spatial
curvature outside a Schwarzschild black hole. We investigate
the evolution of Gaussian wave packets propagating along dif-
ferent geodesics and reveal the diverging nature of light on such
curved surfaces. We also illustrate the interference patterns in-
duced by highly divergent light sources. Finally, we point out
that this method works out the remaining puzzles about the
coordinate singularities in the previous theory. Our work pro-
vides a powerful tool and refreshing insights that greatly
broaden the possibilities of investigations about light propaga-
tion in curved space. Exotic geodesics [34] could be used to
realize lights with special properties. With the help of the pro-
posed method, further studies could be extended to other op-
tical effects, such as spectral properties [14,15], phase
information [17], the Hanbury Brown and Twiss effect
[20], geodesic lens [35], the Talbot effect [36], and acceleration
radiation [37]. Moreover, the investigations about optics on
Flamm’s paraboloids open up a new perspective on the radia-
tions in the vicinity of Schwarzschild black holes and contribute
to the interdisciplinary explorations of cosmology and optics.

APPENDIX A: DERIVATION OF EQ. (5)

When written in polar coordinates, the metric of general
SORs is

ds2 �
�
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dH
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2
�
dr2 � r2dφ2: (A1)

Therefore, the geodesic equations take the form
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d2φ
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r
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dφ

ds
� 0: (A3)

Equation (A3) can be solved as

Fig. 4. (a) Evolution of a light beam along a meridian of a hemi-
sphere, with radius R, from the equator. The intensity profile of the
light beam at the north pole along the geodesic (the blue line) is shown
in the inset. (b) The intensity evolution of a light beam circling around
a spherical surface along the direction (denoted by the orange arrow),
starting from the geodesic (denoted by the blue solid line), which starts
from r�Σi� � 0.6R, φ�Σi� � π on the bottom projected plane.
(c) Changes of beam width along the propagation on the spherical
surface of (b). Other parameters are R � 50 mm, λ � 5 × 10−4 m,
σ0 � 2 mm.
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dφ
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� κ

r2
, (A4)

where κ � r2initial�dφds �initial is an integration constant whose value
is determined by initial conditions of the geodesic. Since
Eq. (A1) is basically a spatial metric (i.e., ds > 0), one can di-
vide both sides by ds2 and readily have

dr
ds
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Here ��−� is taken when �drds�initial > �<�0, and therefore �
corresponds to two different geodesics. Equation (A5) can also
be obtained by solving Eq. (A2) with Eq. (A4), by the method
of constant variation. At last, after dividing Eq. (A4) by
Eq. (A5), we have Eq. (5) in the main text:
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APPENDIX B: SUPERPOSITION OF CLOCKWISE
AND ANTICLOCKWISE GEODESICS

In Fig. 3(a), we have illustrated that there are always two geo-
desics from the point on the input end to an arbitrary point on
Flamm’s paraboloid, one traveling in the clockwise (CW) direc-
tion (i.e., along the blue solid line to the cross point and along
the yellow dashed line to the asterisk point) and the other in the
anticlockwise (ACW) direction (i.e., along the purple solid line
to the cross point and along the green dashed line to the asterisk
point). The interaction of these two branches of geodesics leads
to interference patterns on the entire surface for highly diver-
gent light. In essence, the existence of these two branches of
geodesics is a geometrical property of surface per se, regardless

