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Single-shot 2D optical imaging of transient scenes is indispensable for numerous areas of study. Among existing
techniques, compressed optical-streaking ultrahigh-speed photography (COSUP) uses a cost-efficient design to
endow ultrahigh frame rates with off-the-shelf CCD and CMOS cameras. Thus far, COSUP’s application scope is
limited by the long processing time and unstable image quality in existing analytical-modeling-based video
reconstruction. To overcome these problems, we have developed a snapshot-to-video autoencoder (S2V-AE)—
which is a deep neural network that maps a compressively recorded 2D image to a movie. The S2V-AE preserves
spatiotemporal coherence in reconstructed videos and presents a flexible structure to tolerate changes in input
data. Implemented in compressed ultrahigh-speed imaging, the S2V-AE enables the development of single-shot
machine-learning assisted real-time (SMART) COSUP, which features a reconstruction time of 60 ms and a large
sequence depth of 100 frames. SMART-COSUP is applied to wide-field multiple-particle tracking at 20,000
frames per second. As a universal computational framework, the S2V-AE is readily adaptable to other modalities
in high-dimensional compressed sensing. SMART-COSUP is also expected to find wide applications in applied
and fundamental sciences. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.422179

1. INTRODUCTION

2D optical visualization of transient phenomena in the actual
time of the event’s occurrence plays a vital role in the
understanding of many mechanisms in biology, physics, and
chemistry [1–3]. To discern spatiotemporal details in these
phenomena, high-speed optical imagers are indispensable.
Imaging speeds of these systems, usually determined by the
frame rates of deployed CCD or CMOS cameras, can be fur-
ther increased using novel sensor designs [4–6], new readout
interfaces [7,8], and advanced computational imaging methods
[9–11].

Among existing approaches, compressed ultrafast photogra-
phy (CUP) [12–20] is an innovative coded-aperture imaging
scheme [21,22] that integrates video compressed sensing [23]
into streak imaging [24]. In data acquisition, a spatiotemporal
�x, y, t� scene is compressively recorded by optical imaging
hardware to a 2D snapshot. The ensuing reconstruction com-
putationally recovers the datacube of the scene. Despite initially

demonstrated using a streak camera, the concept of CUP was
soon implemented in CCD and CMOS cameras in compressed
optical-streaking ultrahigh-speed photography (COSUP) [25].
Compared to other single-shot ultrahigh-speed imaging modal-
ities [26–29], COSUP is not bounded by the moving speed of
piezo-stages [26,27] or the refresh rate of spatial light modu-
lators [28,29]. As a cost-efficient system, COSUP has demon-
strated single-shot transient imaging ability with a tunable
imaging speed of up to 1.5 million frames per second (fps)
based on an off-the-shelf CMOS camera with an intrinsic frame
rate of tens of hertz.

Despite these hardware innovations, COSUP’s video
reconstruction has ample room for improvement. Existing
reconstruction frameworks can be generally grouped into ana-
lytical-modeling-based methods and machine-learning-based
methods [30]. Using the prior knowledge of the sensing matrix
and the sparsity in the transient scene, the analytical-modeling-
based methods reconstruct videos by solving an optimization
problem that synthetically considers the image fidelity and
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the sparsity-promoted regularization. However, demonstrated
methods, such as the two-step iterative shrinkage/thresholding
(TwIST) algorithm [31], augmented Lagrangian algorithm
[32], and an alternating direction method of a multiplier
(ADMM) algorithm [29], undergo time-consuming processing
that uses tens to hundreds of iterations. The excessively long
reconstruction time strains these analytical-modeling-based
methods from real-time (i.e., ≥16 Hz [33]) reconstruction,
which excludes COSUP’s application scope from tasks that
need on-time feedback [34]. Moreover, the reconstructed video
quality highly depends on the accuracy of prior knowledge and
the empirical tuning of parameters.