Fig. 5. (a) Sketch of a Flamm’s paraboloid. (b1), (b2) Intensity distribution on the (b1) incident and (b2) opposite hemi-surface with wavelength
λ � 1.5 × 10−2 m. These two subfigures are the same as Figs. 4(b) and 4(c). (c1), (c2) and (d1), (d2) Intensity of the field induced exclusively by
(c1), (d1) CW and (c2), (d2) ACW geodesics along a certain latitude [white dashed lines in (b1) and (b2)] on the opposite hemi-surface (c1), (c2)
and incident hemi-surface (d1), (d2). Due to symmetry, only a quarter of the surface is plotted, with φ labeled in (a). (c3), (d3) Intensity of the field
after superimposing the complex amplitudes induced by CW and ACW geodesics. (e1), (e2) Intensity distribution of a light beam with the same
parameters except for wavelength λ � 1 × 10−5 m, which is therfore less divergent. Inset of (e2) is the zoom of the area in the blue dashed frame.
(f1)–(f3) and (g1)–(g3) Intensity profiles along white dashed latitudes in (e1), (e2).
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of the incident light beams. Therefore, theoretically, the inten-
sity distribution of a collimated light beam (e.g., the ones in
Fig. 2) is also a result of the superposition of CW and ACW
geodesics. In Figs. 5(e1) and 5(e2), we illustrate a light beam
with same initial beam width but much smaller wavelength (i.
e., much longer Rayleigh distance and thus more collimated) as
that in Fig. 4 as well as Figs. 5(b1) and 5(b2). It is clearly seen
that at the incident-side half hemi-surface that contains the in-
cident field, the Gaussian profile of intensity almost remains
intact during propagation and the light beam barely diverges,
with no interference patterns observed. At the other half hemi-
surface in the forward direction, the intensity is extremely fee-
ble, indicating that no signal exists up there, since the black
hole blocks or absorbs almost all light energy. These results
accord with those shown in Fig. 2, where only one geodesic
is taken into consideration. As a matter of fact, when we fur-
ther inspect the contributions of CW and ACW geodesics in
Figs. 5(g1)–5(g3), we find that for collimated light beams, the
field induced by one branch (ACW in this case) is much smaller
than the other, or in other words, the contribution from the
CW geodesic dominates, and thus no interference phenome-
non occurs. In contrast, for highly diverging light beams,
the fields induced by both CW and ACW geodesics are at a
comparable level as is shown in Figs. 5(c1), 5(c2), 5(d1), and
5(d2), and therefore interference fringes present in Figs. 5(c3)
and 5(d3).

APPENDIX C: DERIVATION OF EQS. (7) AND (8)

The electric field of light on a curved surface obeys the covar-
iant Helmholtz equation:

1ffiffiffigp ∂i
� ffiffiffi

g
p

gij∂jΦ
�
� k2Φ � 0, (C1)

where k is the wave number, gij is the element of the inverse
matrix of metric tensor g, and g is the determinant of gij. To
construct a spherical surface in Fig. 4, we take the longitudinal
arc length as the longitudinal coordinate u, and the rotational
angle as the latitudinal coordinate v. The spherical surface can
thus be defined by rROR�u� � R cos�uR�, with rROR being the
radius of revolution and R being the radius of sphere. With the
position vector ρ � �R cos�uR� cos v,R cos�uR� sin v,R sin�uR��,
one is able to calculate the metric by gij � ∂ρ

∂xi ·
∂ρ
∂xj, where

i, j � 1,2 and x1 � u, x2 � v. Therefore, the wave equation,
Eq. (C1), on spherical surfaces is expressed as
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with metric g11 � 1, g22 � R2 cos2�uR�.
Taking the ansatz Φ�u, v� � �cos�uR��−

1
2Ψ�u, v�, after tedious

mathematics, one has
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with k2eff � k2 � Δ and Δ � 1
4R2 �1� cos−2�uR��. We assume

Ψ�u, v� � Ξ�u, v� exp�ikeffu�, with paraxial approximation:
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being carried out, and subsequently let Ξ�u, v� �
ϕ�u, v� exp� i2k

R
Δ�u 0�du 0�; we eventually reach
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For Eq. (C5), suppose the solution takes the form

ϕ�u, v� � exp
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iα�u� � ikv2
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, (C6)

where α�u� and β�u� are functions that satisfy
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Here we suppose that the light launches at the equator and is in
a Gaussian profile with the initial beam width σ0, i.e.,

ϕ�u � 0, v� � exp
�
− R2v2

σ20

�
. Equations (C7) and (C8) can be

readily solved as
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with zr � kσ20∕2. Therefore we eventually have the solution of
Eq. (C1):
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from which we further have the intensity
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and beam width

σ�u� � σ0
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