To solve these problems, machine learning has become an
increasingly popular choice. Instead of relying solely on prior
knowledge, large amounts of training data are used for deep
neural networks (DNNs) [35] to learn how to map an
acquired snapshot back to a video. Upon the completion of
training, DNNs can then execute non-iterative high-quality
reconstruction during runtime. Thus far, DNNs that employ
the architectures of the multilayer perceptrons (MLPs) [36,37]
and the U-net [38–41] have shown promise for compressed
video reconstruction. Nonetheless, MLPs, with fully connected
structures, scale linearly with the dimensionality of input data
[42]. Besides, the decomposition in the reconstruction process
presumes that all information in the output video block is con-
tained in a patch of the input image, which cannot always be
satisfied [36,37]. As for the U-net, the reconstruction often
starts with a pseudo-inverse operation to the input snapshot
to accommodate the equality in dimensionality required by
the original form of this network [43]. This initial step increases
the reconstruction burden in computational time and memory.
Moreover, akin to MPLs, U-net-based methods require slicing
input data for reconstruction, which could cause the loss of
spatial coherence [39]. Finally, inherent temporal coherence
across video frames is often unconsidered in the U-net [44].
Because of these intrinsic limitations, videos reconstructed
by the U-nets are often subject to spatiotemporal artifacts
and a shallow sequence depth (i.e., the number of frames in
the reconstructed video) [41].

Here, we propose a way to overcome these limitations using
an autoencoder (AE), whose objective is to learn a mapping
from high-dimensional input data to a lower-dimensional rep-
resentation space, from which the original data is recovered
[45]. The implementation of convolutional layers in AE’s ar-
chitecture provides a parameter-sharing scheme that is more
efficient than MLPs. Besides, without relying on locality pre-
sumptions, deep AEs with convolutional layers can preserve the
intrinsic coherence in information content. Furthermore, re-
cent advances in combining AE with adversarial formulations
[46] have allowed replacing the loss functions based on pixel-
wise error calculation to settings where perceptual features are
accounted for, which have enabled a more accurate capture of
data distribution and increased visual fidelity [47]. In the par-
ticular case of training generative models [e.g., generative ad-
versarial networks (GANs)] for natural scenes, recent advances
have improved the reconstructed imaging quality by dividing
the overall task into sub-problems, such as independent
modeling of the foreground and background [48], separated

learning of motion and frame content [49], and conditioning
generation on optical flows [50]. Despite these advances, with
popular applications in audio signal enhancement [51] and pat-
tern recognition [52], AEs have been mainly applied to 1D
and 2D reconstruction problems [53,54]. Thus, existing archi-
tectures of AEs cannot be readily implemented for video
reconstruction in compressed ultrahigh-speed imaging.

To surmount these problems, we have developed a
snapshot-to-video autoencoder (S2V-AE)—a new DNN that
directly maps a compressively recorded 2D �x, y� snapshot
to a 3D �x, y, t� video. This new architecture splits up the
reconstruction process into two sub-tasks, each of which is
trained individually to obtain superior quality in reconstructed
videos. Implemented in compressed ultrahigh-speed imaging,
such a video reconstruction framework enables the develop-
ment of a single-shot machine-learning-assisted real-time
(SMART) COSUP, which is applied to tracking multiple
fast-moving particles in a wide field at 20,000 fps (20 kfps).

2. PRINCIPLE OF SMART-COSUP

The schematic of the SMART-COSUP system is shown in
Fig. 1(a). Its operating principle contains single-shot data ac-
quisition and real-time video reconstruction [Fig. 1(b)]. A dy-
namic scene, I�x, y, t�, is imaged by front optics onto a printed
pseudo-random binary transmissive mask (Fineline Imaging,
Inc., Colorado Springs, CO, USA) with encoding pixels of
25 μm × 25 μm in size. This spatial modulation operation is
denoted by the operator C. The intensity distribution right
after the encoding mask is expressed as

I c�x, y, t� �
X
j, k

I
�

x
M f

,
y
M f

, t
�
Cjkrect

�
x
d e

− j,
y
d e

− k
�
:

(1)

Here, M f is the magnification of the front optics, Cjk de-
notes an element of a binary matrix representing the encoding
pattern, j and k are matrix element indices, d e is the size of
encoding pixels on the mask, and rect�·� represents the rectan-
gular function.

Subsequently, the spatially modulated scene is relayed by a
4f imaging system that consists of a galvanometer scanner (GS,
6220 H, Cambridge Technology, Bedford, MA, USA) and two
identical lenses (Lens 1 and Lens 2, AC254-075-A, Thorlabs,
Inc., Newton, NJ, USA). The GS is placed at the Fourier plane
of this 4f imaging system to conduct optical shearing in the x
direction, denoted by the operator So. The sheared image can
be expressed as

I s�x, y, t� � I c�x − vst, y, t�, (2)

where vs, which denotes SMART-COSUP’s shearing velocity,
is calculated by vs � αV gf 2∕tg. Here, V g � 0.16–0.64 V is
the voltage added onto the GS, α is a constant that links V g

with GS’ deflection angle with the consideration of the input
waveform, f 2 � 75 mm is the focal length of Lens 2 in
Fig. 1(a), and tg � 50 ms is the period of the sinusoidal signal
added to the galvanometer scanner.

Finally, the dynamic scene is spatiotemporally integrated by
a CMOS camera (GS3-U3-23S6M-C, Teledyne FLIR LLC,
Wilsonville, OR, USA) to a 2D snapshot, denoted by the
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operator T. The optical energy E�m, n� measured at pixel
�m, n�, is

E�m, n� �
ZZZ

I s�x, y, t�rect
�
x
d c

− m,
y
d c

− n
�
dxdydt: (3)

Here,m and n are the pixel indices in the x and y axes on the
camera, and d c � 5.86 μm is the CMOS sensor’s pixel size.
From Eqs. (1)–(3), the forward model of SMART-COSUP
is expressed by

E�m, n� � TSoCI�x, y, t�: (4)

In the ensuing real-time video reconstruction, the captured
data is transferred to a workstation equipped with a graphic
processing unit (RTX Titan, NVIDIA, Santa Clara, CA,
USA). The S2V-AE retrieves the datacube of the dynamic scene
in 60 ms. The frame rate of the SMART-COSUP system is
derived from

r � vs
d c

: (5)

In this work, the reconstructed video has a frame rate of up
to r � 20 kfps, a sequence depth ofN t � 40–100 frames, and
a frame size of up to Nx × Ny � 256 × 256 pixels.

Compared to the previous hardware configuration [25],
SMART-COSUP replaces the digital micromirror device
(DMD), which functions as a 2D programmable blazed grating
[55], with the transmissive mask for spatial modulation. This
arrangement avoids generating a large number of unused dif-
fraction orders, preventing a limited modulation efficiency to
unblazed wavelengths, and eliminating intensity loss from the
reflection from its cover glass as well as by its interpixel gap.

In addition, the printed mask is illuminated at normal inci-
dence, making it fully conjugated with both the object and the
camera. Thus, the SMART-COSUP system presents a simpler,
economical, and compact design with improved light through-
put of the system and image quality of the captured snapshot.

3. STRUCTURE OF S2V-AE

The architecture of S2V-AE consists of an encoder and a gen-
erator [Fig. 2(a)]. The encoder (denoted as E) converts a 2D
snapshot to a series of low-dimensional latent vectors that
represent particular features of the dynamic scene under study.
As shown in Fig. 2(b), its architecture consists of five convolu-
tional layers, a bidirectional long short-term memory (Bi-
LSTM) recurrent layer [56], and a fully connected layer. In
the convolutional layers, each convolution operation is fol-
lowed by batch normalization (BN) [57] along with rectified
linear unit (ReLU) activation [58]. The number of channels
of feature maps, denoted by N, decreases from a preset value
(512 in our experiments) to N t . Then, the feature map, output
by the last convolutional layer, is reshaped from a tensor into
N t vectors, all of which are fed into the Bi-LSTM recurrent
blocks with the fully connected layer to model temporal coher-
ence. The outputs of the encoder, referred to as latent vectors,
are then input to the generator (denoted as G). In particular,
each latent vector is reshaped back to a tensor, which is fed into
the generator to reconstruct one frame in the video. As shown
in Fig. 2(c), the architecture of the generator consists of seven
transposed convolutional layers. Akin to the encoder, BN
and ReLU activation are employed after each transposed con-
volution, whose preset number of channels decreases from

Fig. 1. Single-shot machine-learning assisted real-time (SMART) compressed optical-streaking ultrahigh-speed photography (COSUP).
(a) System schematic. (b) Operating principle. S2V-AE, snapshot-to-video autoencoder.
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1024 to 1. Each latent vector is processed by the generator to a
frame of Nx × Ny in size. The composition of N t such frames
produces the reconstructed video.

The training of the encoder and the generator in the S2V-
AE is executed sequentially. Training data are generated on the
fly. The details of the training data collection and the training
procedure are described in our open source code (see the link in
Disclosure). Additional data, not included in its training phase,
are used for evaluation. The generator is first trained under the
setting of a GAN with multiple discriminators to ensure suffi-
cient diversity. In brief, a random noise vector zNoise, sampled
from a prior distribution pzNoise

(i.e., zNoise ∼ pzNoise
), is input to

the generator to produce a fake frame G�zNoise� that is expected

to have visual similarity with the real frame xData with an
implicit data distribution pxData

(i.e., xData ∼ pxData
). The fake or

real data are judged by K � 40 discriminators [Fig. 2(d)]. In
each such discriminator, the data are first projected by a ran-
dom matrix (denoted by pk, where k � 1, 2,…,K ) to lower
dimensions. Then, each discriminator (denoted asDk) converts
the input to a number that is expected to be high for a real
frame and low for a fake frame. Each discriminator, correspond-
ing to a binary classifier as schematically shown in Fig. 2(e),
consists of seven convolutional layers with the numbers of
channels ranging from 1024 to 1. The loss functions of each
discriminator fDkg (k � 1, 2,…,K ) (denoted by LDk

) and the
generator (denoted by LG) are calculated by

Fig. 2. Snapshot-to-video autoencoder (S2V-AE). (a) General architecture. FI, frame index. (b) Architecture of encoder showing the generation of
latent vectors from a compressively recorded snapshot. Bi-LSTM, bidirectional long short-term memory; BN, batch normalization; ReLU, rectified
linear unit;W ,H , andN , output dimensions;W in,H in, andN in, input dimensions. (c) Architecture of the generator showing the reconstruction of
a single frame from one latent vector. (d) Generative adversarial networks (GANs) with multiple discriminators fDkg. LDk

, the loss function of each
discriminator; LG, the loss function of the generator; and fpkg, random projection with a kernel size of [8,8] and a stride of [2,2]. (e) Architecture of
each discriminator.
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LDk
� −ExData∼pxData

�log�Dk�xDatak ���
−EzNoise∼pzNoise

�log�1 −Dk�G�zNoise�k���, (6)

LG � −
1

K

XK
k�1

EzNoise∼pzNoise
�log�Dk�G�zNoise�k���: (7)

Here, LDk
corresponds to the cross-entropy loss [59]. After

the random projection fpkg, the input to each discriminator is
either xDatak or G�zNoise�k. Note that each discriminator is
trained on two mini-batches of samples (i.e., real frames and
fake frames). The notations ExData∼pxData

�·� and EzNoise∼pzNoise
�·�

indicate taking the expectations over the distribution
xData ∼ pxData

and zNoise ∼ pzNoise
, respectively. These loss func-

tions are estimated over mini-batches to compute the gradients
of losses for each parameter update. Moreover, training itera-
tions are such that each discriminator is first updated in the
descent direction of its corresponding loss and then LG’s gra-
dients are used to update the generator’s parameters. The de-
scribed training game is expected to converge to equilibrium
(i.e., no player can improve without changing the other player),
which is not guaranteed to occur in highly non-convex cases,
such as in the training of neural networks. However, the results
found in practice in our setting are satisfactory. Successful train-
ing of the generator will yield parameters that enable its outputs
G�zNoise� to resemble characteristics of the real data. Leveraging
this architecture, the goal of each discriminator is to distinguish
the real data from the fake ones. The generator, by contrast,
aims to fool all discriminators by learning how to produce
frames as close as possible to real data. Parameters in the gen-
erator and discriminators are updated according to these loss
functions [i.e., Eqs. (6) and (7)], which are minimized via gra-
dient-descent-based optimization.

As the second step, the encoder is trained with the param-
eters of the generator fixed. The mean square error (MSE) be-
tween the recovered video G�E�E�� and the input data I is
defined as the loss function denoted by LE, i.e.,

LE � MSE�G�E�E��, I �: (8)

By minimizing LE , the encoder learns how to correctly ex-
tract the latent vectors with temporal coherence from the 2D
snapshot. The training of S2V-AE is finished when the recon-
structed video quality stops increasing. Weight decay is em-
ployed during the training of the encoder to prevent the
weights of the encoder from growing too large [60]. Hyper-
parameters to be trained in the encoder are defined through
a search over a small grid of candidate values using cross-
validation with reconstruction performance measured over a
freshly generated batch of data examples.

In the training of both the generator and the encoder, the
Adam optimization algorithm [61] was employed with a fixed
learning rate, set to 10−3 for the training of the generator, and
3 × 10−4 for the training of the encoder. Adam’s β1 and β2
parameters were set to 0.9 and 0.999 for the training of the
generator and 0.5 and 0.9 for the training of the encoder, re-
spectively. Data loading was set at training time so that both
scenes and corresponding snapshots were generated on the
fly, yielding a virtually infinite amount of training data.
Once the completion of both the generator and the encoder

training, the S2V-AE was employed to reconstruct dynamic
scenes.

4. VALIDATION OF S2V-AE’S
RECONSTRUCTION

To test the feasibility of S2V-AE, we simulated video
reconstruction of flying handwritten digits [62]. Each dynamic
scene had a size of �Nx ,Ny,N t� � �64, 64, 40�, which pro-
duced the snapshot of (103, 64) in size. Snapshots were
generated using the forward model of SMART-COSUP
[i.e., Eq. (1)]. Simulation results are summarized in Fig. 3.
For the flying digits corresponding to 3, 5, and 7, six represen-
tative frames in the ground truth and the reconstructed videos
are shown in Figs. 3(a)–3(c), respectively. The reconstructed
videos are included in Visualization 1. To quantitatively assess
the reconstructed video quality, we analyzed the peak SNR
(PSNR) and the structural similarity index measure (SSIM)
[63] frame by frame [Figs. 3(d) and 3(e)]. The average PSNR
and SSIM of the reconstructed results are 22.9 dB and 0.93,
respectively. These results demonstrate that the S2V-AE can
accurately reconstruct dynamic scenes from compressively
acquired snapshots.

Furthermore, to show that the S2V-AE possesses a more
powerful ability in high-quality video reconstruction, we com-
pared its performance to U-net, which is most popularly used
in video compressed sensing [38]. In particular, this U-net fea-
tured a convolutional encoder–decoder architecture with
residual connection and used the same loss function in
Ref. [38]. To implement the optimal specifications of this
U-net based technique, we used an approximate inverse oper-
ator ΦT�ΦΦT�−1 to alleviate the burden in learning the for-
ward model [38,39]. Particular to SMART-COSUP, we
defined Φ � TSoC. Using the compressively recorded snap-
shot of the scene (i.e., E ), the initialized input to the U-net
is expressed as Î o � ΦT�ΦΦT�−1E , which had the same
�x, y, t� dimension as the ground truth. Both the initialized in-
put and its ground truth were used to train the U-net to obtain
a good inference ability for new training scenes generated on
the fly. To compare the results between U-net and the S2V-
AE, we reconstructed the flying digits of 3, 5, and 7 (see
Visualization 2). Despite resembling a close trace of these mov-
ing digits to their ground truths, the U-net reconstruction
failed to recognize the digits’ spatial information in each frame.
The limited feature extraction ability (imposed by the large
number of frames in these scenes) and the requirement of high
temporal coherence (broken by the fast and randomly moving
traces of the digits in these scenes) are the two main reasons that
attribute to the unsuccessful reconstruction using U-net. In
contrast, benefiting from its two-step strategy that incorporates
spatiotemporal coherence, the S2V-AE has shown superior per-
formance, manifesting in the sharpness of reconstructed digits,
the maintenance of high image quality over a large sequence
depth, and the capability of handling randomly moving traces.

5. DEMONSTRATION OF SMART-COSUP

The proof-of-concept experiments of SMART-COSUP were
conducted by imaging an animation of three bouncing balls,
whose starting positions and moving directions were randomly
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chosen (see Visualization 3). This scene had the size of
�Nx ,Ny,N t� � �256, 256, 100�, which produced a snapshot
with a size of (355, 256). To improve S2V-AE’s reliability for
experimentally captured data, we included various experimental
conditions in the forward model to train the S2V-AE. In par-
ticular, an experimentally captured mask image was used for the
spatial modulation operator. Moreover, with consideration of
the noise level in the deployed CMOS camera, Gaussian noise
with a standard deviation randomly selected from 10−1 to 10−4

was added into the training data to match the SNRs in acquired
snapshots. Finally, distortion in the acquired snapshot was cor-
rected by an established procedure [64,65].

This animation was displayed on a DMD (AJD 4500,
Ajile Light Industries, Gloucester, ON, Canada) at a pattern
refreshing rate of 5 kHz. The trajectories of all three balls were
blind to the S2V-AE. A collimated laser beam from a 640 nm
continuous-wave laser [MRL-III-640-50 mW, Changchun
New Industries Optoelectronics Tech. Co., Ltd. (CNI),
Changchun, China] illuminated this DMD at an incident angle
of ∼24°, as shown in Fig. 4(a). A camera lens (Fujinon
HF75SA1, Fujifilm Holdings Corp, Tokyo, Japan) was used
as the front optics. The SMART-COSUP system imaged this
event at 5 kfps. A captured 2D snapshot is shown as the inset in
Fig. 4(a). Video reconstruction using the S2V-AE was com-
pared to those using TwIST and plug-and-play (PnP)-ADMM
with the BM3D denoiser [13]. In terms of the reconstruction
speed, the execution of algorithms of S2V-AE, TwIST, and
PnP-ADMM took 0.06, 5, and 220 s, respectively. Thus,
the S2V-AE offers speed enhancements of ∼80× and ∼3700×
compared to TwIST and PnP-ADMM, respectively. The
S2V-AE also provides superior quality in the real-time recon-
structed images. Figure 4(b) shows five representative frames
of ground truth and their corresponding reconstructed results

using the three methods (see the full reconstructed videos in
Visualization 3). For both TwIST and PnP-ADMM, the recon-
structed balls appear blurry and part of the balls are lost in cer-
tain frames. In contrast, the S2V-AE provides the best results,
in which each ball is fully recovered with a clean background.
To quantitatively compare these results, we plotted the PSNRs
and SSIMs for all frames, as shown in Figs. 4(c) and 4(d).
The reconstructed frames of S2V-AE have an average PSNR
of 25.62 dB, superior to 15.09 dB of TwIST and 16.30 dB
of PnP-ADMM. The results from the S2V-AE have an average
SSIM of 0.94, considerably better than 0.76 of TwIST and
0.85 of PnP-ADMM. Moreover, we traced the centroids of
each ball over time. To further evaluate the reconstruction’s ac-
curacy, we calculated the standard deviations of reconstructed
centroids, which are shown in Table 1. On average, the S2V-
AE improves the accuracy by ∼3× compared to the TwIST
reconstruction and by ∼2× to the PnP-ADMM reconstruction.

Furthermore, the three centroids in each frame were used as
vertices to build a triangle. Figures 4(e) and 4(f ) show the time
histories of the geometric center of this triangle generated from
the results of the three reconstruction methods. The standard
deviations in the x and y directions averaged over time were
calculated as (25.4 μm, 17.0 μm), (14.8 μm, 14.5 μm), and
(8.3 μm, 6.7 μm) for TwIST, PnP-ADMM, and S2V-AE, re-
spectively. These results show that the S2V- AE has delivered
superior performance in image quality and measurement
accuracy.

6. APPLICATION OF SMART-COSUP TO
MULTIPLE-PARTICLE TRACKING

To show the broad utility of SMART-COSUP, we applied it to
tracking multiple fast-moving particles. In the setup, white

Fig. 3. Simulation of video reconstruction using the S2V-AE. (a) Six representative frames of the ground truth (GT, top row) and the recon-
structed result (bottom row) of the handwritten digit “3.” The snapshot is shown in the far right column. (b), (c) As (a), but showing handwritten
digits 5 and 7. (d), (e) Peak SNR and the structural similarity index measure (SSIM) of each reconstructed frame for the three handwritten digits.
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microspheres were scattered on a surface that rotated at
6800 revolutions per minute [Fig. 5(a)]. The 640 nm continu-
ous-wave laser was used to illuminate the rotating microspheres
at an incident angle of ∼50°. To visualize the beads’ continuous
motion while capturing a sufficiently long trace, the scattered
light was captured by the SMART-COSUP system at 20 kfps.
An objective lens (CF Achro 4×, Nikon Corp., Tokyo, Japan)
was used as the front optics. Figure 5(b) shows a static image of
three microspheres (marked as M1−M3) around the rotation
center. Figure 5(c) shows a time-integrated image of this
dynamic event acquired using the CMOS camera in the
SMART-COSUP system at its intrinsic frame rate of 20 fps.
Due to the low imaging speed, this time-integrated image can-
not discern any spatiotemporal details. In contrast, imaging at
20 kfps, SMART-COSUP captures the trajectory of each mi-
crosphere, as shown in Visualization 4. The top image in
Fig. 5(d) provides a color-coded overlay of five reconstructed
frames (from 0.55 ms to 4.55 ms with a 1 ms interval), which
are shown individually in the bottom row of Fig. 5(d).

The rotation of M1 and M3 at two different radii [i.e., rM1

and rM3
labeled in Fig. 5(b)] is evident.

To quantitatively analyze these images, we calculated the
time histories of x and y positions and the corresponding veloc-
ities of these microspheres. M2, sitting at the rotation center,
barely changes its position. The time histories of the positions
and velocities of M1 and M3 follow sinusoidal functions
expressed as

vi�x or y��t� � ωFrMi
sin�ωFt � αi�x or y��: (9)

Here, i � 1 or 3, ωF denotes the angular velocity,
whose value was preset at 0.71 rad/ms (i.e., 6800 rounds
per minute), and rMi

denotes the radius of each microsphere’s
rotation trajectory. In this experiment, rM1

� 0.44 mm and
rM3

� 0.64 mm. αi�x or y� is the initial phase of the ith micro-
sphere in either the x direction or the y direction. Thus, the
theoretical linear speeds of M1 and M3 are 0.31 m/s and
0.45 m/s, respectively.

Based on the above analysis, we used single sinusoidal func-
tions to fit the measured velocities. The fitted maximum veloc-
ities in the x direction and the y direction are 0.30 m/s and
0.32 m/s forM1, and 0.46 m/s and 0.45 m/s forM3. The fitted
angular speeds in the x direction and the y direction are
0.71 rad/ms and 0.70 rad/ms for M1 and 0.71 rad/ms and
0.72 rad/ms for M3. The experimentally measured values have
a good agreement with the preset angular speed of the rotating
surface.

Fig. 4. SMART-COSUP of animation of bouncing balls at 5 kfps. (a) Experimental setup. DMD, digital micromirror device. Inset: an exper-
imentally acquired snapshot. (b) Five representative frames with 4 ms intervals in the ground truth (GT) and the videos reconstructed by TwIST,
PnP-ADMM, and S2V-AE, respectively. Centroids of the three balls are used as vertices to build a triangle (delineated by cyan dashed lines), whose
geometric center is marked with a green asterisk. (c), (d) PSNR and SSIM at each reconstructed frame. (e) Comparison of the positions of the
geometric center between the GT and the reconstructed results in the x direction. (f ) As (e), but showing the results in the y direction.

Table 1. Standard Deviations of Reconstructed
Centroids of Each Ball Averaged over Time (Unit: μm)

Algorithm

1 2 3

x y x y x y Mean

TwIST 37.5 36.3 39.4 35.7 43.2 34.9 37.8
PnP-ADMM 27.6 26.2 25.6 25.3 28.6 30.5 27.3
S2V-AE 15.0 12.3 11.0 12.6 15.3 16.0 13.7
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7. DISCUSSION AND CONCLUSIONS

The S2V-AE offers a new real-time reconstruction paradigm to
compressed ultrahigh-speed imaging, as shown in Fig. 2(a).
The new architecture of the encoder allows mapping a com-
pressively recorded snapshot into a set of low-dimensional la-
tent vectors. After that, the GAN-trained generator maps such
latent vectors into frames of the reconstructed video. Using this
scheme, the training procedure is divided into two distinct
phases: to train a generative model of static frames and to train
an encoding model aiming to sample from the generator. By
doing so, unlike direct reconstruction approaches, high quality
in frame-wise reconstruction can be ensured by the initially
trained generator, while the encoding model needs to learn only
how to query coherently across time. This scheme brings in
benefits to the reconstructed videos in terms of both quality
and flexibility. The encoder in S2V-AE preserves coherence
in both space and time. Different from previous works
[36,37,39], no artificial segmentation is conducted in the
S2V-AE, which avoids generating artifacts due to the loss of
spatial coherence. The S2V-AE also explicitly models temporal
coherence across frames with the Bi-LSTM. Both innovations
ensure artifact-free and high-contrast video reconstruction of
sophisticated moving trajectories. Meanwhile, the S2V-AE
presents a flexible structure with a higher tolerance for input
data. In particular, the generator, used in a PnP setting [66],
is independent of the system’s data acquisition, which is impor-
tant for adaptive compressed sensing applications.

The multiple-discriminator framework implemented in the
S2V-AE improves training diversity. While able to generate

high-quality, natural-looking samples, generators trained under
the framework of the GAN have known drawbacks that have to
be accounted for at training time. Namely, mode collapse refers
to cases where trained generators can generate only a small frac-
tion of the data support [67]. Standard GAN settings do not
account for the diversity of the generated data, but instead, the
generator is usually rewarded if its outputs are individually close
to the real data instances. As such, a large body of recent liter-
ature has tackled the mode collapse using different approaches
to improve the diversity of the GAN generators [67,68]. Mode
collapse is especially critical in the application we consider here.
The generator in the S2V-AE must be able to generate any pos-
sible frame, which means being able to output images contain-
ing any objects (e.g., balls or digits) in any position. To ensure
that the generator is sufficiently diverse, the S2V-AE imple-
ments the multiple-discriminator framework [69,70].
Moreover, each such discriminator is augmented with a random
projection layer at its input. More random views of the data
distribution aid the generator in producing results that are
approximate to the real data distribution.

The S2V-AE enables the development of SMART-COSUP.
This new technique has demonstrated the largest sequence
depth (i.e., 100 frames) in existing DNNs-based compressed
ultrahigh-speed imaging methods [36–41]. The sequence
depth, as a tunable parameter, could certainly exceed 100
frames. In this aspect, the performance of the S2V-AE mainly
depends on the encoder [Fig. 2(b)] since it needs to extract the
same number of latent vectors as the sequence depth. Although
a large sequence depth may bring in training instabilities due to

Fig. 5. SMART-COSUP of multiple-particle tracking at 20 kfps. (a) Experimental setup. (b) Static image of three microspheres (labeled as
M1−M3) and the radii (labeled as rM1

and rM3
). (c) Time-integrated image of the rotating microspheres imaged at the intrinsic frame rate of

the CMOS camera (20 fps). (d) Color-coded overlay (top image) of five reconstructed frames (bottom row) with a 1 ms interval. (e) Time histories
of the microspheres’ centroids. (f ) Measured velocities of microspheres with fitting.
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vanishing/exploding gradients, our choice of the Bi-LSTM ar-
chitecture in the S2V-AE could alleviate gradient-conditioning
issues relative to standard recurrent neural networks [71]. Thus,
we expect the limit of sequence depth to be up to 1000 frames
in the current setup.Moreover, although we only experimentally
demonstrated the 20 kfps imaging speed in this work, the S2V-
AE could be extended to reconstruct videos with much higher
imaging speeds. As shown in Eq. (5), SMART-COSUP’s imag-
ing speed is determined completely by the hardware. Regardless
of the imaging speed, the operation of the S2V-AE—
reconstruction of a 3D datacube from a 2D snapshot—
remains the same. Moreover, considering the link between
imaging speeds and SNRs, the successful reconstruction of
snapshots with different SNRs during the training procedure,
as discussed in Section 5, indicates S2V-AE’s applicability to
reconstruct videos with a wide range of imaging speeds.
Furthermore, SMART-COSUP replaces the DMD with a
printed transmissive mask. Despite being inflexible, the imple-
mented pseudo-random binary pattern has better compatibility
with diverse dynamic scenes, improves light throughput and im-
age quality, as well as offers a simpler, more compact system
arrangement. Along with its real-time image reconstruction,
the SMART-COSUP system is advancing toward real-world
applications.

In summary, we have developed the S2V-AE for fast,
high-quality video reconstruction from a single compressively
acquired snapshot. This new DNN has facilitated the develop-
ment of the SMART-COSUP system, which has demonstrated
single-shot ultrahigh-speed imaging of transient events in both
macroscopic and microscopic imaging at up to 20 kfps with a
real-time reconstructed video size of �Nx ,N y,N t� �
�256, 256, 100�. This system has been applied to multiple-
particle tracking. Despite demonstrated only with the SMART-
COSUP system, the S2V-AE could be easily extended to other
modalities in compressed temporal imaging [19] and single-
shot hyperspectral imaging [72,73]. Moreover, by implement-
ing the variational AE [74], the dependence of the encoder on
the sensing matrix could be further reduced. SMART-
COSUP’s ability to track multiple fast-moving particles in a
wide field may enable new applications on particle imaging ve-
locimetry [75] and flow cytometry [76]. All of these topics are
promising research directions in the future.
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